Publications of Edgar Ivan Sanchez Medina

Poster (7)

2024
Poster
Griehl, C., Sanchez Medina, E. I., & Sundmacher, K.Rapid phosphine ligand discovery in homogeneous catalysis: Bayesian optimization approach for low-throughput experimentationPresented at: CHISA 2024Prague, Czech Republic, August 25, 2024.
Poster
König-Mattern, L., Sanchez Medina, E. I., Rihko-Struckmann, L., & Sundmacher, K.Machine learning-based solvent screening for lignocellulose biorefineries and lignin upgradingPresented at: BioSPRINT Spring School: Opportunities and challenges of process intensification application in lignocellulosic biorefineriesFrankfurt am Main, Germany, April 15, 2024.
Poster
Peterson, L., Sanchez Medina, E. I., Khalid, M. M., & Sundmacher, K.Surrogate modeling of dynamical systems: deep learning or model-order reduction?Presented at: ECML 2024 (ML4CCE workshop)Vilnius, Lithuania, September 9, 2024.
2022
Poster
Sanchez Medina, E. I., Linke, S., Stoll, M., & Sundmacher, K.Predicting Activity Coefficients at Infinite Dilution Using Hybrid Residual Graph Neural NetworksPresented at: 2022 AIChE Annual MeetingPhoenix, USA, November 13, 2022.
2021
Poster
Sanchez Medina, E. I., Linke, S., & Sundmacher, K.Prediction of Bioconcentration factors (BCF) using Graph Neural NetworksPresented at: 31st European Symposium on Computer-Aided Process Engineering (ESCAPE-31)Istanbul, Turkey, June 6, 2021.
Poster
Sanchez Medina, E. I., Rodriguez Vallejo, D., Chachuat, B., Sundmacher, K., Petsagkourakis, P., & del Rio Chanona, E. A.Acyclic modular flowsheet optimization using multiple trust regions and Gaussian process regressionPresented at: 31st European Symposium on Computer-Aided Process Engineering (ESCAPE-31)Istanbul, Turkey, June 6, 2021.

Thesis - PhD (1)

2024
Thesis - PhD
Sanchez Medina, E. I. (2024)Hybrid Graph Neural Networks for the prediction of activity coefficients in separation processesPhD Thesis, Otto-von-Guericke-Universität, Magdeburg.

Preprint (1)

2025
Preprint
Sanchez Medina, E. I. & Sundmacher, K. (in press)Graph Neural Networks embedded into Margules model for vapor-liquid equilibria prediction.
Go to Editor View