

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

TU Clausthal

2nd Symposium on Insights into Gas Diffusion Electrodes From Fundamentals to Industrial Applications

General Information

Conference Venue

Johanniskirche Johannisbergstraße 1 39104 Magdeburg

Internet Access

WiFi access is available for free throughout the conference venue. As WiFi can be used by all participants, a loss of efficiency is possible.

Book of Abstracts

Book of Abstracts (lectures and posters) is available online for participants of the meeting "Insights into Gas Diffusion Electrodes: From Fundamentals to Industrial Applications": https://www.mpi-magdeburg.mpg.de/gde2022

Social Programme

Tuesday, 06 September 2022, 19:00 Conference Dinner (Jahrtausendturm)

Fotos Johanniskirche: © Andreas Lander für MVGM GmbH

Contact

Susanne Wandenälis Phone : +49 391 61 10 317 E-Mail: gde2022@mpi-magdeburg.mpg.de

Tanja Vidakovic Phone: +49 391 67 54 630 E-Mail: vidakovic@mpi-magdeburg.mpg.de

Thomas Turek Phone : +49 5323 722 184 E-Mail: turek@icvt.tu-clausthal.de

General Information

Scientific Scope

The 2nd Symposium on **"Insights into Gas Diffusion Electrodes: From Fundamentals to Industrial Applications"** is an initiative of Research Unit 2397 approved by German Research Foundation (DFG) in July 2016. The main research focus of the project "Multiscale Analysis of Complex Three-Phase Systems: Oxygen and Carbon Dioxide Reduction" is devoted to the interaction of reaction and transport processes during oxygen and carbon dioxide reduction within silver-based gas diffusion electrodes (GDEs).

GDEs have broad applications in different electrochemical devices such as (bio)-fuel cells, (bio)-electrolyzers, and batteries for energy as well as inorganic and organic synthesis applications. Although very different chemistries and materials are involved, all of these examples share some similarities related to so-called "three phase boundaries" as well as pronounced mass transfer resistances related to slow diffusivity and/or low solubility of gases.

Plenary Lectures

Hierarchically Structured Electrodes: Their Design, Implementation and Characterization to Make Academic Developments Relevant Prof. Doris Segets, University of Duisburg-Essen, Germany

Importance of Transport in Electrochemical Energy-Conversion Technologies Dr. Adam Z. Weber, Lawrence Berkeley National Laboratory, USA

Gas Diffusion Electrodes for CO₂ **Electrochemical Reduction** Prof. Eileen Yu, Newcastle University, UK

Scientific Committee

Ulrike Krewer Ingo Manke Ulrich Nieken Christina Roth Wolfgang Schuhmann Thomas Turek Tanja Vidaković-Koch Karlsruhe Institute of Technology Helmholtz Zentrum Berlin University Stuttgart University Bayreuth Ruhr-Universität Bochum TU Clausthal MPI Magdeburg

Sponsors

Sponsors

DFG Deutsche Forschungsgemeinschaft German Research Foundation German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) is the self-governing organisation for science and research in Germany. It serves all branches of science and the humanities. In organisational terms, the DFG is an association under private law. Its membership consists of German research universities, non-university research institutions, scientific associations and the Academies of Science and the Humanities. DFG supports this symposium within the framework of the research unit FOR 2397. www.dfg.de

www.for2397.tu-clausthal.de

The International Society of Electrochemistry (ISE) was founded in 1949 by leading European and American Electrochemists to serve the growing needs of electrochemistry in becoming a modern scientific discipline. Since then the association has evolved and now comprises about 3000 individual members and more than 20 Corporate Members (teaching institutions, non-profit-making research organizations and learned societies) and Corporate Sustaining Members (industrial and commercial organizations). Its membership comes from more than 70 countries and is organized in over 40 regional sections. ISE is a non-profitmaking organization with its seat in Lausanne, Switzerland. *www.ise-online.org* GESELLSCHAFT DEUTSCHER CHEMIKER The Gesellschaft Deutscher Chemiker (GDCh) represents a large, professionally and socially relevant community with around 30,000 members from science, business and the liberal professions.

The GDCh Division of Electrochemistry has been active since 1960 and has around 600 members from universities, research institutes and industry – around a third of them are students and young members. The Division aims to promote all areas of electrochemistry from the basics to application. *http://en.gdch.de*

Covestro is a world's leading producer of high-qualitychemistry based materials. The company's products and application solutions provide the basis for key industries and are ubiquitous in modern life. The focus is on innovative, sustainable solutions for the big challenges of our time – such as climate change, increasing scarcity of resources, growing mobility and urbanization. Covestro has some 16,800 employees across the globe and generated sales of 14.6 billion euros in 2018. www.covestro.com/en

Conference Program

Monday, 05 September 2022

12:00	Registration
Chair	U. Nieken
13:00	Welcome
13:10 PL	Hierarchically structured electrodes: Their design, implementation and characterization to make academic developments relevant D. Segets, Institute for Particle Science and Technology, University of Duisburg-Essen
14:00 IL	Chemical Design of Carbon-Based Materials for the Electrochemical Activa- tion of Small Molecules M. Oschatz, Center for Energy and Environmental Chemistry Jena
14:30 O-01	The Interplay of Oxygen Reduction Reaction and Iron Dissolution from Fe- N-C in Alkaline Media YP. Ku, Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy
14:45 O-02	Gas Diffusion Electrode Setup Beyond Room Temperature and Ambient Pressure G. Wiberg, University of Bern
15:05	Coffee Break
Chair	C. Roth
15:35 O-03	Bridging the gap between lab and application: A novel Porous Transport Electrode three-electrode set P. Collantes Jiménez, INP Leibniz Institute for Plasma Science and Technology
15:55 O-04	Best practice for determining oxygen reduction reaction catalyst activities in GDE half-cells N. Schmitt, Department of Chemistry, Technical University of Darmstadt

Conference Program

Monday, 05 September 2022

16:10 O-05	An alternative design for state-of-the-art GDEs: OER/ORR active, large macropore-sized, catalyst-coated substrates are competitive A. Bekisch, Fraunhofer Institute IKTS; Friedrich-Schiller-University, Jena
16:25 IL	From electrocatalyst powder to porous electrode layers: A journey with a lot of pitfalls M. Oezaslan, Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, TU Braunschweig
16:55	Short Introduction of Poster Programm
17:05- 19:00	Poster Party (with snacks)

Conference Program

Tuesday, 06 September 2022

Chair	U. Krewer
09:00 PL	Electrochemical Reduction of CO ₂ using Gas Diffusion Electrodes E. Yu, Department of Chemical Engineering, Loughborough University
09:50 IL	Press it, Heat it, Twist it: A Series of Hidden Parameters for the Electrochemi- cal CO ₂ Reduction UP. Apfel, Fraunhofer UMSICHT & Ruhr University Bochum
10:20 O-06	Gaining Freedom of Scalable Gas Diffusion Electrode for the CO ₂ Reduction Reaction X. Wang, Ruhr-University Bochum
10:35	Coffee Break
Chair	I. Manke
11:00 O-07	CO ₂ electroreduction selectivity modulation by the gas diffusion electrode architecture C. Andronescu, Chemical Technology III, University Duisburg-Essen
11:20 IL	From oxygen reduction to CO ₂ reduction in gas diffusion electrodes. Similarities and differences W. Schuhmann, Analytical Chemistry - Center for Electrochemical Sci- ences (CES); Faculty of Chemistry and Biochemistry
11:50 IL	Development and upscaling of gas diffusion electrodes for wastewater treatment and electrosynthesis of chemicals D. Pant, Flemish Institute for Technological Research (VITO)
12:20 O-08	Addressing the issue of carbon efficiency in CO ₂ electroreduction at silver gas diffusion electrodes using acidic electrolytes J. Osiewacz, Clausthal University of Technology - ICVT
12:35	Lunch -Break

Conference Program

Tuesday, 06 September 2022

Chair	W. Schuhmann
14:00 O-09	On the fate of selectivity in zero-gap CO ₂ to CO electrolysis using Ni anodes S. K. Chandrasekar, PhotoCatalytic Synthesis, University of Twente
14:15 O-10	Diagnosis of in-plane and though-plane mass transfer in zero-gap MEA electrolyzer for CO ₂ reduction W. Ju, Department of Chemistry, Chemical Engineering Division, Techni- cal University Berlin
14:35 O-11	Impacts of Unintended Cation Crossover through Anion Exchange Membranes on the Operation of Zero-gap Cu-based CO ₂ Electrolysers G. El-Nagar, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH
14:55 O-12	Computational modelling and optimisation of long-channel CO ₂ electro- reduction flow cells J. Blake, TU Delft
15:10	Coffee Break and Poster Discussions
Chair	M. Paulisch-Rinke
16:15 IL	Advanced 2D and 3D Microscopic and Spectroscopic Characterization of Gas Diffusion Electrodes for Fuel Cells J. Jankovic, University of Connecticut
16:45 IL	Industrial GDE: Current Applications and Perspectives from De Nora P. Narangoda, De Nora Deutschland GmbH
17:15	Break

19:00 **Conference Dinner (Jahrtausendturm)**

Conference Program

Wednesday, 07 September 2022

Chair	T. Turek
09:00 PL	Importance of Transport in Electrochemical Energy-Conversion Technolo- gies: The Case For Gas-Diffusion Electrodes A. Weber, LBNL, Berkeley, CA, USA
09:50 O-13	Micromodel of a gas diffusion electrode tracks in-operando pore-scale wetting phenomena S. Brosch, RWTH Aachen University Chemical Process Engineering
10:05 O-14	A novel pore network model for electrolyte imbibition in gas diffusion electrodes T. Mager, Institute of Chemical Process Engineering, University of Stuttgart
10:20	Coffee Break
Chair	T. Vidaković-Koch
10:50 O-15	Operando Synchrotron Imaging of Electrolyte Distribution in Silver Based Gas Diffusion Electrodes During Oxygen Reduction Reaction M. C. Paulisch-Rinke, Helmholtz-Zentrum Berlin, Institute of Applied Materials
11:10 O-16	Investigating the Mass Transport in Porous Transport Layers of PEMWE using Neutron Imaging H. Atlaf, Otto-von-Guericke University, Magdeburg
11:25 IL	Operation of PEM Fuel Cells Exposed to Harsh Environments T. Reshetenko, Hawaii Natural Energy Institute, University of Hawaii
11:55 O-17	Influence of the Porous Transport Layer Structure on Proton Exchange Membrane Water Electrolyzer Performance T. Miličić, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg
12:10 O-18	Transient hydrogen crossover in dynamically operated polymer electrolyte membrane electrolysis cells - a model-based analysis T. Franz, Otto-von-Guericke University, Process Systems Engineering
12:25	Closing

Poster Program

	CO ₂ Reduction
P-01	Modeling the Influence of CO_2 Concentration on Electrochemical CO_2 Reduction at Silver Gas Diffusion Electrodes, M. Löffelholz, TU Clausthal
P-02	Electrochemical CO ₂ Reduction: Steady-state vs. Dynamic Investigation I. Dorner, Institute for Applied Materials – Electrochemical Technolo- gies, Karlsruhe Institute of Technology
P-03	Development of gas diffusion electrodes for applications in electrochemical CO ₂ reduction, S. Molodtsov, Avantium
P-04	The application of a MOF-derived FeNC catalyst on commercial GDEs for the CO ₂ RR, J. Shi, Ruhr University Bochum
P-05	Fabrication of a CuBZnO Modified GDEs for Back-Pressure Modulated Electrochemical CO ₂ Reduction, J. Weidner, Ruhr University Bochum
P-06	Impact of Catalyst Ink Dispersion Method on Gas Diffusion Electrode Performance for CO_2 Reduction, K. Lawrence, TU Delft
P-07	Model-based Analysis of CO ₂ Reduction Reaction Kinetics on Planar Silver Electrodes, M. Sivasankaran, Max Planck Institute for Dynamics of Com- plex Technical Systems
P-08	Combined modelling and experimental evaluation of advanced catholyte compartment designs for improved CO ₂ reduction towards hydrocarbons in flow cell electrolyzers, M. Filippi, TU Berlin
P-09	Exploring the Effects of Mass Transport on the Efficiency of CO ₂ Electrolysis Using a Flow Cell Setup, C. Blümner, Otto von Guericke University Magde- burg
P-10	Tailored gas diffusion electrodes for electrochemical CO ₂ reduction, S. Chandrasekar, PhotoCatalytic Synthesis, University of Twente
P-11	Optimization of the zero-gap half-cell for electroreduction of CO ₂ to multi- carbon (C2+) products, V. Chanda, Faculty of Chemistry and CENIDE, Center for Nano-integration, University Duisburg Essen
P-12	Tuning pH profiles in Gas Diffusion Electrodes for Formic Acid Production, R. Taghanaki, Institute of Technical Chemistry, University of Stuttgart

Poster Program

	GDE Characterization
P-13	PTFE degradation and morphology investigation in Gas Diffusion Electro- des after electrochemical performance, R. de Oliveira Silva, Institute of Applied Materials, Helmholtz-Zentrum Berlin
P-14	Determining the electrochemical active surface area of fuel cell catalyst layers in a gas diffusion electrode half-cell setup, N. Röttcher, Forschungs- zentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy
P-15	Efficient Methods to Characterize the Morphology of Highly Porous 3D Metallic Foam Electrodes, H. Hoffmann, University of Bayreuth
P-16	Predictive, Multiphysics simulation of effective electrical conductivity, permeability, porosity, and specific active area of Gas Diffusion Electrodes (GDE), S. Atyabi, Flemish Institute for Technological Research, Mol, Belgium
P-17	Probing the activity and stability of oxygen evolution electrocatalysts using a modified GDE setup, M. Geuß, Helmholtz-Institute Erlangen-Nürnberg
P-18	Electrochemical characterisation of the ORR in realistic catalyst layers with a GDE, P. Lauf, Helmholtz-Institute Erlangen-Nürnberg
	Fuel Cells and Water Electrolysis
P-19	Optimisation of Gas Diffusion Electrode for Alkaline Fuel Cell with Liquid Electrolyte, J. Hnát, University of Chemistry and Technology Prague, Department of Inorganic Technology
P-20	Investigation of PEMFC Multiphase Transport in Cathodic Gas Diffusion Layers Using a Co-Simulation Concept, L. Hüfner, Ernst-Berl-Institute, Technische Universität Darmstadt
P-21	Microfluidic PEM Water Electrolyzer Cell to Investigate the Two-Phase Flow in the Anodic Pore-Network Structure, S. Bhaskaran, Otto von Guericke University Magdeburg

P-22 Distribution of Relaxation Times as a Diagnosis Tool for Polymer Electrolyte Membrane Electrolysers, D. Brinker, Institute for Applied Materials – Electrochemical Technologies, Karlsruhe Institute of Technology

Poster Program

P-23	The performance of different iron compounds in gas diffusion electrodes for a novel alkaline water electrolysis process, M. Kaiser, Institute of Chemical and Electrochemical Process Engineering, TU Clausthal
P-24	Scale-up of microbial fuel cells using large-area gas diffusion electrodes, L. Landwehr, Institute of Chemical and Electrochemical Process Engineering, TU Clausthal
	Other Electrochemical Processes
P-25	Carbon monoxide electroreduction in catholyte-free gas diffusion electro- lysers, S. Gupta, Helmholtz Zentrum Berlin für Materialien und Energie
P-26	Wetting behavior of electrolyte in a silver GDE and how it affects perfor- mance in metal-air batteries, A. Kube, German Aerospace Center
P-27	Switchable Oxygen Depolarized Cathodes for flexible Chlor-Alkali Electroly- sis, K. Baitalow, Chemical Process Engineering, RWTH Aachen University
P-28	Preparation of an air-diffusion cathode based on Printex L6 carbon supported on carbon cloth for H_2O_2 electrogeneration in water treatment: Catalysis and viability, M. Kronka, University of Sao Paulo / Universitat de Barcelona
P-29	Bifunctional silver-based gas diffusion electrodes for electrically recharge- able zinc-air flow batteries: Challenges and perspectives, S. Genthe, Tech- nical University of Clausthal
P-30	Gold Recovery and Nanoparticle Synthesis by Gas-Diffusion Electrocrystal- lization (GDEx), L. León Fernández, VITO (Flemish Institute for Techno- logical Research)
P-31	Gas Diffusion Electrodes for Electrochemical NAD(P)H Regeneration, M. Al-Shaibani, Max Planck Institute, Magdeburg
P-32	Rational design of 3-D porous enzymatic electrodes for the production of gluconic acid in bioelectrochemical system, M. Varnicic, Institute of Che- mistry, Technology and Metallurgy, Belgrade

12

Notes	Notes

