Aktuelle Veröffentlichungen

1.
Liesche, G.; Schack, D.; Sundmacher, K.: The FluxMax Approach for Simultaneous Process Synthesis and Heat Integration: Production of Hydrogen Cyanide. (angenommen)
2.
Antoulas, A. C.; Zhu, B.; Zhang, Q.; York, B.; O'Malley, B. W.; Dacso, C. C.: A novel mathematical method for disclosing oscillations in gene transcription: A comparative study. PLoS ONE 13 (9), e0198503 (2018)
3.
Venayak, N.; Kamp von, A.; Klamt, S.; Mahadevan, R.: MoVE identifies metabolic valves to switch between phenotypic states. Nature Communications 9, 5332 (2018)
4.
Sascha Young Kupke, Dietmar Riedel, Timo Frensing, Pawel Zmora, Udo Reichl
A novel type of influenza A virus-derived defective interfering particle with nucleotide substitutions in its genome
5.
Melnikov, S.; Stein, M.: Solvation and Dynamics of CO2 in Aqueous Alkanolamine Solutions. ACS Sustainable Chemistry & Engineering 7 (1), S. 1028 - 1037 (2019)
6.
Münzberg, S.; Vu, T. G.; Seidel-Morgenstern, A.: Generalizing Countercurrent Processes: Distillation and Beyond. Chemie-Ingenieur-Technik 90 (11), S. 1769 - 1781 (2018)
7.
Benner, P.; Qiu, Y.; Stoll, M.: Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems. SIAM/ASA Journal on Uncertainty Quantification 6 (2), S. 965 - 989 (2018)

Veranstaltungen

Mit hochrangigen Wissenschaftlerinnen und Wissenschaftlern aus renommierten Forschungseinrichtungen deutschland- und weltweit.

MPI Kolloquiumsreihe 2019

Mit hochrangigen Wissenschaftlerinnen und Wissenschaftlern aus renommierten Forschungseinrichtungen deutschland- und weltweit. [mehr]

Willkommen am Max-Planck-Institut Magdeburg

Nachrichten

MALOC Event Series

3889 1452171036

Magdeburg Lectures on Optimization and Control: "Concepts of Function Space Oriented Optimization"

Many large scale nonlinear optimization problems are discretizations of optimization problems in function space and thus, we expect that additional functional analytic structure should be present. The goal of function space oriented optimization is to exploit this structure. This may comprise the efficient computation of steps by iterative solvers, problem suited globalization strategies, or the use of adaptive mesh refinement inside an optimization method. In this talk we will give an overview of a couple of ideas, and explain at concrete examples how they can be implemented. Short CV Anton Shiela is a professor for applied mathematics at the University of Bayreuth. His fields of research are optimization with PDEs, in particular the development of algorithms for the solution of optimization problems in function space. Before moving to Bayreuth in 2014, he was an associate professor at Technische Universitaet Hamburg-Harburg (2013-2014) and Matheon junior reseach group leader at TU Berlin (2012-2013). He got his PhD in 2007 at Zuse Institute Berlin, where he worked as a reasearch assistant (2002-2012). [mehr]

 
loading content
Zur Redakteursansicht