Publikationen von Zihao Wang
Alle Typen
Zeitschriftenartikel (10)
1.
Zeitschriftenartikel
356 (Part A), 129796 (2025)
Integrating machine learning model and computer-aided molecular design toward rational ionic liquid selection for separating fluorinated refrigerants. Separation and Purification Technology 2.
Zeitschriftenartikel
69 (12), e18236 (2023)
Data‐driven integrated design of solvents and extractive distillation processes. AIChE Journal 3.
Zeitschriftenartikel
123, S. 12170 - 12253 (2023)
Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chemical Reviews 4.
Zeitschriftenartikel
10 (1), 165 (2022)
High-Throughput Computational Screening of Ionic Liquids for Butadiene and Butene Separation. Processes 5.
Zeitschriftenartikel
444, 136651 (2022)
Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation. Chemical Engineering Journal 6.
Zeitschriftenartikel
160, 107739 (2022)
Identification of Optimal Metal-Organic Frameworks by Machine Learning: Structure Decomposition, Feature Integration, and Predictive Modeling. Computers & Chemical Engineering 7.
Zeitschriftenartikel
68 (1), 17402 (2022)
A systematic modeling methodology of deep neural network‐based structure‐property relationship for rapid and reliable prediction on flashpoints. AIChE Journal 8.
Zeitschriftenartikel
259, 117801 (2022)
A neural recommender system for efficient adsorbent screening. Chemical Engineering Science 9.
Zeitschriftenartikel
60 (48), S. 17761 - 17777 (2021)
Comprehensive Evaluation of COSMO-RS for Predicting Ternary and Binary Ionic Liquid-Containing Vapor–Liquid Equilibria. Industrial & Engineering Chemistry Research 10.
Zeitschriftenartikel
9 (1), 65 (2021)
Machine Learning for Ionic Liquid Toxicity Prediction. Processes Konferenzbeitrag (3)
11.
Konferenzbeitrag
Molecular Property Targeting for Optimal Solvent Design in Extractive Distillation Processes. In: 33rd European Symposium on Computer Aided Process Engineering: Computer Aided Chemical Engineering, S. 1247 - 1252 (Hg. Kokossis, A.; Georgiadis, M. C.; Pistikopoulos, E.). 33rd European Symposium on Computer Aided Process Engineering, Athen, Greece, 18. Juni 2023 - 21. Juni 2023. Elsevier, Amsterdam/Netherlands (2023)
12.
Konferenzbeitrag
A Novel Machine Learning-Based Optimization Approach for the Molecular Design of Solvents. In: 32nd European Symposium on Computer Aided Process Engineering, S. 1477 - 1482. 32nd European Symposium on Computer Aided Process Engineering : ESCAPE 32, Toulouse, France, 12. Juni 2022 - 15. Juni 2022. Elsevier (2022)
13.
Konferenzbeitrag
A New Machine Learning Framework for Efficient MOF Discovery: Application to Hydrogen Storage. In: 14th International Symposium on Process Systems Engineering:, S. 1807 - 1812 (Hg. Yamashita, Y.; Kano, M.). 14th International Symposium on Process Systems Engineering - PSE 2021+, Kyoto, Japan, 19. Juni 2022 - 23. Juni 2022. Elsevier (2022)
Vortrag (2)
14.
Vortrag
Data-driven integrated design of solvents and extractive distillation processes. 2023 AIChE Annual Meeting, Orlando, USA (2023)
15.
Vortrag
A Novel Machine Learning-Based Optimization Approach for the Molecular Design of Solvents. ESCAPE-32, Toulouse, France (2022)
Poster (3)
16.
Poster
Molecular Property Targeting for Optimal Solvent Design in Extractive Distillation Processes. ESCAPE-33, Athens, Greece (2023)
17.
Poster
Synthesis and Characterisation of CALF-20/GO nanocomposites for microwave assisted adsorbate regeneration. International Conference on Metal-Organic Frameworks and Open Framework Compounds 2022, Dresden, Germany (2022)
18.
Poster
A New Machine Learning Framework for Efficient MOF Discovery: Application to Hydrogen Storage. 14th International Symposium on Process Systems Engineering: PSE 2021+, Kyoto, Japan (2022)