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Scientific machine learning

Training phase
e Collect training data from system
e Define a hypothesis space

e Minimize loss on training data

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Testing/evaluation phase Core Technologies for Artificial Intelligence
e Evaluate model to predict at new input

e Generalization to unseen inputs?

Scientific machine learning

Prepared for LS.
Dspartmnt of Enray
Advanced Scientiic
Computing Research

e Encoding physics in model

e Interpretability of predictions

. ENERGY
e Increasing robustness, ...
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Model reduction

Outer-loop application “Computational applications that form outer loops

around a model where in each iteration an input z is received and the

corresponding model output y = f(z) is computed, and an overall outer loop

result is obtained at the termination of the outer loop” [P., Willcox,

Gunzburger, SIAM Review, 2018]

Examples

e Optimization
outer-loop result = optimal design

e Uncertainty quantification
outer-loop result = estimate of statistics

Inverse problems

Data assimilation

Control problems

Sensitivity analysis

output y

outer-loop
application

high-fidelity
model

z ndur
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Model reduction reduces expensive models

Multi-query with high dimensional model:

1T

upr)  u(pa)  u(ps)

time

Multi-query with reduced model:

offline phase online phase

T e

un(p), - -+, un (pr)

Offline
e Generate snapshots/library (data), using high-fidelity models
e Generate reduced models

Online
e Select appropriate library records and/or reduced models
e Rapid prediction, control, optimization, UQ using (multi-fidelity)
methods

[Figure: Bernard Haasdonk]
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Machine learning Reduced-order modeling

“The scientific study of algorithms & statistical “Model order reduction (MOR) is a
models that computer systems use to perform a technique for reducing the computational
specific task without using explicit instructions, complexity of mathematical models in
relying on patterns & inference instead.” [Wikipedia] numerical simulations.” [wikipedia]

What is the connection between reduced-order

modeling and machine learning?

Model reduction methods have grown from Computational Science & Engineering, with

focus on reducing high-dimensional models that arise from physics-based modeling,
whereas machine learning has grown from Computer Science, with a focus on creating
low-dimensional models from black-box data streams. [swischuk et al., Computers & Fluids, 2019]

[Slide: Karen Willcox]
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Machine learning

“The scientific study of algorithms & statistical
models that computer systems use to perform a
specific task without using explicit instructions,
relying on patterns & inference instead.” [Wikipedia]

Reduced-order modeling

“Model order reduction (MOR) is a
technique for reducing the computational
complexity of mathematical models in
numerical simulations.” [Wikipedia]

Reduced-order modeling & machine learning:

Can we get the best of both worlds?

Discover hidden structure
Non-intrusive implementation
Black-box & flexible

Accessible & available

Embed governing equations
Structure-preserving
Predictive (error estimators)

Stability-preserving

[Slide: Karen Willcox]
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Outline

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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Format

Talk about concepts, try them in hands-on sessions, learn about
details in references

Lectures/discussions

Takes about 45min per meeting
Slides/board

Strongly encouraged to ask questions

This should be interactive

Hands-on session
Download handout and Matlab code (ownCloud)

Will start breakout rooms and randomly assign you to rooms

There will be 5-8 people per room

| will go through the rooms and will be available for questions/discussion

White board notes and slides will be available for download (ownCloud)
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Outline

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
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e Multi-fidelity uncertainty quantification
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Model reduction

white board
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MOR: Classical (intrusive) model reduction

Given full model f, construct reduced f via projection

1. Construct n-dim. basis V = [vy,...,v,] € RVx"
e Proper orthogonal decomposition (POD)
e Interpolatory model reduction
e Reduced basis method (RBM), ...

2. Project full-model operators A, ..., A;, B onto reduced space, e.g.,
Nx N Nxp
A=V''A (Vo---aV) B=v''B
i — i e ) - ,
nxni nxp

3. Construct reduced model

¢
)~(k+12?()~(k,uk)2274;5‘(;;+éuk, k=0,....,.K—-1
i=1
with n < N and || VX, — x,|| small in appropriate norm

[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]
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MOR: References

Model reduction

e G Rozza, DBP Huynh, AT Patera, Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations, Archives of
Computational Methods in Engineering 15 (3), 1

e AC Antoulas, Approximation of large-scale dynamical systems, Society for Industrial and
Applied Mathematics, 2004

e P Benner, S Gugercin, K Willcox, A survey of projection-based model reduction methods for
parametric dynamical systems, SIAM review 57 (4), 483-531

e JS Hesthaven, G Rozza, B Stamm, Certified reduced basis methods for parametrized partial
differential equations, Springer, 2016

Interpolating reduced operators

e D Amsallem, C Farhat, Interpolation method for adapting reduced-order models and
application to aeroelasticity, AIAA Journal 46 (7), 1803-1813

e J Degroote, J Vierendeels, K Willcox, Interpolation among reduced-order matrices to obtain
parameterized models for design, optimization and probabilistic analysis, International Journal
for Numerical Methods in Fluids 63 (2), 207-230

Working with quadratic and polynomial systems

e Peter Benner and Tobias Breiten, Two-Sided Projection Methods for Nonlinear Model Order
Reduction, SIAM Journal on Scientific Computing 2015 37:2, B239-B260, 2015

e B Kramer, K Willcox, Nonlinear Model Order Reduction via Lifting Transformations and
Proper Orthogonal Decomposition, AIAA Journal 57 (6), 2297-2307, 2019

e B Peherstorfer, K Willcox, Data-driven operator inference for nonintrusive projection-based
model reduction, Computer Methods in Applied Mechanics and Engineering 306, 196-215,
2016
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SAMM 2020: Learning Models from Data Wayne Uy (exercise) and Benjamin Peherstorfer (lecture)

Introduction to model reduction'

1 Problem setup

We will apply model reduction to the Burgers’ equation given by

a

(& )+l )

&
subject to the Dirichlet boundary conditions

a(-Ltw) = u(t), 2(ltip) = —ult)

where & < (<1, 1) is the spatial variable, ¢ € [0,7] is time, 4 is some parameter, and u(f) is some input
signal. We discretize the spatial domain with finite difference on an equidistant grid with mesh size dz and
apply the forward Euler method in time with step size 6t to obtain the discrete system

Hw) + Bl &)

where @, () € RN, a3(0) € RYOID2 4 € R AG) € RN F() @ ROVOIDR By ¢ RV and
k The components of @, (1) represent approximations to a(¢, ) t various spatial locations
for a specified time. The vector @3 is a vector representing products formed by components of @z without
duplicates. More formally, if % = [y, .., )" then

v = NN /2 o)
where 3@ is defined as
2
y Dy |
%
The goal of Lhis exercise is Lo formulate the reduced systom for the full system (1), construct i num

and use il for prediction.

To assist you with this exercise, we have provided Matlab functions that assemble the matrices in the full
system (1). The functions get_x_sq.m and getBurgershatrices.m are extracted from the Github repositery
of Elizabeth Qian. The tunchon genDisc8ys.m then utilizes these functions to produce A(u), F(u), B(n)
for specified values of N, dz

You may want to investigate how get x sq.m operates by applying the function to v = [1 2 3] in the
command line, Tnvestigate what happens instead when the input is v = [1 2 3; 4 5 6]. Observe that the
function get x_sq applies (2) to each row in the input argument.

!Prepared by: Wayne Uy, Pl
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Outline

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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Learning dynamical-system models from data

PDE

data

—

—

reduced
model

low-dim.
model

—

—

error
control

Learn low-dimensional model from data of dynamical system

e Interpretable

e System & control theory

e Fast predictions

e Guarantees for finite data
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Recovering reduced models from data

PDE

our approach:
pre-asymptotically
guaranteed

data

—

—

reduced
model

low-dim.

model

—

—

error
control

Learn low-dimensional model from data of dynamical system

e Interpretable

e System & control theory

e Fast predictions

e Guarantees for finite data

Learn reduced model from trajectories of high-dim. system

e Recover exactly and pre-asymptotically reduced models from data

e Then build on rich theory of model reduction to establish error control
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Intro: Polynomial nonlinear terms

Models with polynomial nonlinear terms

S x(t 1) =F(x(t: ), u(): 1)
4
=3 A(ux(t ) + Bluyu(t)

i=1
e Polynomial degree ¢ € N .
e Kronecker product x/(t; ) = ®J'-:1 x(t; )
e Operators A;(p) € RV*N for j=1,... ¢
e Input operator B(u) € RN*P

Lifting and transformations
e Lift general nonlinear systems to quadratic-bilinear ones [cu, 2011, [Benner,
Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox,
2019], [Qian, Kramer, P., Willcox, 2019]
e Koopman lifts nonlinear systems to infinite linear systems [rRowley <t al, 2009],

[Schmid, 2010]
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Intro: Beyond polynomial terms (nonintrusive)

arXiv.org > math > arXiv:1912.08177
Holp | Advanced Search
Mathematics > Numerical Analysis Download:
Lift & Learn: Physics-informed machine learning for large-scale nonlinear « PDF
dynamical systems + Other formats
Elizabeth Qian, Boris Kramer, Benjamin Peherstorfer, Karen Willcox Current browse context:
math.NA

(Submitted on 17 Dec 2019 (v1). last revised 23 Dec 2019 (this version, v2))
<prev | next>
We present Lift & Learn, a physics-informed method for learning low-dimensional models for large-scale dynamical systems. The method new | recent | 1912

exploits knowledge of a system's governing equations to identify a coordinate transformation in which the system dynamics have quadratic Change to browse by:

structure. This transformation is called a lifing map because it often adds auxiliary variables to the system state. The lifting map is applied to s

data obtained by evaluating a model for the original nonlinear system. This lfted data is projected onto its leading principal components, and s1G

low-dimensional linear and quadratic matrix operators are fit to the lifted reduced data using a least-squares operator inference procedure. ety NA

Analysis of our method shows that the Lift & Learn models are able to capture the system physics in the lifted coordinates at least as

accurately as traditional intrusive model reduction approaches. This preservation of system physics makes the Lift & Leam models robust to References & Citations
« NASAADS

changes in inputs. Numerical experiments on the FitzHugh-Nagumo neuron activation model and the compressible Euler equations

demonstrate the generalizability of our model. Export citation
Google Scholar
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Intro: Beyond polynomial terms (nonintrusive)

arXiv.org > math > arXiv:1912.08177

Mathematics > Numerical Analysis

Lift & Learn: Physics-informed machine learning for large-scale nonlinear

Download:
« PDF
+ Other formats

dynamical systems

Elizabeth Qian, Bori
(Submitted on 17 Dec 20

structure. This transf
data obtained by eval
low-dimensional lined . 5.1\ i
Analysis of our meth
accurately as traditio
changes in inputs. N
demonstrate the gen

lenz PDES to. quadmlc form

Acknowledgments

W

Lift & Learn: Physics-informed machine learning
for large-scale nonlinear dynamical systems

We present Lift & Le:
P Devlvln' low-dimensional models m_ General & accuracy: FitzHugh-
exploits knowledge o} Nzxumn n activation model(®

lization
neuror

Sw)'n

e Gneinal PDE
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Karen Willcox
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ptions:

18 /170



Intro: Beyond polynomial terms (nonintrusive)
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Operator inference for non-intrusive model reduction of non-polynomial nonlinear
systems
Boris Kramer, University of California San Diego

We present a data-driven non-intrusive model reduction method that learns low-

1 models of d. ical sy with non-polynomial nonlinear terms that are
spatially local and that are given in analytic form. The proposed approach requires only the
non-polynomial terms in analytic form and learns the rest of the dynamics from snapshots
computed with a potentially black-box full-model solver. The linear and polynomially
nonlinear dynamics are learned by solving a linear least-squares problem where the
analytically given non-polynomial terms are incorporated in the right-hand side of the
least-squares problem. The resulting ROM thus contains learned polynomial operators
together with the analytic form of the non-polynomial nonlinearity. The proposed method
is demonstrated on several test problems which provides evidence that the proposed
approach learns reduced models that achieve comparable accuracy as state-of-the-art
intrusive model reduction methods that require full knowledge of the governing equations.
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

%x(t; w) =F(x(t; p), u(t); p)

Parameters
e Infer models f(-,; ty), ..., F(,-; pp,) at parameters

le")”MEID

e For new p € D, interpolate operators of [amsallem <t al., 2008], [Degroote et al., 2010]

A N

F(pa), - F ()

Trajectories
X =[x1,...,xx] € RVN*K

U=uy,...,ug] e RP*K
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

©x(t) =F(x(2) u()
¢
= Aix(t) + Bu(t)
i=1
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

X k41 :f(xk,uk)
0
:ZAIX;(+Buk7 k:07...,K_1

i=1

Parameters
e Infer models f(-,; ty), ..., F(,-; ppy) at parameters

le")”MEID
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Intro: Classical (intrusive) model reduction

Given full model f, construct reduced f via projection

1. Construct n-dim. basis V = [vy,...,v,] € RVx"
e Proper orthogonal decomposition (POD)
e Interpolatory model reduction
e Reduced basis method (RBM), ...

2. Project full-model operators A, ..., A;, B onto reduced space, e.g.,
Nx N Nxp
A=V''A (Vo---aV) B=v''B
i — i e ) - ,
nxni nxp

3. Construct reduced model

¢
)~(k+12?()~(k,uk)2274;5‘(;;+éuk, k=0,....,.K—-1
i=1
with n < N and || VX, — x,|| small in appropriate norm

[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]
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Our approach: Learn reduced models from data

Sample (gray-box) high-dimensional system with inputs

U= [uo . uK_1] initial condition
inputs

to obtain trajectory

gray-box

| dynamical
system

state trajectory
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Intro: Literature overview
System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

Learning in frequency domain [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010],
[Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea,
lonita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

Learning from time-domain data (output and state trajectories)
e Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...
e Learning models with dynamic mode decomposition [Schmid et al., 2008],
[Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...
Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...
Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...
e Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

Correction and data-driven closure modeling

e Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy,
2015], [lliescu et al, 2018, 2019], ...

e Higher order dynamic mode decomposition [Le Clainche and Vega, 2017],
[Champion et al., 2018]
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Oplnf: Fitting low-dim model to trajectories
1. Construct POD (PCA) basis of dimension n < N
V =[vy, - ,v,] € RV*"
2. Project state trajectory onto the reduced space
X=V'X=[x, -, xx] e R"*K

3. Find operators A, ..., A, B such that

by minimizing the residual in Euclidean norm

K—1 ¢ 2
min E Xk+1 — E A,)U(;( — Bu;<
Ai,AB | T i1 5
[P., Willcox, Data driven operator inference for nonintrusive projection-based model red C Methods in

Applied Mechanics and Engineering, 306:196-215, 2016]
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OplInf: Inferred operators

Fit operators Ay, ..., Ay, B by solving least-squares problem
K-1 ¢ 2
. < i A
 min E Xp+1 — g Aix, — Buy
Ay,...,A;,B k=0 i=1 2

e Transform into n independent least-squares problem

e Can be solved efficiently with standard solvers

Recover “intrusive operators” [p. willcox, 2016]
e Need sufficient data
e Need that V spans RN for n — N

e Of little practical value because no rate of convergence

If £ =1 (linear), then the inferred operators are the DMD operators

[Schmid et al., 2008], [Rowley et al., 2009], [Tu et al., 2013], [Chung, Chung, 2014], [Proctor et al., 2016], [Xie,
Mohebujjaman, Rebholz, Iliescu, 2017]
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experiment

Generate a 10 x 10 matrix A with eigenvalues logarithmically spaced
between —10~! and —1072

Gives rise to the time-continuous autonomous system x(t) = Ax(t)

Discretize in time with Runge-Kutta 4th order scheme and 6t =1 and
K = 100 time steps

Obtain time-discrete system x,11 = Aixg, k=1,...,K

Set xo = [1,0,...,0]7 € R and generate trajectory
X = [x0,X1,-..,XK]
Set basis matrix
1 0
01
v— |0 0] cgiox2
0 0

Intrusive model reduction with Galerkin projection gives X411 = A %y
with A, = VT AV

25/170



An experiment (cont’d)

e Project trajectory X=Vv'x
e Fit OplInf model X441 = A1 X,
e Test models with initial condition x5t =[1,1,0,...,0]" € R

Matlab experiment

https://github.com/pehersto/reproj
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Oplnf: Learning from projected trajectory

Fitting model to projected states

e We fit model to projected trajectory

X=VvTXx
e Would need X = [X1,...,Xk] because
K—1 e 2
Z ik+1_zAi5’(;(_Buk =
k=0 i=1 2

e However, trajectory X unavailable

2-norm of states

1.6
1.4

1.2+

0.8
0.6
0.4 +
0.2 |

projected trajectory — |
intrusive model reduction -e- |
Oplnf (w/out re-proj)

N

O L L L L L L L L i
0 10 20 30 40 50 60 70 80 90 100

time step k

Thus, ||f — f|| small critically depends on || X — X|| being small
e Increase dimension n of reduced space to decrease || X — X||
= increases degrees of freedom in Oplnf = ill-conditioned
e Decrease dimension n to keep number of degrees of freedom low
= difference || X — X|| increases
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Oplnf: Closure of linear system

Consider autonomous linear system

Xk+1 = Axk, xoeRY, k=0,...,K-1

e Split R into V = span(V) and V, = span(V )

RVN=vaV,
e Split state
x,=V VTXk +V VIXk
N—— N——
Represent system as x| i

m _ I 1
Xpi1 —Allxk + A12Xk

X1 :A21XE + Axpxj
with operators
An=V'AV, A,=V'AV, A, =VIAV,

=A

[Given, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006] [Parish, Duraisamy, 2017]

An =V AV,

28/170



Oplnf: Closure term as a non-Markovian term

Projected trajectory X mixes dynamics in V and V|

T v
V' X1 = X1 = X = Annxy, + Apxi

Mori-Zwanzig formalism gives [civen, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006]

T [ l
v Xk+1 = Xk+1 —A11X + A12Xk

:A11X JrZAk > 1/‘\21XH+14\12A22 X
j=1

Non-Markovian (memory) term models unobserved dynamics

2.50e-03

2.00e-03

1.50e-03

1.00e-03

5.00e-04

norm of closure term

O

0.00e+00
200 400 600 800 1000

time step 20 /170



ReProj: Handling non-Markovian dynamics

Ignore non-Markovian dynamics

e Have significant impact on model accuracy (much more than in classical
model reduction?)

e Guarantees on models?

Fit models with different forms to capture non-Markovian dynamics
e Length of memory (support of kernel) typically unknown

e Time-delay embedding increase dimension of reduced states, which is
what we want to reduce

e Model reduction (theory) mostly considers Markovian reduced models

Our approach: Control length of memory when sampling trajectories
e Set length of memory to 0 for sampling Markovian dynamics
e Increase length of memory in a controlled way (lag is known)
e Modify the sampling scheme, instead of learning step
e Emphasizes importance of generating the “right” data
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ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as

k—1
T k—j—1 1
V' X1 = XLl = A11Xk + E A, 4™ A21XH + A ALy xd
—— —_—

j=1

reduced model noise

memory

Sample Markovian dynamics by setting memory and noise to 0
e Set xo € V, then noise is 0
e Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto V

Establishes “independence”
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ReProj: Sampling with re-projection
Data sampling: Cancel non-Markovian terms via re-projection
1. Project initial condition xo onto V
X0 = VTxo
2. Query high-dim. system for a single time step with Vg
x1 = F(VXo, up)

3. Re-project to obtain %; = V' x;
4. Query high-dim. system with re-projected initial condition Vx1

Xo = f-(\/)_(l7 Ul)

5. Repeat until end of time-stepping loop

Obtain trajectories

)_(:[)_(0,...,)_(;(_1], \_/:[)_(1,...,)_(;(], U=["07--~7UK—1]

[P, s ling | i ional Markovian dy ics for pr ymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]

32/170



ReProj: Operator inference with re-projection

Operator inference with re-projected trajectories
¢

Theorem (Simplified) Consider time-discrete system with polynomial
nonlinear terms of maximal degree ¢ and linear input. If K > Zle n' 42

and matrix [X, U, X 7)—(12] has full rank, then | X — X|| = 0 and thus
f = f in the sense

|A; — Asllp=---=|A — Allr =B - B|r=0

Pre-asymptotic guarantees, in contrast to learning from projected data
Re-projection is a nonintrusive operation

Requires querying high-dim. system twice

Initial conditions remain “physically meaningful”

F

Provides a means to find model form

[P, s ling | di ional Markovian dy ics for pr ymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]
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ReProj: Queryable systems
Definition: Queryable systems [Uy, P., 2020]

A dynamical system is queryable, if the trajectory
X =[x1,...,xk] with K > 1 can be computed for
initial condition xq € V and feasible input trajectory
U= [ul,...,uK].

Details about how trajectories computed unnecessary

Discretization (FEM, FD, FV, etc)

Time-stepping scheme

e Time-step size
In particular, neither explicit nor implicit access to
operators required

Insufficient to have only data available
e Need to query system at re-projected states

e Similar requirement as for active learning

initial condition
inputs

gray-box

dynamical
system

state trajectory
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An example (cont’d)

Matlab experiment

https://github.com/pehersto/reproj
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ReProj: Burgers': Burgers' example

Viscous Burgers’ equation

D e t1) X 1) 50) = i ) = O
—x(w, t; x(w, t; ) =—x(w, t; ) — p=—=x(w, t; u) =
o<l i D 1= Hg 3 H
e Spatial, time, and parameter domain time step 1000
wel0,1], te]0,1], wpe]0.1,1]

e Dirichlet boundary conditions .,

x(0,t;p) = —x(1, t; ) = u(t) m
e Discretize with forward Euler
o Time step size is 5t = 1074 0@ SZ;L| p e

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]

e Interpolate inferred operators at 7 test parameters and predict
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ReProj: Burgers': Burgers' example

Viscous Burgers’ equation
82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 3000

wel0,1], te[o,1], upel0.1,1] 1s]
e Dirichlet boundary conditions . L2 ]
® 1t
x(0,t;p) = —x(1, t; ) = u(t) ’ oo
e Discretize with forward Euler 8% :
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82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 5000

wel0,1], te[o,1], upel0.1,1] 19 ]
e Dirichlet boundary conditions . L2 ]
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Viscous Burgers’ equation
82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 7000

wel0,1], te[o,1], upel0.1,1] i3]
e Dirichlet boundary conditions . L2 ]
® 1t
x(0,t;p) = —x(1, t; ) = u(t) ’ oo
e Discretize with forward Euler 8% :
e Time step size is 6t = 104 0 02 04 06 08 1

spatial domain

Operator inference
e Training data are 2 trajectories with random inputs
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e Interpolate inferred operators at 7 test parameters and predict
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ReProj: Burgers': Burgers' example

Viscous Burgers’ equation
82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 9000

wel0,1], te[o,1], upel0.1,1] i3]
e Dirichlet boundary conditions . L2 ]
® 1t
x(0,t;p) = —x(1, t; ) = u(t) ’ oo
e Discretize with forward Euler 8% :
e Time step size is 6t = 104 0 02 04 06 08 1

spatial domain

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]
e Interpolate inferred operators at 7 test parameters and predict
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ReProj: Burgers’': Operator inference

le+01 ; ; ; ‘ ‘
intrusive model reduction ©-
=
Q9 16+00(
B
n
°  le-01
e
>
€ 1e02
a0
&
1e-03

2 4 6 8 10 12 14

dimension n

Error of reduced models at test data
e Inferring operators from projected data fails in this example
e Recover reduced model from re-projected data
(1)
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ReProj: Burgers’': Operator inference

le+01 ‘ ; ; ‘ ‘
intrusive model reduction ©-
= Oplnf, w/out re-proj
Q9 le+00 R
I IS
n
©  le-01
e
>
€ le02 |
a0
&
1e-03 ‘ ‘ ‘ ‘ ‘ ‘ O

2 4 6 8 10 12 14

dimension n

Error of reduced models at test data
e Inferring operators from projected data fails in this example

e Recover reduced model from re-projected data
(1)
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ReProj: Burgers’': Operator inference

le+01 ‘ ‘ ‘ ; ‘
intrusive model reduction ©-
= Oplnf, w/out re-proj
3 1e+00 8 Oplnf, re-proj
(o]
i
©  le-01
o
>
€ le02 |
a0
&
1e-03

2 4 6 8 10 12 14

dimension n

Error of reduced models at test data
e Inferring operators from projected data fails in this example
e Recover reduced model from re-projected data
(1)
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ReProj: Burgers’': Recovery

le+02 E w/out re-proj 4
1e4+00 + re-proj =%
~  le-02 ¢ .
8 le04 :
o
L 1e-06 ¢ :
=
1e-08 ¢ :
1le-10 & 4
)(*"’H“”—-)(—x—x—)&“_x_”_x_x_,‘
1e-12 | | | | ‘ .

2 4 6 8 10 12 14

dimension n

The difference between state trajectories
e Model from intrusive model reduction same as Oplnf with re-proj.
e Model learned from state trajectories without re-projection differs
(2)
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ReProj: Chafee: Chafee-Infante example

Chafee-Infante equation

0 3 0?
—x(w, t) + x7(w,t) — =—5x(w,t) — x(w,t) =0
Sox(w,8) 463w, 1) = o x(w,8) = x(w, )
2
18
e Boundary conditions as in [Benner et al., 2018] }2
e Spatial domain w € [0, 1] él?
e Time domain t € [0, 10] 308
0.6
e Forward Euler with 5t = 10~* 0.4
e Cubic nonlinear term 0'3
0 2 4 6 8 10
time [s]

Operator inference
e Infer operators from single trajectory corresponding to random inputs
e Test inferred model on oscillatory input
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ReProj: Chafee: Recovery

1e+00 [
1e-01 i
D
S 1e02 ]
(0]
g |
le03 L ¥ Oplnf, re-proj
Oplnf, w/out re-proj
©- intrusive model reduction
le-04 : : :
2 4 6 8 10 12
dimension n

Error of reduced models on test parameters
e Projected data leads to unstable inferred model
e Inference from data with re-projection shows stabler behavior
3)
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ReProj: AB2 time-stepping

Two-step Adams-Bashforth time stepping for cubic system

3
X2 = X1 + = (A1 — DXpq1 + Aoxiyy + Asxp g + Buyq)

e The first time step is with explicit Euler

2

1

2

((A1 = Dxx + Axx2 + Asx; + Buy)

e Re-projection is applicable in the first time step

le+00

le-01

test error (3)

1e-03 ¢

le-04

1e-02 +

= Oplnf, re-proj
© intrusive model reduction

2

4 6 8 10
dimension n

difference (2)

le-02

le-04 ¢
1e-06 ¢

intrusive Euler vs. OpInf AB = =
intrusive AB vs. OpInf AB —

~ id ~

0 05 1 15 2 25 3 35 4
dimension n

(a) Adams-Bashforth time stepping (b) time-stepping with Euler vs. Adams-Bashforth (AB)
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Different point of view: Run ROM and learn ROM

Time-discrete dynamical system

Xkr1 = f(Xk, uk)
Galerkin-reduced model with basis matrix V

%ip1 = VT F(VZ, uy)

Interpretation

e Data generation with re-projection solves the Galerkin-reduced model
without explicitly assembling it

e Paves the way for extensions for other time-stepping schemes and
Petrov-Galerkin projection
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our approach:

pre-asymptotically
guaranteed




Exercise in breakout rooms
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Outline

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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our approach:

pre-asymptotically
guaranteed




Error estimation in intrusive model reduction

Error estimation is major topic in intrusive model reduction
e Rigorously upper bound the error of reduced to full prediction
e Efficient in pre-asymptotic regime, i.e., for dimension n small
e Error estimators are key building blocks for constructing reduced models

Requirements
e Offline/online splitting to compute error estimators with costs
independent of full-model dimension
Estimators should not overestimate error by too much
e All constants and quantities need to be computable

Error estimation in model reduction

e Martin A. Grepl and Anthony T. Patera, A posteriori error bounds for reduced-basis
approximations of parametrized parabolic partial differential equations, ESAIM: M2AN, 39 1
(2005) 157-181

e Veroy, K. and Patera, A.T. (2005), Certified real-time solution of the parametrized steady
incompressible Navier—Stokes equations: rigorous reduced-basis a posteriori error bounds. Int.
J. Numer. Meth. Fluids, 47: 773-788

o G Rozza, DBP Huynh, AT Patera, Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations, Archives of
Computational Methods in Engineering 15 (3), 1

e JS Hesthaven, G Rozza, B Stamm, Certified reduced basis methods for parametrized partial
differential equations, Springer, 2016
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ErrEst: Error of linear time-invariant systems

Consider LTI system [Grepl, Patera, 2005], [Haasdonk, Ohlberger, 2009]
X1 = Axy + Buy
Reduced model (w/out intrusive model reduction)
Xii1 = Axy + Bupiq
Residual
riv1 = AV, + Buiy — VX

State error is

k—1
= k > k—I—1
xk— Vx,=A (X07VX0)+ E A ri+1
i=0
[Haasdonk, Ohlberger, Efficient reduced models and a posteriori error estimation for parametrnzed clynamncal systems by
.

offline/online decomposition, 2009], [Grepl, Patera, A posteriori error b ds for r appr of
parametrized parabolic partial differential equations, 2005]
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ErrEst: Error of linear time-invariant systems
(cont’d)
Define the quantity

k—1

A%(co, - - -5 Ck; X0, U) = coflxo — VXoll2 + Z callrill2
i=0

e Initial condition xq
e Input trajectory U = [ug, uy, ..., ug]
e Constants ¢p,...,ck € R

Bounding the norm of the state error

Ixk = V&ill2 <AZ(IA |2, - -, | A°l2i X0, U)

k—1
= A [l2llx0 — V&oll2 + Y A l2llrisall2
i=0
[Haasdonk, Ohlberger, Efficient reduced models and a posteriori error estimation for parjnmetrnzed dynamncal systems by

offline/online decomposition, 2009], [Grepl, Patera, A posteriori error b or appr of
parametrized parabolic partial differential equations, 2005]
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ErrEst: Quantities

Bounding the norm of the state error

Ixk = V&ill2 <AF(IA 2, ., [[A°]|2; X0, U)
k—1
=[[A|l2llxo = Voll> + > A" l2 ]l Fi1all2
i=0

o Need either ||A||, or at least ||A’]|, < C for i =0,...,k
e Need residual norm ||r;|j2 for i=1,... k

e We know the initial condition xg and V and so can compute ||xg — VXo||

Residual norm [Haasdonk, Ohlberger, 2009]
Irel3 = rlre =% VTA] ALV 5 + ux BT B uy + %41V VR
_— ~——
My Ma
~ ~T A = a o
+2u] BTALV %4 — 2% 1 A1 Xy i1 — 2%k1Bug
M3
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ErrEst: Error estimation for learned models

Assumptions®: Linear time-invariant system
e Derive reduced model with operator inference and re-projection
e Requires full residual of reduced-model states in training phase

Error estimation based on [Haasdonk, Ohlberger, 2009]
e Residual at time step k

ry = A1V)A(k + Buk — V)I\(k+1

e Bound on state error if initial condition in span{V}

k—1
Ixk = VXil2 < G <Z |’k||2)

i=1
e Offline/online splitting of computing residual norm ||ri/|2
2 _oT\TAT o T o Tys
re|l5 =%, V' A A VX +ucB ' Bue+ X1 V' Vi
[rll2 =% 1 ALV X+ g kT Xkl k+1
M, M-
T RpT o T Ao o B
+2u, B AV X — 2%, 1 A1 X1 — 2% 1 Buy
——

Ms;
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ErrEst: Learning error operators from data

From [Haasdonk, Ohlberger, 2009] have
||I’k||§ :)A(Z— VTAIA;[V)A(;( —+ Uy BTB Uy + )A(k+1 VTV)?k+1
—_—— ~—~—
M,y M
+2u] BTALV %) — 28] 1 A1Ri 11 — 2841 Buy
———
M3

Query system at training inputs to compute residual trajectories

Learn quantities M1, M,, M3 via operator inference
e Fit error operators M1, M, M3 to residual trajectories
e Least-squares problem with unique solution that is M1, My, M3

Obtain certified reduced models from data alone

[Uy, P., Pre-asymptotic error b ds for low-di ional models learned from systems governed by linear parabolic partial

differential equations with control inputs, in preparation, 2020]
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ErrEst: Probabilistic bounds of constants

For I € N, let @) = A'Z, where Z; ~ N(Onx1, In) so that O is an
N-dimensional Gaussian random vector with mean zero and covariance
AlANT.

Suppose that {G),(-/)},’-‘il are M € N independent and identically distributed
N-dimensional random vectors with the same law as ®). Then, for v >0,

M
(.l) 2 > 2 >1— 2 l
P (o, o, 10012 > 14) =1 | g ()] (@

where F,z is the cumulative distribution function of the chi-squared
distribution with 1 degree of freedom.

[Uy, P., Pi symptotic error bounds for low-dii ional models learned from systems governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]
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ErrEst: Probabilistic bounds on constants (cont’d)

To generate a random variable @) ~ N(0p1, A'(A")7), simulate the
system at xo ~ N(0, /) with input u = [0,0,...,0]

X1 :AXO + Bul = AXO + B0 = AXO

X2 :AX1 = A2X0

X/ :A/XO ~ N(Ole,AI(AI)T)

e Exploits that system is LTI
e Exploits that the system is queryable

[Uy, P., Pre ptotic error bounds for | i ional dels | | from governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]

54 /170



ErrEst: Algorithm

@ g9 hwbNH

Offline phase

Construct a low-dimensional basis V,, from the snapshot matrix _
Generate {X,}K_, via re-projection and its residual {Fx}} ;' using U™"
Perform operator inference to obtain A, B

Infer M1, M, M3 for computing residual norms

Simulate M realizations {z;}M, of Z ~ N(Opnx1, In)

Produce M realizations {Bi/)},’-‘il of ) for I =1,...,J by querying full
system for J time steps with xg = z;, i=1,..., M and input 0

Compute & = \/fy, maxi—1, .M ||0$/)||§ for/=1,...,J

Online phase

Calculate the low-dimensional solution {X)
and input Ut

test J

_, using the inferred A, B

9: Evaluate ||rfet|)3 for k = 1,..., J utilizing the inferred M1, M>, M3
10: Estimate the a posteriori error with probabilistic bound for k =1,...,J
[Uy, P., Pr ptotic error bounds for low-di ional models | d from sy governed by linear parabolic partial

differential equations with control inputs, in preparation, 2020]
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ErrEst: Convection-diffusion in a pipe

Governed by parabolic PDE

%:Axf(1,1)~Vx, in Q
x =0, M{E}
Vx-n=g(t), in E

Discretize with finite elements
Degrees of freedom N = 1121
Forward Euler method 6t = 10>
e End timeis T = 0.5

Input signals
e Training signal is sinusoidal

e Test signal is exponentially decaying
sinusoidal with different frequency than
training

0.3 raq B B,
0.2
> 1 (z,y) €Q E,
0 2 )2
0.1
0 0.5 1
x
t=04
0.1
0.05

0.2
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ErrEst: Recovering reduced models from data

1le-05
intrusive =—e—

% 1e-06 | Oplnf, re-proj ==
i
°  1e07 i
o
o
o, 1e-08 ¢ e
K
:%0 le-09 | .

le-10 ‘ ‘ ‘ ‘ ‘

0 2 4 6 8 10 12 14 16 18

basis dimension

Recover reduced models from data
e Error averaged over time

e Recover reduced model up to numerical errors
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ErrEst: Error bounds

1e-02 : : ;
. € Oplnf, err ==
e 1le03 Oplnf, bound :
= intrusive, bound
5 le-04 ¢ E
3
g 1e-05 t 3
; 1e-06 - 3
£ 1e07 L 1
g 1e08 | :
(3]
5 1e09 | :
le-10 ‘ ‘ ‘ :

0 2 4 6 8 10 12 14 16 18

basis dimension

Learn certified reduced model from data alone
e Train with sinusoidal and test with exponential input
o Infer quantities from residual of full model (offline/training)
e Estimate error for test inputs
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ErrEst: Variance of estimators

—

o

I le+02 : : . . . .
- learned err. est. (?7) -
® let01 K intrusive err. est. (?7) —+

o .

2 1e+00 |

o

< le-01}

o 1e-02 |

s .

T 1e-03 ) e S ]
£ e
o le-04 .
E 2 4 6 8 10 12 14 16
12

basis dimension

(a) error estimates at t = 0.1

state err. and err. bounds at t = 0.5

le402 —_——————
learned err. est. (?7) -
le+01 1 intrusive err. est. (?7) —+
1e+00 |
le-01 ¢
1e-02 |
*L+—+\+

1e-03 SRty
le-04

2 4 6 8 10 12 14 16

basis dimension

(b) error estimates at t = 0.5

Variation of error estimator is rather low in this example

e Mean, minimum, and maximum over 50 realizations

e Fixed v =1 and number of samples M = 35
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ErrEst: Output bounds

0.03

0.025
0.02
0.015
0.01

put and error bounds (?7?)

0.005 output 77) -
0 ¥ ﬁ*
—0.005 Yt

/.
~0.005 Vet By

out;

time

(a) n = 17 basis

0 01 02 03 04 0.5

PN
e NN "

output (?7) —+
A)

0 01 02 03 04 0.5
time

(b) n =12 basis

0.1
0.08
0.06
0.04
0.02

—0.02

—+ oltput £77
- Yk —
~ Ykt A
TV VVE'VV)VH‘
e
~
L4
W
‘AH‘&Aﬂ Abbdbg A’A)
.
0 01 02 03 04 05
time
(c) n=7 basis

If output is linear y, = Cxy in state with operator C and known norm || C]||2
e Probabilistic bound of the error ||y, — ¥ |2

e Error bound indicates that error is reduced when dimension n of reduced

spaces is increased
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our approach:

pre-asymptotically
guaranteed




high-dim. hi i igh-dim.

high-dim.
operators

(Markovian)
reduced model

ovian
reduced model




NonM: Non-Markovian reduced models

high-dim. high-dim. high-dim.
model trajectories trajectories
assembleJ/ cunstructJ/ lCOIlStrlltt
high-dim. i
reduced space reduced space
operators

0104 1
projec (Markovian)

reduced model

Non-Markovian
reduced model

Learning non-Markovian low-dim. models in model reduction
e (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
e Closure error is high and needs to be corrected (steep gradients, shocks)

e Only partially observed state trajectory available
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NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

However, loose dynamics modeled by non-Markovian terms

¢ k—
Xpp1 = E A;x E i(Xk—1y ooy Xp—ip1, Ugy oo Uk—j1) + 0

i=1

Learn unresolved dynamics via approximate non-Markovian terms
k=1
Xpy1 = E A%+ Buy + E D (X1, Xp—j 1, Uky oy Ug—jy1)
i=1

e Parametrization §; € © for i =0,..., K -1

e Non-Markovian models extensively used in statistics but less so in MOR
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NonM: Sampling with stage-wise re-projection
Learning model operators and non-Markovian terms at the same
= Dynamics mixed, same issues as learning from projected states

Build on re-projection to learn non-Markovian terms stage-wise
e Sample trajectories of length r 4+ 1 with re-projection

)-((0), o )-((K—l) € RXrHL

Infer Markovian reduced model f; from one-step trajectories

X0 =z 20 =0, K-1

Simulate fl to obtain

X0 =g9,20291, i=o0,... K-1

: _ ~ 0 )
o Fit parameter 6; of non-Markovian term A" to difference

i ( 1)
min anz - Ay (x5 w3

Repeat this r times to learn f, with lag r
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NonM: Learning non-Markovian terms

Parametrization of non-Markovian terms
e Set 0, = [D,‘, E,'] with D; € R"*" and E; € R"*P
o Non-Markovian term is

Agef)

~

(Xk—1s ey Rb—ig 1, Ukey - oo U—ip1) = DiXpe_jy1 + Eiuge_jya

e Other parametrizations with higher-order terms and neural networks

Choosing maximal lag : 2.0e-04
e Assumption (observation) is that é 1.5e-04 |
non-Markovian term of system é Loeoa |
has small support 5
e Need to go back in time only a few steps § 50e05
e Lag r can be chosen small 0.06-400

200 400 600 800 1000
time steps

65 /170



NonM: Learning from partially observed states

Partially observed state trajectories

e Unknown selection operator
S € {0, 1}M%*N with Ny < N and

Dhigh-dimensional T TTTTTTTTTTITIRTTS
zk:SXk 1 states

o Learn models from trajectory  pautially observed
. states
Z = [zp,...,2zK—1] instead
of X =[xo0,...,XKk_1]

e Apply POD (PCA) to Z to find basis
matrix V of subspace V of R

Non-Markovian terms to compensate unobserved state components
e Mori-Zwanzig formalism applies

e Non-Markovian terms compensate unobserved components
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NonM: Burgers’: Burgers’' example

Viscous Burgers’ equation

D e t1) X 1) 50) = i ) = O
—x(w, t; x(w, t; ) =—x(w, t; ) — p=—=x(w, t; u) =
o<l i D 1= Hg 3 H
e Spatial, time, and parameter domain time step 1000
wel0,1], te]0,1], wpe]0.1,1]

e Dirichlet boundary conditions .,

x(0,t;p) = —x(1, t; ) = u(t) m
e Discretize with forward Euler
o Time step size is 5t = 1074 0@ SZ;L| p e

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]

e Interpolate inferred operators at 7 test parameters and predict
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NonM: Burgers’: Burgers’' example

Viscous Burgers’ equation
82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 3000

wel0,1], te[o,1], upel0.1,1] 1s]
e Dirichlet boundary conditions . L2 ]
® 1t
x(0,t;p) = —x(1, t; ) = u(t) ’ oo
e Discretize with forward Euler 8% :
e Time step size is 6t = 104 0 02 04 06 08 1

spatial domain

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]
e Interpolate inferred operators at 7 test parameters and predict
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e Interpolate inferred operators at 7 test parameters and predict
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NonM: Burgers’: Burgers’' example
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NonM: Burgers’': Partial observations

intrusive model reduction = =
projection
inferred model ——t—e
1e4+00 I EEEE—————.,

le-01

avg rel L2 error of states

1le-02 ‘ ‘ ‘

#delays

Observe only about 50% of all state components
e Linear time-delay terms with stage-wise re-projection
e Reduces error of inferred model by more than one order of magnitude
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NonM: Burgers': Shock formation

n
state
o

time

state
o

0.0
° 0.1 03

0.05
04 03
space . space

(a) ground truth (full model) (b) intrusive model reduction

Modify coefficients of Burgers’ equation to obtain solution with shock
e Solutions with shocks are challenging to reduce with model reduction
e Here, reduced model from intrusive model reduction has oscillatory error
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NonM: Burgers’': Capturing shock position

0.07

0.06 +
0.05

shock position

0.01 +

0.04 -
0.03 -
0.02 |

— intrusive model “intrusive model ——

r - 095
(1.

'g 0.9

S 085
2

c 08¢

s

£ o

0.7

0.05 0.1 0.15 0.2 0.25 0 10 20 30 40 50 60
time [s] dimension of reduced model

Learn time-delay terms stage-wise with (re-)re-projection

e Learn linear time-delay corrections

e In this example, time delay of order 4 sufficient to capture shock

e Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]
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Conclusions

high-dim.
model

1
reduced error -
PDE | —8 3% s '
model control assemble

high-dim.
operators

high-dim,
trajectories

construct

project

high-dim.
trajectories

our approach:
pre-asymptotically
guaranteed

lo .
—
model

Learning dynamical-system models from data with error guarantees

(Markovian)
reduced model

Non-Markovian
reduced model

Operator inference exactly recovers reduced models from data

Generating the right data is key to learning reduced models in our case

Pre-asymptotic guarantees (finite data) under certain conditions
e Going beyond reduced models by learning non-Markovian corrections

References: https://cims.nyu.edu/~pehersto

e Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems
governed by linear parabolic partial differential equations with control inputs, in preparation,
2020.

e P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced
models from data with operator inference. arXiv:1908.11233, 2019.

e P., Willcox, Data-driven operator inference for nonintrusive projection-based model reduction.
Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016.
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Outline

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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e Multi-fidelity uncertainty quantification
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Loewner: Dynamical systems

Consider linear time-invariant (LTI) system

5. Exy.1 = Axy + Buy, keN,
' Yk = Cxy

Time-discrete single-input-single-output (SISO) LTI system
System matrices E,A € RVXN B ¢ RVX1 C ¢ RIXN
Input v, and output yi at time step tx, k € N

State x, at time step tx, k € N

Asymptotically stable

Important is the mapping v — y, not the complete state

e Want to find a reduced model that accurately approximates the
input-output map u+— y
e Consider y to be the quantity of interest
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Loewner: Impulse response

The output yy is the convolution of the impulse response of the system X
with the inputs up, ..., Uk

K
Y=Y hitej,
i=0

with impulse response

o C(E'AYE'B), k>0
7o, k<o’

e Impulse response hy defines the input-output map v+ y

e In the continuous-time setting, the convolution-sum becomes a
convolution-integral
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Loewner: Transfer function

Transform the time-domain output {yx}32, into frequency domain with
Z-transform (Laplace transform)

Y(z) = Zykz_k
k=0

Transform the impulse response {hc}22, to obtain the transfer function
oo
H(z) = Z hyz™*
k=0

Convolution becomes multiplication in frequency domain
Y(z) = H(2)U(z)

The transfer function defines the map u+— y
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Loewner: Transfer function (cont’d)

Different representation of transfer function of LTI system X
H(z)= C(zE - A)™'B, zcC
Consider reduced model ¥ with
:‘:/(z):C(zi:'—ﬁ)_lé7 zeC
Measure error of reduced transfer function H as

IH = Allx.. = sup |H(z) — A(z)|

Relate to error in quantity of interest

ly =32 < |H = Al ull2

If A approximates H well, then know that y approximates y well
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Loewner: Model reduction via projection

Choose trial subspace spanned by columns of V € RVx»

Choose test subspace spanned by columns of W € RN*"

e Approximate x, ~ VX, by forcing X, to satisfy

WT(EVx 1 — AV, — Bug) =0

Petrov-Galerkin projection because trial and test subspaces can be
different

Leads to reduced model

E=W'Ev, A=w'Av, B=w'B, €C=CV
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Loewner: Interpolatory model reduction

Select m = 2n interpolation points

z1,...,Zm € C
Construct bases as
V=[(zE-A)B ... (z,E-A)'B] e R"*"
W =[(z,1ET — AT)"ICT ... (zp4nET —AT)ICT] e RV*"

Project (Petrov-Galerkin) to obtain operators

E=wWTEv, A=w'Av, B=w'B, C=cCcV

Then obtain reduced model ¥ with A

H(z)=H(z), i=1,....m

yoeeey
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Loewner: Interpolatory model reduction

Select m = 2n interpolation points

21,...,Zzm e C
Construct bases as
V=[(zE-A)B ... (z;E-A)"'B] eR"*"
W =[(z,1ET —AT)"ICT ... (zpsnET —AT)7ICT] e RV*"

Project (Petrov-Galerkin) to obtain operators

E=W'Ev, A=w'Av, B=w'B, C=cCV

Then obtain reduced model ¥ with A

H(z) = H(z), i=1,...,m

Requires full operators E, A, B, C either in assembled or implicit form
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Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives ¥ directly from H(z), ..., H(z») with
Lj= H(zi) — H(zn4;) , ]LE_J_S) _ ziH(zi) — zp+;H(2n+)) : ij=1,....n
Zj — Zpyj

Zi — Zn+j

Reduced operators of ¥ are

E-—-L, A=—M, B=[H(z) ... Hz)] ,

Data-driven (nonintrusive) construction of ¥
e No access to E, A, B, C required (explicit or implicit)
e Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, Antoulas, 2007]
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Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives ¥ directly from H(z), ..., H(z») with
LU: H(zi)_H(Zn+j) ’ ]LEJS) _ ziH(zf)_Z"+jH(zn+j) , I.,j:].,.u,n
Zi = Zn+j Zj — Zn4j
Reduced operators of ¥ are
E=-L, A=-M, B=[H(@) ... Hz)] ,
and € = [H(zp:1) H(zp1n)]

Data-driven (nonintrusive) construction of ¥
e No access to E, A, B, C required (explicit or implicit)
e Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, Antoulas, 2007], [Antoulas, 2016], [Gustavsen, Semlyen,
1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, lonita, 2016], [Gosea, Antoulas, 2018], [Schulze, Unger,
Beattie, Gugercin, 2018], [Benner, Goyal, Van Dooren, 2019], ...
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Loewner: (Classical) Loewner reduced model

. . . . . . N Antoulas, Anderson, 1986
Given m = 2n interpolation points on unit disc in C o efeeriv. Amtoulus, 2010]

[Mayo, Antoulas, 2007]

{Zla"'azm}:{Mla"wun}@{,yla"wr)/n}

Evaluate transfer function

of X at z1,...,z,
H(z),...,H(zm)

Derive Loewner matrices L € C"™" and M € C"*"

H(pi) — H(v; iH(pi) —~iH(y; -
L; = (u) '(%), () _ # (u? il () ii=1....n
i =7 Ki =

&

Construct reduced system ¥ with H(z) = A(z),i=1,...,m

E=-L, A=-L9, B= [H(m) .. H(ua)] T nonintrusive but
. requires values of
and €= [H(n) H(7n) transfer function
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Matlab demo
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Loewner: Noisy transfer-function values

o Let u € C and 0 < 0 € R to define
6NCN([L,O’),

where real part R(¢) and imaginary part /(¢) are independent normal
with mean R(u) and /(u), respectively

e Consider €1,...,e, ~CN(0,1) and n1,...,n, ~ CN(0,1)

e Noisy transfer-function values

Ho (i) = H(pi)(1 + oe€i) Hy(vi) = H(vi)(1 + on;)

e Noise pollutes transfer-function values in a relative sense (measurement
error relative to value)

e Define noisy Loewner matrices

i Hale) = Ho() o) _ piHo (i) = 2iHo (%))
y i
’ Hi = / i =

[Drmac, P. Learning | di ional dy ical-syst dels from noisy freq
interpolation. arXiv:1910.00110, 2019.]

p data with Loewner rational
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Loewner: Structure in noise

e Key observation is that A
L=L+odL,
with . .
SLij = (pi)ei — H(vi)m;
i —7j

e Similar decompositions possible for [,(,s) and B and C

e Building on this structure in the noise, the following holds:
Under certain assumptions on the size of the standard deviation o,
there exists a constant C; > 0 such that

|/:l(s) - /:/(s)| < Cso,

with probability at least 1 — 4 exp(—n/2)

[Drmac, P. Learning low-di ional d ical

interpolation. arXiv:1910.00110, 2019.]

models from noisy frequency-response data with Loewner rational
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Loewner: Numerical example with noisy data

77)

mean of error

le+10 200
—+— error M
| = = linear growth
le+05 g 150
1e+00 2
c
'5 100
1le-05 ¢ 3k
1e-10 | 50
oints
le-15 0 #e
le-15  1le-10  1le-05 1e4+00 1e+05 le-15  1le-10  1e-05 1e+00 1le+05
std. deviation o of noise std. deviation o of noise
(a) error, dimension n = 20 (b) assumption violated, dimension n = 20

CD player example (same as in Matlab demo)

Linear growth of error with standard deviation o until assumptions are
violated

Results indicate that bound is conservative

[Drmac, P. Learning | di ional d ical t

interpolation. arXiv:1910.00110, 2019.]

y dels from noisy frequency-response data with Loewner rational
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Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives ¥ directly from H(z), ..., H(z») with
]LU: H(Z,')-H(Z,pd) ’ ]LEJS) _ ziH(zf)_Z"+jH(zn+j) , I.,j:].,‘u,n
Zi = Zn+j Zj — Zn4j
Reduced operators of ¥ are
E=-L, A=-M, B=[H(@) ... Hz)] ,
and €= [H(zp+1) ... H(zsn)]

Data-driven (nonintrusive) construction of ¥
e No access to E, A, B, C required (explicit or implicit)
e Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, A las, 2007], [A las, 2016], [G S
1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, lonita, 2016], [Gosea, Antoulas, 2018], [Schulze, Unger
Beattie, Gugercin, 2018], [Benner, Goyal, Van Dooren, 2019], .
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Loewner: Problem formulation

Can time-step LTI model X for K € N time steps

e Given inputs u = [ug, u1,...,ux_1]7 € CK Inputs

e Compute outputs y = [yo, y1,---,yk_1]" € CK
via time stepping
e Transfer function H unavailable (E, A, B, C

unavailable as well); no states
gray-box

dynamical
system

Goal: Approximate transfer function values from y

e Given are interpolation points zi,. .., z,

e Perform single time-domain simulation of X until
steady state is reached

e Derive approximate H(z1), ..., H(zn) values from

output trajectory y output trajectory

e Construct ¥ to approximate (classical) Loewner ¥

H(Z,') = H(Z,') ~ H(Z,') s i = 1,...,m
N~ ~—~— ~—~—
full model classical time-domain
Loewner model Loewner model
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Loewner: Laplace (or Z-) transform

Input/output relationship in time domain (convolution)

K
Y= b
1=0

with impulse/response
he = C(ET*A"YE™B), k>0,h=0

Z-Transform of outputs {y,}7°,

Y(z) = Zykz_k
k=0

Z-Transform of impulse/response {h}7°,

H(z) = Z hez™*
k=0

Input/output relationship in frequency domain
Y(z) = H(z)U(z)
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Loewner: Output of LTI system

Define points on the unit circle

27 -

g =ex', i=0,....,K—1

Represent input in discrete Fourier coefficients U = [U, ..., Ux_1]"
K—1
uk:ZU;qf(, kZO,...,K—l
i=0
W.l.o.g. have set Z, = {1, ..., r} of non-zero Fourier coefficients
r
ue=»_ Uf, k=0,...,K—-1
i=1

Output is convolution of impulse response h, and input uy

k k r r k
)/k:Zhlukfl:ZhIZUiQ,{(il:ZUIQ;(ZhIQFIv k=0,...
=0 =0 =1 i—1 =0
——— ——
Uk—1 =H(ai)
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Loewner: Asymptotic properties of H(z)

Relationship between output y, and Hi(g;)

r k r
Yk:ZUICI,{(ZhIQ,‘_I:ZHk(qi)Uiq/ka k=0,....,K-1
i—1 1=0 i1
—_———
=Hx(qi)

Transfer function H is z-transform of impulse response
o0
Hz)=> hz"', zeD
=0

Sequence (Hi(z)) converges to H(z) for z € D
[H(z) = Hi(2)| < cp"

Decay of error |H(z) — Hy(z)| depends on spectral radius p of E"*A
e Problem-dependent rate of decay of error |H(z) — Hk(z)|

e Slow decay of error if many time steps to reach steady state
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Loewner: Regression problem

Relationship between output y, and Hi(q;)
Yo=Y _ Hda)Uigf, k=0,....K-1
i=1

Solve for approximate transfer function values f;, ..., H, € C

K-1

r 2
arg min E Yk *ZHI Uigf >
Yy 0y ~ . Vet
Hy,oo s H €C =k oin output i=1 non-zero
Fourier
component

= Note that dim of optimization problem grows with r
For tolerance ¢ > 0, select value ki, € N such that

|H(qi) — Hk....(gi)| <€, i=1,...,r

e Controls the time step from which on Hi(g;) sufficiently accurate
e Asymptotic analysis confirms that ki, is problem-dependent
o If kpin < K — r, then system overdetermined
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Loewner: Time-domain Loewner algorithm

Time-domain Loewner approach

1. Time-step full model X for input u to obtain output y

2. Select value kmin

3. Determine indices {i, ..., i} of non-zero Fourier coefficients of u
4. Solve for approximate transfer function values Ay, ..., A,

5. Select interpolation points z1,...,2zn C {qi,.-.,qi }

6. Use Loewner with My, ..., Ay, to derive ¥ with

H(z) ~ H(z), i=1,...,m

Choice of interpolation points
e Restricted by non-zero Fourier coefficients of input

e Number of time steps K determines frequency range

[2; 277(};— 1)] R
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Loewner: Numerical results

relative error

16400 , 16400 , :
el ™+ freq wy = 0.12566 lego | & kmin = |3/4K] //
V2T freq wy = 0.37699 VT s kin = |1/2K] ]
1e-04 1 . freq w3 = 1.00531 5 1e04 1 o ki = [1/4K]
1e-06 freq wy = 2.51327 5 1e-06 |
1e-08 | freq ws = 6.15752 < 1eo0s!
1e-10 | < lel0 |
le-12 + le-12 o
leld f=——— leld T
0.01 0.1 1 0.01 0.1 1
spectral radius p spectral radius p

(a) dependence on p, K = 50 (b) dependence on kmin, K = 50

Synthetic example where we can control p

Relative error of approximate transfer function values
oy [H(ai) = A
errel(H)) = —————, I=1,...,m
A |H(qir)|

A large spectral radius leads to larger error for fixed K
Large kmin avoids early, inaccurate transfer function approximations
Setting kmin too large, leads to ill-conditioned least-squares problem
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Loewner: Eady example

Eady LTI system le+04
e Order of system is N = 598
. . . 1e+03
e Discretize with 4th-order scheme ‘ij:) ‘
- . _1n-1 —_ 103 2
e Time step size 6t = 107" and K =10 £ er2
Time-domain Loewner reduced model
i . —+— full model
e Dimension of reduced model n =5 let0l — > o0l 1er00
fi w
e Set kmin = |1/4K] requency
. .. . a) magnitude
e Select m logarithmic interpolation pts o100 (2) mag
. -5e-01
Qiys- -5 90, - {q07'-'7qK71} 16400
8 2e+00
. @ -<€
e Input uy at time t,k=0,...,K—1 =
-2e+00
m 2e+00
E del
1 +J q” 36400 —— full model
le-02 le-01 1e+00
frequency w
e Simulate full model X once (b) phase
http://slicot.org/20-site /126-bencl k les-f del-red
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Loewner: Eady example: Transfer function

le+04 0
—0.5
3 1et03 | “1¢
2 2 151
& 5 7
& ol
Elet02 1 4 fll model —+ full model
—O— classical Loewner =251 -&- classical Loewner
- - - time Loewner _3 | -m- time Loewner
le+01 ‘ : : : ‘ :
1le-02 1le-01 1e+00 le-02 le-01 le+00
frequency w [rad/s] frequency w [rad/s]
(a) magnitude (b) phase
|H=All3¢, | H=All3¢, | A—All3¢, IH=FAll 3 o0 IH=All 3 o0 A=Al o0
[IEIES e I1H1¢5 I1H174 o I1H114 o I1H114 o

1411077 1.11x107" 542x10 7 [363x10°" 242x10° " 185x10 *

e Construct time-domain Loewner from single trajectory
e Magnitude of transfer function matched well; slight difference in phase
e Time-domain (& classical) Loewner model are asymptotically stable
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Loewner: Penzl example

Penzl LTI system
e Order of system is N = 1006
e Discretize in time with implicit Euler
e Time step size §t = 10~*
e Number of time steps K = 10°

Time-domain Loewner reduced model
e Dimension of reduced model n = 10
Set kmin = |1/4K |

Select m logarithmic interpolation pts

Construct input as in Eady example

e Simulate full model X once

magnitude

phase

le+02

le+01 |

1e400

leo1 —+— full model

“1e-04  1e03  1e02 le0l 1e+00
frequency w

(a) magnitude

3e+00
2e+00
1e4+00
0e+00 4
-1e+00

-2e+00

36400 —— full model

le-04 1e-03  1e-02 1e-01 1e+00
frequency w

(b) phase

[Penzl, 2006], [lonita, 2013] 96 /170



Loewner: Penzl example: Transfer function

le+02 3
2
o le+01 & 1
2 3
2
E 100 b full model LT o full model
—— classical Loewner —2 - 45 classical Loewner
teo1 L - - time Loewner 3L -m= time Loewner
o ‘ ‘ ‘ _ ‘ : | ]
le-04  1e-03  1le-02  1e-01  1e400 le-04 1e-03 le-02 le-01 1e+00
frequency w [rad/s] frequency w [rad/s]
(a) magnitude (b) phase

e Number of interpolation points m = 64
e Test points logarithmically distributed in range [1074, 1]

e Time-domain Loewner matches classical Loewner model well
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Loewner: Penzl example: Poles

0.04 - . 1.010 —————————
0.03 © classical L. @ o
i m timel. = ORORONONONORORORO) @
g 0025 £ 0990 !
© o) .
S 00y ® 0980 |
g 0® ® 2 o9
001 g 0970F
E _ L £ 0.960 -
0.02 £ _
003l £ 0.950 | (©) c.IassmaI Loewner
® m  time Loewner
~0.04 ‘ 0940 L T
0.98 0.99 1 1 2 3 4 5 6 7 8 9 10
real part index of eigenvalue
(a) eigenvalues (b) magnitude of eigenvalues
1H=All3ey |H=FAll %, A=Al IH=All o0 IH—=All o A=Al o
175 M7, 175 1 00 TN 00 TN 00

588 x 1077 588x10° " 1.07x10°%[267x10° 267x10° 0.97x10°°

e Time-domain Loewner model matches poles of classical Loewner

e Time-domain (& classical) Loewner model are asymptotically stable
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Loewner: Beam example

Cantilever beam
e Full 3D finite-element model of beam
e Force applied at tip of beam
o Implicit Euler, §t = 10~*, K = 10°

Time-domain Loewner

T3 force
T2

e Dimension of reduced model n = 8 o
e Select m = 150 interpolation points (2) geometry of beam
e Same knin and input as in Eady [Panzer et al., 2009]

o Simulate full model X once

—

displacement displacement
8340003 -0.0035 00012 0006 1083e02  -8.340e03  -0.0035 00012 0006 1.0836-02
. . | . |
(b) beam at time step 4452 (c) beam at time step 5061
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Loewner: Beam example: The ky;, value

le+18
le+16
le+14
le+12
le+10
1e+08
1le+06
le+04
le+02
1e+00

condition number

kmin

e The kmin significantly influences the condition number
e Conservative choice seems sufficient in practice
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Loewner: Beam example: Transfer function

magnitude

le-01
le-02 £
1e-03
&
le-04 | 8
o
1e-05 —— full model -1 —— full model
1e-06 | —6— classical Loewner —2 | 45 classical Loewner
- - - time Loewner - m- time Loewner
le-07 -3 :
le-04 1e-03 le-02 le-01  1e+400 le-04 1e-03 1le-02 le-01 le++00
frequency w [rad/s] frequency w [rad/s]
(a) magnitude (b) phase

Time-domain Loewner model matches transfer function well

Differences can be seen for high frequencies
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Loewner: Beam example: Error

1e-05 — 1e+02 : — :
1e-06 | —e— classical Loewner = classical Loewner
1e-07 | - @ - time Loewner g £ 0e+00 f
& 3
_ 1e08 -le+02 ‘ ‘ ‘ ‘
g 1e09 0 2000 4000 6000 8000 10000
@ le-10 time step
B lell
le-12 le4+02 : — :
L s time Loewner
le-13 : S 0e+00
le-14 ¢ H
le-15 b : : “le+02 ‘ ‘ ‘ ‘
le-04  1e-03  1e-02  1le-01  1e+00 0 2000 4000 6000 8000 10000
frequency w [rad/s] time step
(a) absolute error (b) output
1H=FAll%, |H=FAll %, A=Al IH=All o0 IH=All 7o A=Al o
H 1135 1H 1135 [1H 135 A1 oo A1 oo 11 00

251x 1077 128x1077 212x107%[226x10"" 216x10° " 121x10°°

e Absolute error is low for low frequencies
e Perform time-domain simulation of reduced model
e Output of time-domain Loewner matches output of classical Loewner
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Loewner: Beam example: Input signals

0.5 le-01
0 le02 |
05 _§ 1e-03
2 T 1le04}
£ &
£ 1e05 4 full model
-15 1e-06 | —6— classical Loewner N
- -® - time Loewner N
) ‘ ‘ ‘ ‘ 1e-07 ‘ ‘ ‘
0e+00 2e+05 4e+05 6e+05 8e+05 le+06 le-04  1e-03  1e-02  1e-01  1e400
time step k frequency w [rad/s]
(a) chirp signal (b) magnitude

e Extract input u from “chirp” signal (non-zero Fourier coefficients)
e Simulate X at u and construct time-domain Loewner model

e Time-domain Loewner shows similar behavior as for synthetic input
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Outline

e Introduction to (intrusive) model reduction

e Learning reduced models from data

e Generalization error of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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Intro: What is uncertainty quantification?

There are known knowns;
there are things we know we know.

We also know there are known unknowns; that is to say, we know
there are some things we do not know.

But there are also unknown unknowns the ones we do not know we
do not know.

U.S.Secretary of Defense, Donald Rumsfeld, DoD News Briefing; Feb. 12, 2002
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Intro:

Known unknowns

Hurricane Sandy
Friday October 26, 2012
11 PM EDT Advisory 19
NWS National Hurricane Center

N #
e
:
45N o -
w o
A S
. A o S
o
| 8 PAIFué”
asf | " ne
35N =
Ms AL GA
w
3N,
o
<

Current information: ®
Center location 27.7 N 77.1 W
Maximum sustained wind 75 mph
Movement N at 7 mph

Forecast positions:

@ Tropical Cyclone Q Post-Tropical
Sustained winds: D <39 mph

S 39-73 mph H74-110 mph M > 110 mph

Potential track area:

Day 1-3 Dayd-5

Watches:

Hurricane Trop Storm

Warnings:
Il Hurricane I Trop Storm

[Figure: NOAA]
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Intro: No hope to exhaustively model physics

Pressure, MPa 14 146152 158 164 1.7

AFOSR CENTER OF EXCELLENCE ON ROCKET COMBUST

MICHIGAN, pURDyE

OR DYNAM
MIT WISCONSIN 2017.593

[Figure: University of Michigan]
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Intro: Rapidly changing dynamics

[Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the C R h Model
configuration. Group (ADODG), 6(7), 8-9.]
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Intro: Uncertainties due to data

velocity (km/c) basal fricTi%BO(Pcl(Km/o))l\ﬂ 13

: 800

01 —éooo
: 400
oo Ezoo

0.0015 1

[Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.]
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Intro: UQ and the scientific computing paradigm

Physical Phenomenon

Insight
Optimization
Control

T Prediction
(

|

| o

1 Decision
L

Computer Implementation

Mathematical Model

\ 4

Numerical Approximation

[Figure: Oliver Ernst]
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Intro: UQ and the scientific computing paradigm

Physical Phenomenon Mathematical Model
Data DEs
Quantities of Interest Parameters
Solution
| Prediction
) Insight
! Optimization
0 Control
1 Decision
. A
Computer Implementation Numerical Approximation
Software Discretization
Solvers

[Figure: Oliver Ernst]
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Intro: UQ and the scientific computing paradigm

Physical Phenomenon Mathematical Model
Uncertain Data SDEs
Lack of Knowledge Random Fields
Variability
| Prediction
) Insight
! Optimization
0 Control
1 Decision
L  J
Computer Implementation Numerical Approximation
? ?

[Figure: Oliver Ernst]
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Intro: Confidence in computer predictions

Validation: Are we solving the right problem?

Determine if a mathematical model adequately represents
physical/engineering phenomena under study

Verification: Are we solving the problem correctly?

Determine if an algorithm and/or computer code correctly implements a
given mathematical model

e Code verification (software engineering)

e Solution verification (a posterior error estimation)
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Intro: Model

Model of system of interest

e Model describes response of system to inputs, parameters, configurations

e Response typically is a quantity of interest

e Evaluating a model means numerically simulating the model

e Many models given in form of partial differential equations

input

Mathematical formulation

e Input domain D and output domain Y

model

f:D—=Y

output

e Maps z € D input onto y € ) output (quantity of interest)
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Intro: Model - Navier-Stokes equations

0
p(al;—&-u-Vu) =-Vp+pulAu+g
Examples of inputs

e Density p

e Dynamic viscosity

Examples of outputs (quantities of interest)
e Velocity at monitoring point
e Average pressure

[Figure: MFIX, NETL, DOE]
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Intro: Model - Diffusion-convection-reaction flow

ou

— =Au—vVu+g(up)

ot

Examples of inputs
e Activation energy and pre-exponential factor (Arrhenius-type reaction)
e Temperature at boundary

o Ratio of fuel and oxidizer

Examples of outputs

e Average temperature in chamber

2000 2000
0.8 0.8
1500_, 1500,
T 06 X E 0.6 X
S 1000 & S 1000 &
0.4 5 ~ 0.4 §
02 500 02 500
0 0.5 15 0 0 0.5 15 0

X, [ch]
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Intro: Uncertain inputs

Inputs are uncertain

e Measurement errors in boundary conditions

e Manufacturing variations

e Model parameters determined by engineering judgment, etc.

Mathematically formulate uncertain inputs as random variables

Z:Q—D

Quantify effect of uncertainties in inputs on model outputs

input

computational
model

output
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Intro: General sampling-based approach to UQ
e Take many realizations of input random variable Z
z1,...,2,€D
e Evaluate model f at all z1, ..., z, realizations

ylzf(zl)7"'7yn:f(zn)

e Estimate statistics from outputs y;,...,¥,
input z model output y
f:D—=Y
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Intro: General sampling-based approach to
e Take many realizations of input random variable Z
z1,...,2,€D
e Evaluate model f at all z1, ..., z, realizations

ylzf(zl)7"'7yn:f(zn)

e Estimate statistics from outputs y;,...,¥,
Z1
z3 input z model output y
|
f:D—=Y
z,

uQ

Y1
Y2

Yn
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Intro: General sampling-based approach to UQ

e Take many realizations of input random variable Z

z1,...,2,€D

e Evaluate model f at all z1, ..., z, realizations

ylzf(zl)7"'7yn:f(zn)

e Estimate statistics from outputs y;,...,¥,

uncertainty

input z

quantification

model

output y

f:D—=Y
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Intro: Challenges of sampling-based UQ

input z computational model output y
f:D=)Y . e
6\“
e
S

Challenges

e Formulation and modeling of uncertainties

e Models based on PDEs: nonlinear, multi-scale, multi-physics

e Single model solve expensive; repeated solves prohibitive = multifidelity

e Uncertain parameters are of high dimension
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input z

Challenges

computational model output y
f:D—Y .
Q\QQ
e
S

e Formulation and modeling of uncertainties
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Intro: Challenges of sampling-based UQ

many iterations

Z1 Y1
. P4 Y2
input z3 output Y3
: s computational model : s
f:D—
Yy é\ 4€
e
o

Challenges
e Formulation and modeling of uncertainties
e Models based on PDEs: nonlinear, multi-scale, multi-physics
e Single model solve expensive; repeated solves prohibitive = multifidelity
e Uncertain parameters are of high dimension
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Intro: Challenges of sampling-based UQ

many iterations

Z1 Y1
. P4 Y2
input z3 output Y3
: s computational model : s
f:D—
Yy é\ 4€
e
Pl

Challenges
e Formulation and modeling of uncertainties
e Models based on PDEs: nonlinear, multi-scale, multi-physics
e Single model solve expensive; repeated solves prohibitive = multifidelity

e Uncertain parameters are of high dimension
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Intro: Opportunity of low-fidelity models

Given is typically a high-fidelity model

e Large-scale numerical simulation .

e Achieves required accuracy i

high-fidelity
model

e Computationally expensive

Additionally, often have low-fidelity models

costs

e Approximate same quantity of interest

e Often orders of magnitudes cheaper

surrogate
model

SUITOg4
mode

surrogate
model

surrogate
model

e Less accurate e Gier T >

Examples of low-fidelity models

data-fit models,
response surfaces,
machine learning

coarse-grid reduced basis,
approximations proper orthogonal
decomposition

simplified models,
linearized models
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Intro: Low-fidelity models

Replace high- with low-fidelity model
e Costs of outer loop application reduced
e Often orders of magnitude speedups

Low-fidelity model introduces error
e Control with error bounds/estimators*
e Rebuild if accuracy too low
e No guarantees without bounds/estimators

Issues
e Propagation of output error on estimate

e Applications without error control
e Costs of rebuilding a low-fidelity model

output y

uncertainty
quantification

surrogate

z ndur

model
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Multifidelity: Combine multiple models

Combine high-fidelity and low-fidelity models

e Leverage low-fidelity models for speedup

e Recourse to high-fidelity for accuracy | uncertainty
quantification
Multifidelity speeds up computations - »
e Balance #solves among models E [ high-fidelity | é
o Adapt, fuse, filter with low-/high-fidelity models E model N
surrogate
Multifidelity guarantees accuracy of high-fidelity ) model |
e Occasional recourse to high-fidelity model
e High-fidelity model is kept in the loop
e Independent of error control for low-fidelity Sliflr;g;tc
\ Z

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization. SIAM Review, 60(3):550-591, 2018]
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Intro: Survey with many references

SIAM Review

(© 2018 SIAM. Published by SIAM under the terms

Vol. 60, No. 3, pp. 550-591 of the Creative Commons 40 license

Survey of Multifidelity Methods
in Uncertainty Propagation,
Inference, and Optimization*

Abstract. In many situations across computational

Benjamin Peherstorfer!
Karen Willcox*
Max Gunzburger®

cience and engineering, multiple computational
models are available that describe a system uf interest. These different models have vary-
ing evaluation costs and varying fidelities. Typically, a computationally expensive high-
fidelity model describes the system with the accuracy required by the current application
at hand, while lower-fidelity models are less accurate but computationally cheaper than
the high-fidelity model. Outer-loog ions, such as optimization, inference, and
uncertainty quantification, require multiple model evaluations at many different inputs,
which often leads to computational demands that exceed available resources if only the
high-fidelity model is used. This work surve multifidelity methods that accelerate the
solution of outer-loop applications by combining high-fidelity and low-fidelity model eval-
uations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g.,
a simplified physics approximation, a reduced model, a data-fit surrogate) that approxi-
mates the same output quantity as the high-fidelity model. The overall premi
multifidelity methods is that low-fidelity models are leveraged for speedup while the high-
fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.
We categorize multifidelity methods according to three classes of strategies: adaptation,
fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts
of uncertainty propagation, inference, and optimization.

these

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification,

AMS subject classifications. 65-02,

multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity op-

timization

02, 49-02

DOL. 10.1137/16M1082469
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
—_—

computational model
f:D—=Y

2. Multifidelity sensitivity analysis

/\ input z
—_—

computational model
f:D—=Y

output y E

output y
— (LY

3. Multifidelity failure probability estimation

/\ input z

computational model
f:D—=Y

output y g\
—

4. Other multifidelity uncertainty quantification tasks
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MFMC: Monte Carlo estimation

High-fidelity (“truth”) model, costs wy > 0

(1) .
oD =Y outer-loop
] application
Random variable Z, estimate ppicat
s = E[f)(2)] > 5
2 =1
Monte Carlo estimate of s with real. z,..., z, z N
1 n
)7511) I Z f(l)(Zi) high-fidelity
n= model

Computational costs
e Many evaluations of high-fidelity model
e Typically 103 — 10° evaluations
e Intractable if f(1) expensive
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MFMC: Control variates

Given is a random variable A with unknown statistics

S5A4 = E[A]
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MFMC: Control variates

Given is a random variable A with unknown statistics
S5A = E[A]
Independent and identically distributed (i.i.d.) samples

dly...,dn
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MFMC: Control variates

Given is a random variable A with unknown statistics
sa = E[A]

Independent and identically distributed (i.i.d.) samples
at,...,an

Regular Monte Carlo estimator of s

n
_ 1
an:*E aj
n-
i=1
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MFMC: Control variates

Given is a random variable A with unknown statistics
sa = E[A]

Independent and identically distributed (i.i.d.) samples
at,...,an

Regular Monte Carlo estimator of s

n
_ 1
an:*E aj
n<
i=1

Unbiased estimator E[3,] = sa with mean-squared error (MSE)

n

>a

i=1

_ Var[A]

1
Var[a,] = ﬁVar
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MFMC: Control variates (cont’'d)

Additional random variable B with sg = E[B] and samples

bi,..., by

126 /170



MFMC: Control variates (cont’'d)

Additional random variable B with sg = E[B] and samples
by, ..., by

Regular Monte Carlo estimator of sg
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MFMC: Control variates (cont’'d)
Additional random variable B with sg = E[B] and samples

by,.... b,

Regular Monte Carlo estimator of sg

Control variate estimator of s that uses samples from A and B

Sa=ap+ (SB - Bn)
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MFMC: Control variates (cont’'d)
Additional random variable B with sg = E[B] and samples
by, ..., by

Regular Monte Carlo estimator of sg

Control variate estimator of s that uses samples from A and B
$a =3, + (s8 — bn)
Introduce coefficient & € R to balance A and B
= §n+a(53 71;,,)

Combines n samples of A and n samples of B

[Nelson, 87]
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MFMC: Control variates (cont’'d)

Control variate estimator

§A=§n+a(53—bn)
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MFMC: Control variates (cont’'d)

Control variate estimator

§A:§n—|—a(53—5n)

Unbiased estimator of sy because

E[$4] = E[3,] +a E[sg — by] = sa

=5 =0

127 /170



MFMC: Control variates (cont’'d)

Control variate estimator

Sp = 5,,—|—0¢(SB —bn)
Unbiased estimator of sy because
E[84] = E[3,] +aE[sg — b,] = sa
~—~— | S ——
=sp -0
Variance of control variate estimator for optimal* o € R

Varfga) = (1 - p7) 2

(1 - p*) Var[a,]

Correlation coefficient —1 < p <1 of Aand B

If p =0, same variance as regular Monte Carlo

If |p| > 0O, lower variance

The higher correlated, the lower variance of 4
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MFMC: Multifidelity Monte Carlo Estimation

Estimate expected value

s =E[fD(2)]
Low-fidelity models
Correlation coefficients
p2 = Corr[fW @] p3 = Corr[fV FO)], ... pp = Corr[fV), (9]

Costs

wi,...,wg >0
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MFMC: Multifidelity Monte Carlo

Reminder: Monte Carlo estimator

n

_ 1
yi = - Z F(z)

i=1

Muiltifidelity Monte Carlo (MFMC) estimator

8 +Se ()

| —

ffom HFM from low-fid. models

Monte Carlo estimator

Number of model evaluations m = [my,..., m]"
Control variate coefficients o = [, ..., ] "

Optimal selection of m and o — our code
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MFMC: Recipe 1

Download

https://github.com/pehersto/mfmc

Given
e Models F), ... (k)
e Computational budget b

Pilot run

e Draw myg (= 50) realizations of Z

e Evaluate each model f(, ... f(k) at the mq realizations
f(l)(zl) f(z)(Zl) f(k)(zl)
Y = : : :
f(l)(zmo) f(2)(zmo) . f(k)(zmo)

e Estimate computational costs of model evaluations w = [wy, . ..



MFMC: Recipe 1 (cont’d)

Determine number of model evaluations
[ m, a ]l = optiMlevelCorr( Y, w, b )

e Number of model evaluations m = [my, ..., m]"
o Coefficients a = [, ..., ax] T
Draw realizations
Zy,...,Zm

Evaluate models
fNzy),...,fNzn), i=1,...
Estimate

k
s= YO 4> a (yfn? v )

=2 | S

from HFM from low.-fid. models



MFMC: Matlab code for Recipe 1
modelList = {HFM,LFM1,LFM2,LFM3}; 7%
w = [100, 50, 20, 10]1'; %
budget = 1000*w(1);

models
costs

% total budget
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; 7
w = [100, 50, 20, 10]'; % costs
budget = 1000*w(1); ) total budget

models

mu = drawSamples (50); 7% pilot samples
for i=1:length(modellist)

Y(:, i) = modellist{i}(mu);
end
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models

mu = drawSamples (50); 7% pilot samples
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Y(:, i) = modellist{i}(mu);
end

[m, alphal] = optiMlevelCorr (Y, w,

budget); % MFMC
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples

for i=1:length(modellist)

Y(:, i) = modellist{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

z = drawSamples(m(end)); ) draw realizations
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modellist)

Y(:, i) = modellList{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

z = drawSamples(m(end)); ) draw realizations

y modelList{1}(z(1:m(1), :)); % evaluate HFM
sHat = alpha (1) *mean(y) ;
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MFMC: Matlab code for Recipe 1
modellList = {HFM,LFM1,LFM2,LFM3}; % models
w = [100, 50, 20, 10]'; % costs

budget = 1000*w(1); ) total budget

mu = drawSamples(50); % pilot samples
for i=1:length(modellist)

Y(:, i) = modellList{i}(mu);
end

[m, alphal] = optiMlevelCorr(Y, w, budget); % MFMC

N
|

= drawSamples (m(end)); % draw realizations

y modelList{1}(z(1:m(1), :)); % evaluate HFM
sHat = alpha (1) *mean(y) ;

% evaluate low-fidelity models
for i=2:length(modellList)
y = modellist{i}(z(1:m(i), :));
sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
end 132 /170



MFMC: Recipe 2 (MFMC as post-processing)

Given
e Model evaluations
f(")(zl),...,)"(")(zml,)7 i=1,...,k

e Model evaluation costs wy, ..., wy
Pilot samples

e Use the first mg < m; samples to form
fO(z))  f@(z1) ... fK(z)
y=| 5 5
FO(zme) FDNzmg) ... FR(zp)
e Derive coefficients
[ ~, a] = optiMlevelCorr( Y, w, b )

s= ym1 —l—Za (()—ym?l)

from HFM -

Estimate

from low.-fid. models
There are theoretic subtleties that are typically negligible in practice
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MFMC: AeroStruct: Problem setup

Coupled aero-structural wing analysis

e Uncertain are angle of attack, air density,
Mach number

e Estimate expected fuel burn

High-fidelity model (1)
e OpenAeroStruct code

e Vortex-lattice method
e 6 DoF 3-dim spatial beam model

e Used with default configuration

Low-fidelity models

[Jasa, J. P., Hwang, J. T., and Martins, J. R.

e Spline interpolants on equidistant grid :-“’.I‘r;i;‘gg;:"':;::;;:}:’:r!jt‘;;T:::;‘::‘j
o ] o e
o Low-fidelity model f(®) from 343 points Y (submitted)]

e Low-fidelity model £ from 125 points

https://github.com/johnjasa/OpenAeroStruct/
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MFMC: AeroStruct: Distribution of work

Model properties

model | evaluation costs [s] | offline costs [s] | correlation coefficient
high-fid. £ 1.61 x 10~ - -

low-fid. £ 1.23 x 1077 55.382 9.9552 x 1071
low-fid. £ 1.21 x 1077 20.183 9.9192 x 10~ *

Number of model evaluations

Monte Carlo

MFMC with @) £

MFMC with £, £(3)

online costs [s] ‘ #evals £V ‘ #evals FO)  #evals £ ‘ #evals F1) #evals F3)
7.99 x 10° 50 | 4.90 x 101  4.48 x 10° | 4.90 x 10*  5.97 x 10°
1.61 x 10* 100 | 9.90 x 10* 8.95 x 10®° | 9.90 x 10*  1.19 x 10°®
8.07 x 10* 500 | 4.96 x 10>  4.48 x 10° | 4.95 x 10>  5.97 x 10°
1.61 x 10? 1000 | 9.93 x 10>  8.95 x 10°® | 9.90 x 10>  1.19 x 107
8.07 x 102 5000 | 4.97 x 10>  4.48 x 107 | 4.95 x 10>  5.97 x 107

MFMC trades high-fidelity evaluations for low-fidelity evaluations

e The high-fidelity model evaluations guarantee unbiased

e The low-fidelity model evaluations help to reduce the variance

e The balance is optimal with respect to the mean-squared error
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MFMC: AeroStruct: Speedup results

le-02 — : ‘ :
high-fidelity model f™) alone
w103 o fidelity model £ alone —w—
= le-04 | MFMC with f®), f() e
>
g 18-05 P
0 ¢
- le-06 +
2
g 1e-07 ¢t
8 1e08 |
1e-09 ‘ ‘ ‘

le-04 1e-02 1e+00 1e+02 1le+04

online costs [s]

e Low-fidelity model alone leads to biased estimators

e MFMC achieves speedup of about one order of magnitude
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MFMC: AeroStruct: Speedup with offline costs

le-02

high-fidelity model () alone
low-fidelity model f® alone —s—
le-04 | MFMC with ), f3) e

le-05 ¥
le-06 F {

1e-07 ¢t

1le-03 ¢

estimated relative MSE

1e-08 t

1e-09 : :
le+402 le+04

offline plus online costs [s]

e Constructing low-fidelity models incurs offline costs

e In this example, offline costs low compared to savings
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MFMC: AeroStruct: Combining all three models

1e-02 |
high-fidelity model f() alone
w103y MFMC with £, f®) ——
3 le04y MFMC with f), /2 —e—
fﬁ le-05 ¥ MFMC with f f(Q f()
(0]
- 1le-06 +
3 ry
g le-07 \Q}
b <
8 le08 | \\
1le-09 ‘ ‘
le+02 le+04

online costs [s]

e Model £ and ) are similar with respect to costs/correlations

e Adding model £ as little effect
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MFMC: Plate

Locally damaged plate in bending
e Inputs: nominal thickness, load, damage

e Output: maximum deflection of plate

Only distribution of inputs known

e Estimate expected deflection

Six models

e High-fidelity model: FEM, 300 DoFs
Reduced model: POD, 10 DoFs
Reduced model: POD, 5 DoFs
Reduced model: POD, 2 DoFs
Data-fit model: linear interp., 256 pts

Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

lo ‘
r/ﬂ\

spatial coordinate o

o
0

©c o
S o

o
N

o

‘/\

(a) wing panel

0.08
0.07
0.06
0.05

0 02 04 06 0.8

spatial coordinate x;

(b) damaged plate

thickness
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MFMC: Plate: Combining many models

le4+00 | one model (Monte Carlo) =i
le-01 | two models =g
three models i

six models =

le-02

1e-03 +

le-04 +

estimated MSE

le-05 t

le-06

1le-07
le-04 1e-02 1le+00 1le4+02 1e404

runtime [s]

e Largest improvement from “single — two" and "two — three”

e Adding yet another reduced/SVM model reduces variance only slightly
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MFMC: Plate: #evals of models

102

99. 69%

10°F

share of samples|%)]

98. 29%

1.36%

[ high-fidelity £V

[ reduced f®
Il reduced f4)
Bl reduced f©)
Bl data £
ElsVM 7©

e MFMC distributes #evals among models depending on corr/costs
e Number of evaluation changes exponentially between models
e Highest #evals in data-fit models (cost ratio wi/wg ~ 10°)

141 /170



Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
—_—

computational model
f:D—=Y

2. Multifidelity sensitivity analysis

/\ input z
—_—

computational model
f:D—=Y

output y E

output y
— (LY

3. Multifidelity failure probability estimation

/\ input z

computational model
f:D—=Y

output y g\
—

4. Other multifidelity uncertainty quantification tasks
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MFGSA: Sensitivity analysis

> > b - - e ARt - e - -
z z
Y is sensitive to Z Y is not sensitive to Z

Sensitivity analysis
e Determine which inputs influence output most

e Can sample Y as a black box for inputs Z and need to determine what
components of Z = [Zy,...,Z4]" influence Y most
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MFGSA: Sensitivity analysis in engineering

Risk communication for decision-making
e Determine if one can rely on model output or if “noise”

e Communicate to upstream decision-making which inputs are critical

Feedback to improve model
e Determine which inputs need to be sampled carefully
e Prioritize effort on reducing uncertainty

e Modify model with respect to sensitive inputs

Model reduction and dimensionality reduction
e Focus on important inputs and ignore ineffective inputs

e Derive surrogate models that depend on important inputs only
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MFGSA: Variance-based global sensitivity analysis

Input Z = [Zy,...,2Z4]" € D is a random vector

Output of model Y = f()(Zy,..., Zy) is sensitive to inputs

e Measure sensitivity with variance

Main effect sensitivity
Var[E[Y|Z]
Si =
Var[Y]

e Main sensitivity indices are normalized

dYosi=1, S elo1]
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MFGSA: Multifidelity estimation

Estimation of sensitivity indices

e Estimate variance instead of expected value

_ Var[E[Y]Z]]

5= Var[Y]
e Requires estimating variance for all d inputs Z = [Z, ..., Z4]
Multifidelity estimation
e Given are low-fidelity models (), ... f(k)

e Similarly to MFMC, exploit correlations
P2 = Corr[f(l), f(z)], p3 = Corr[f(l)7 f(3)], ce PE = Corr[f(l)7 f(k)]

e Estimator has similar structure as estimator for expected values
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MFGSA: Premixed flame

2000

Inputs to model are 08
1500 _
e Parameters of Arrhenius reaction £ 06 -~
N04 £
e Temperatures at boundary oo 2
0.2
e Ratio of fuel and oxidizer 0 CEa— oMo
e Activation Energy .
2000
08

1500

0.6
1000
Output is maximum ‘“0-4-

. 500
temperature in chamber 02

x, [cm]
temp [K]

0 0.5 15

x, [em]
Models
e Model based on finite differences serves as high-fidelity model
e Model with lower fidelity derived with proper orthogonal decomposition
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MFGSA: Premixed flame: Results

1 T T T
— Monte Carlo
0.8 - — Multifidelity
0.6 -

0.4

“éééé éé’;;

Index estimates

0.2 | L \
stoosh o osh sy oskostosh o osh sl

Computational budget = 10000 minutes
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
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MFIS: Failure probabilities

System described by high-fidelity model f) : D — )
e Inputze Z
e Outputy € Y

e Costs of one high-fidelity model evaluation wy > 0

Define indicator function

1D(z) = {17 fM(z) <0

0, else.

Indicator function /()(z) = 1 signals failure for input z

Given random variable Z, estimate failure probability

Pr = Ep[IV(Z)]
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MFIS: Rare event simulation

e Monte Carlo estimator of Pr
using m € N realizations

m

1
PMC _ = I(l) ;
f m E (zi)

i=1

e If Ps small, then only few
realizations with f(1)(z) < 0

e Require (very) large m to obtain
Monte Carlo estimator with
acceptable accuracy —
expensive

1 L

x

realizations
density
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MFIS: Rare event simulation is challenging

Costs of rare event simulation grow inverse proportional to Ps
e Monte Carlo estimation of Pr with m realizations

1 m
PMC = —~ > 1W(z))
i=1

e Relative mean-squared error (MSE) of PMC

PMC _ p\?
Pr

e For constant m, the rel. MSE increases inverse proportional to Py

_ Var, [I0(2)] 1- Py
B PZm ~ Prm

e(Pf') = E,

e A small failure probability Pr needs to be compensated with a large
number of samples m

e Example: For P = 1075 need m ~ 107 to achieve e(PM¢) < 1072

Challenge

costs per sample + number of samples
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MFIS: Rare events in aerospace engineering

Rare event simulation
e Failure probability estimation

e Reliability engineering

Risk assessment
e Communicate to upstream decision-making

e Mitigate catastrophic events

Risk-averse optimization

e Deliver baseline performance outside nominal operating conditions

e Take into account dynamics at limit states
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MFIS: Importance sampling

e Importance sampling (IS)
creates biasing density g to put 5

more weight on failure events % realizations
nominal
e Let Z be the corresponding 41 —biasing
random variable
. . 2%
e Introduce the weight function S
c
)
~ 'D 2 L
) = P2
p(2)
1 L
e Reformulate failure probability
S 5 0
Pr = E,[IM(2)] = Eo[1M(2)r(2)] 05 0 05 1 15

outputs f1)(2)

154 /170



MFIS: Multifidelity importance sampling

step 1
construction of
biasing distribution

step 2
estimation of
failure probability

low-fidelity low-fidelity
model low-fidelity, cheap model

—_ - ——— —

biased HRn

' 8

'S

. €

multifidelity -2

'

unbiased :‘:i

VE

1 8
high-fidelity, expensive :
B ERERREEEEEEE T e LCREEEEE —
high-fidelity unbiase high-fidelity ;
model model
v
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MFIS: Recipe 3

Step 1: Construct biasing distribution using low-fidelity model (2
e Evaluate f(®) at (many) realizations zy,...,z, of Z

e Fit mixture model g (biasing) to realizations — scikit-learn, Matlab
{zi[I®(z;))=1,i=1,...,n}

e Derive random variable Z with density g

Step 2: Estimate P; with high-fidelity model (1)

pMFIS _ ii ,(1)(A, p(2i)
= 2;)
i=1

Multifidelity estimator PMF'S is unbiased

Pra) = Eq[PY'™]
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MFIS: Optimization for risk-averse designs

optimization
Q
-
Nol
2 =
= 7
.E >
< - =]
2 uncertainty &0
quantification )
=)

output y
Z UOoTjRZI[RAI

high-fidelity
model
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MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
e Design variables are thickness and position of control points

e Uncertain flight conditions (angle of attack, air density, Mach number)
e Output is fuel burn

Minimize fuel burn at limit states
min E[fV(x, 2) [ fV(x, Z) < 5]
xe

Derive a data-fit surrogate at current design x

e Take a 3 x 3 x 3 equidistant grid in stochastic domain

e Evaluate high-fidelity model at those 27 points at current design x
e Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method
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MFIS: Risk-averse design of wing (cont’d)

2 x 106
1.8 x 10% |
1.6 x 10° |
1.4 x 108
1.2 x 106 |

1x10% |

800000

600000

400000 ; ‘ ‘
0e+00 2e+04 4e+04 6e+04 8e+04

runtime [s]

high-fidelity model alone ——j—
multifidelity —)¢—

objective
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Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

/\ input z
—_—

computational model
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2. Multifidelity sensitivity analysis

/\ input z
—_—

computational model
f:D—=Y

output y E

output y
— (LY

3. Multifidelity failure probability estimation

/\ input z

computational model
f:D—=Y

output y g\
—

4. Other multifidelity uncertainty quantification tasks
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Outlook: Inverse problems

i physics-based 7
model
data “——— / f\Jinputs
. :.(.) + € £~ noise and

model bias

Bayesian inference of parameters z from data y
o Parameters represented as random variable z with prior p(z)
e Define likelihood p(y|z) of data y using model f
e Update distribution of z (“infer’) with Bayes' rule

p(zly) o< B =) p(2)

posterior likelihood prior
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Outlook: Inverse problems (cont’d)
p(zly) o B 1Z0) p(2)
~——— —~—

—_———
posterior likelihood  Prior
Posterior provides complete description of uncertainties in z
e Input to future simulations for predictions with quantified uncertainties

e Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z|y)
e Evaluate posterior expectation for function g

Elg] = / g(2)p(zly)dz

e Samples required as inputs in upstream simulations
e Explore posterior to decide where to take new data points

e Estimate quantiles

Making sampling tractable = multifidelity
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Outlook: Learning surrogates for multifidelity

high-fidelity
model

costs

Traditional model reduction is separate from multifidelity computations
e Measures error w.r.t. HFM output while outer-loop result is goal
e Ignores that surrogates are used together with other information sources
e While approximating HFM can be hard, supporting HFM might be easy
= Need for model reduction that targets multifidelity
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Outlook: Learning surrogates for multifidelity
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Traditional model reduction is separate from multifidelity computations
e Measures error w.r.t. HFM output while outer-loop result is goal
e Ignores that surrogates are used together with other information sources
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Outlook: Learning surrogates for multifidelity

1e+00

le-01 |
1le-02 |
1e-03 +
le-04
1le-05 £
1e-06 |

estimated MSE

le-07

N
N

—+— AMFMC
Static MEMC, n = 57
Static MFMC, n = 568

le+02 1e+03 1le+04 1le+05

budget p (runtime [s])

le+06

#adaptation samples n

le+07 - —— s
== numerical approximation of A* ¢
1e4+06 [ = = lower bound .7
- - == upper bound Lt
le4+05 |
le+04
le403
~
le+02 ~
~
le+01 4
--00
le+02 le+04 le+06
budget p

Adapt surrogate models - but not too much

e Adapting surrogate models towards multifidelity is beneficial

e Crude, cheap surrogates can have better costs/benefit ratio

e Proved for MFMC that optimal amount to spend on learning surrogates
is bounded

[P.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA Journal on Uncertainty

Quantification, 2019.]
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Survey with many references

SIAM Review

(© 2018 SIAM. Published by SIAM under the terms

Vol. 60, No. 3, pp. 550-591 of the Creative Commons 40 license

Survey of Multifidelity Methods
in Uncertainty Propagation,
Inference, and Optimization*

Abstract. In man;

Benjamin Peherstorfer!
Karen Willcox*
Max Gunzburger®

ituations across computational
models are available that describe a s

cience and engineering, multiple computational
stem uf interest. These different models have vary-
ing evaluation costs and varying fidelities. Typically, a computationally expensive high-
fidelity model describes the system with the accuracy required by the current application
at hand, while lower-fidelity models are less accurate but computationally cheaper than
the high-fidelity model. Outer-loog ions, such as optimization, inference, and
uncertainty quantification, require multiple model evaluations at many different inputs,
which often leads to computational demands that exceed available resources if only the
high-fidelity model is usc(l This work surveys multifidelity methods that accelerate the
solution of 1 jons by fidelity and low-fidelity model eval-
uations, where the low- hrlolu evaluations arise from an explicit low-fidelity model (e.g.,
a simplified physics approximation, a reduced model, a data-fit surrogate) that approxi-
mates the same output quantity as the high-fidelity model. The overall premise of these
multifidelity methods is that low-fidelity models are leveraged for speedup while the high-
fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.
We categorize multifidelity methods according to three classes of strategies: adaptation,
fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts
of uncertainty propagation, inference, and optimization.
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Books on uncertainty quantification
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Software

Software for uncertainty quantification

hup etong

Software with explicit nﬁ:liifidélity support

[Figure: Pfliiger et al., 2016]
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What we covered this week

e Introduction to (intrusive) model reduction
e Learning reduced models from data

e Error estimation of learned reduced models
e Learning from frequency-response data

e Multi-fidelity uncertainty quantification
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