Max-Planck-Institut für Dynamik komplexer technischer Systeme

Dr. Patrick Kürschner


Dr. Patrick Kürschner

Dr. Patrick Kürschner

Dr. Patrick Kürschner


  • +49 391 6110 424



Main Focus

  • Numerical Linear Algebra
    • Low-rank methods for large-scale algebraic matrix equations (ADI methods, rational Krylov subspace methods)
    • Methods for large-scale eigenvalue problems (Rayleigh quotient iteration, Jacobi-Davidson)
  • Model Order Reduction
    • Balanced truncation
    • Model truncation with dominant eigenvalues

Curriculum Vitae

Higher Education

  • 2004-2008: student of financial mathematics at the Chemnitz UT.
    • 03/2008: B. sc. 
    • Topic of Bachelor's thesis: Der Jacobi-Davidson-Algorithmus auf Parallelrechnern (in German).
    • Supervisor: Prof. Peter Benner und Dr. Matthias Pester.
  • 2008-2010: student of mathematik at the Chemnitz UT. 
    • 07/2010: M. sc. 
    • Topic of Master's thesis: Two-sided Eigenvalue Algorithms for Modal Approximation.
    • Supervisor: Prof. Peter Benner and Dr. Michiel E. Hochstenbach (TU Eindhoven).
  • 08/2010-09/2015: Ph. D. student in mathematics at the Otto-von-Guericke University of Magdeburg.
    • 02/2016: Defense
    • Topic of Ph.D. thesis: Efficient Low-Rank Solution of Large-Scale Matrix Equations.
    • Supervisor: Prof. Peter Benner

Work Experience

  • 10/2004-07/2010: student / research assistant at the faculty of mathematics, Chemnitz UT.
  • 07/2010-12/2010: research associate  at the faculty of mathematics, Chemnitz UT.
  • 07/2010-12/2011: teaching assistant the faculty of mathematics,Otto-von-Guericke Universty of Magdeburg
  • since 01/2011: research associate at the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Selected Publications

  1. Patrick Kürschner: Balanced truncation model order reduction in limited time intervals for large systems;  ArXiv e-print  1707.02839, submitted, 2017.
  2. Melina Freitag, Patrick Kürschner and Jennifer Pestana: GMRES Convergence Bounds for Eigenvalue Problems;  Comput. Meth. Appl. Mat., aop, 2017.         
  3. Peter Benner, Patrick Kürschner, Jens Saak: Frequency-Limited Balanced Truncation with Low-Rank Approximations; SIAM J. or Scientific Computing: 38(1), pp. A471–A499, 2016.
  4. Peter Benner, Patrick Kürschner, Jens Saak: Low-Rank Newton-ADI methods for Large Nonsymmetric Algebraic Riccati EquationsJournal of The Franklin Institute:

    353(5), 1147–1167, 2016.

  5. Melina Freitag, Patrick Kürschner: Tuned preconditioners for inexact two-sided inverse and Rayleigh quotient iteration; Numerical Linear Algebra with Applications: 22(1), pp. 175-196;  2015.
  6. Peter Benner, Patrick Kürschner, Zoran Tomljanović, Truhar, Ninoslav: Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm; ZAMM - Journal of Applied Mathematics and Mechanics, 2015.
  7. Peter Benner, Patrick Kürschner, Jens Saak: Self-Generating and Efficient Shift Parameters in ADI Methods for Large Lyapunov and Sylvester Equations; Electronic Transaction on Numerical Analysis: 43, pp. 142-162; 2014.
  8. Peter Benner, Patrick Kürschner: Computing Real Low-rank Solutions of Sylvester equations by the Factored ADI Method; Computers and Mathematics with Applications:  67(9), pp. 1656-1672; 2014.
  9. Peter Benner, Patrick Kürschner, Jens Saak: Efficient Handling of Complex Shift Parameters in the Low-Rank Cholesky Factor ADI method; Numerical Algorithms:  62(2), pp. 225-251;  2013.
  10. Peter Benner, Patrick Kürschner, Jens Saak: An Improved Numerical Method for Balanced Truncation for Symmetric Second Order Systems; Mathematical and Computer Modelling of Dynamical Systems: 19(6), pp. 593-615; 2013.
  11. Christine Nowakowski, Patrick Kürschner, Peter Eberhard, Peter Benner: Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations; ZAMM - Journal of Applied Mathematics and Mechanics:  93(4), p. 198-216, 2013.
Full publication list available here.

Organizational Unit (Department, Group, Facility):

  • Computational Methods in Systems and Control Theory
  • Max Planck Institute for Dynamics of Complex Technical Systems
loading content