Selected Articles

Here, we present selected publications and articles published by scientists of the MPI Magdeburg.


Press Release (in German): Eine stabile Hülle für künstliche Zellen ...

Optimal Reactor Design via Flux Profile Analysis for an Integrated Hydroformylation Process

Highlight on the Cover of Issue 56 of Industrial & Engineering Chemical Research

Different operational modes, various scales, and complex phenomena make the design of a chemical process a challenging task. Besides conducting basic lab experiments and deriving fundamental kinetic and thermodynamic models, a crucial task within the entire process design is the synthesis of an optimal reactor-network constituting the core of a chemical process. However, instead of directly up-scaling the process to large devices, it is wise to investigate process characteristics on the miniplant scale. For an existing miniplant for the hydroformylation of 1-dodecene using a rhodium catalyst and a thermomorphic solvent system for catalyst recovery, two optimized reactor designs are derived. Suitable reactor-networks were synthesized by applying the Flux Profile Analysis approach introduced in Kaiser et al. (2017). The combination of a first reactor with dynamic/distributed control options and a subsequent back-mixed continuous stirred tank reactor (CSTR) arose to be the most promising configurations. The technical design under miniplant conditions was carried out for two possible realizations of this network, namely (i) a continuous flow reactor and (ii) a periodically operated semibatch reactor, both followed by the existing CSTR which was originally operated in the miniplant. An optimization of the two optimal reactor configurations within an overall process including a liquid–liquid phase separation for catalyst recovery and a distillation column for separating the solvents and reactant evinced a selectivity with respect to the linear aldehyde around 94% and a conversion around 98%. This is a large improvement of the process performance of 24% linear aldehyde selectivity and 40% conversion when using the existing CSTR.

Nicolas M. Kaiser, Michael Jokiel, Kevin McBride, Robert J. Flassig, and Kai Sundmacher

A Cell-Autonomous Mammalian 12 hr Clock Coordinates Metabolic and Stress Rhythms

Non-equimolar discrete compounds in binary chiral systems of organic substances

CrystEngComm Highlight Article

Since knowledge on the occurrence of non-equimolar discrete compounds in binary systems containing chiral molecules is very limited, this study reviews and systematizes the current state of investigating such systems and summarizes the results on two example systems studied in detail by the authors.

In particular, the identification and verification of the non-equimolar discrete compounds compared to other discrete solid phases occurring in the two systems are discussed by presenting the results of related SCXRD, PXRD, TRPXRD, DSC, IR, and HSM studies. The (S)-malic acid–(R)-malic acid system has been found to contain non-equimolar 1 : 3 and 3 : 1 stable (S3R and SR3) and metastable (3S1R and 1S3R) discrete compounds, along with the equimolar compounds RSI and RSII (known monoclinic modifications) and the recently discovered RSIII modification.

Polymorphic transformations of the discrete phases are debated, and the crystal structure of the stable compound S3R is identified (S. G. P1). The L-valine–L-isoleucine system has been stated to contain a non-equimolar 2 : 1 discrete compound, V2I, that could independently be proven by the ternary solubility diagram in water and its crystal structure solved (S. G. C2). The results obtained are discussed in conjunction with the findings reported in the literature. In order to systematize the variety of terms used for the description of discrete phases in binary chiral systems of organic substances, a systematization of equimolar and non-equimolar compounds based on chemical and crystallographic characteristics is proposed.

Original publication:

 Model Reduction and Approximation: Theory and Algorithms

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems.

Model Reduction and Approximation: Theory and Algorithms

  • contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework;
  • is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods; and
  • covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).

Original publication:

Peter Benner, Albert Cohen, Mario Ohlberger, and Karen Willcox (Eds.)
Model Reduction and Approximation: Theory and Algorithms
SIAM Publications, Philadelphia, PA, 2017.
ISBN: 978-1-611974-81-2

System Reduction for Nanoscale IC Design

This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle.

The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

Original publication:

Peter Benner
System Reduction for Nanoscale IC Design
Springer International Publishing AG. 2017.

DOI: 10.1007/978-3-319-07236-4

Go to Editor View