Max Planck Institute for Dynamics of Complex Technical Systems
Development of Magnetic Particles for Virus Purification Processes
Motivation
Viruses can be purified by numerous methods like centrifugation, filtration, or chromatography. However, these methods are usually not intended for small scale purification or virus isolation. Furthermore, they are not suited for high-throughput isolations or analysis of patient or environmental samples.
Separation via magnetic particles, is a promising alternative [1]. Classically, magnetic particle separation is based on antibodies immobilized onto magnetic beads, allowing a specific isolation of target (macro-)molecules up to cells. However, use of the method requires specific antibodies for every target which increases costs and narrows down its field of applications. Both disadvantages can be circumvented, by using pseudo-affinity ligands based on small molecules, like sulfated carbohydrates, which are applicable for a wide range of targets [2-5].
Aim of the project
Combining the advantages of pseudo-affinity ligands with magnetic separation, we develop magnetic sulfated cellulose particles (MSCP) to purify or deplete a variety of viruses including influenza A and B virus and modified Vaccinia Ankara (MVA) virus [6-7].
References
Borlida, L., Azevedo, A. M., Roque, A. C., Aires-Barros, M. R.:
Magnetic separations in biotechnology.
Biotechnology Advances 31 (8), pp. 1374-1385 (2013)
O'Neil, P. F., Balkovic, E. S.:
Virus Harvesting and Affinity-Based Liquid Chromatography.
Biotechnology 11 (2), pp. 173-178 (1993)
Wolff, M.; Siewert, C.; Hansen, S. P.; Faber, R.; Reichl, U.: Purification of cell culture-derived modified Vaccinia Ankara virus by pseudo-affinity membrane adsorbers and hydrophobic interaction chromatography. Biotechnology and Bioengineering 107 (2), pp. 312 - 320 (2010)
Fortuna, A. R.; Taft, F.; Villain, L.; Wolff, M. W.; Reichl, U.: Optimization of cell culture-derived influenza A virus particles purification using sulfated cellulose membrane adsorbers. Engineering in Life Sciences 18 (1), pp. 29 - 39 (2018)
Serve, A.; Pieler, M.; Benndorf, D.; Rapp, E.; Wolff, M. W.; Reichl, U.: Comparison of Influenza Virus Particle Purification Using Magnetic Sulfated Cellulose Particles with an Established Centrifugation Method for Analytics. Analytical Chemistry 87 (21), pp. 10708 - 10711 (2015)
Pieler, M.; Frentzel, S.; Bruder , D.; Wolff, M. W.; Reichl, U.: A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection. Vaccine 34 (50), pp. 6367 - 6374 (2016)