
From model reduction to scientific machine
learning and back: Learning reduced models
from data and their applications in uncertainty
quantification and beyond

Benjamin Peherstorfer
Courant Institute of Mathematical Sciences, New York University

July 2020

My group
Benjamin Peherstorfer
Courant Institute of Mathematical Sciences, New
York University

Research computational mathematics, machine
learning, computational statistics, numerical anal-
ysis, and scientific computing

Group website:
https://cims.nyu.edu/∼pehersto

2 / 170

Scientific machine learning

Training phase
• Collect training data from system
• Define a hypothesis space
• Minimize loss on training data

Testing/evaluation phase
• Evaluate model to predict at new inputs
• Generalization to unseen inputs?

Scientific machine learning
• Encoding physics in model
• Interpretability of predictions
• Increasing robustness, ...

3 / 170

Model reduction
Outer-loop application “Computational applications that form outer loops
around a model where in each iteration an input z is received and the
corresponding model output y = f (z) is computed, and an overall outer loop
result is obtained at the termination of the outer loop” [P., Willcox,
Gunzburger, SIAM Review, 2018]

Examples
• Optimization

outer-loop result = optimal design
• Uncertainty quantification

outer-loop result = estimate of statistics
• Inverse problems
• Data assimilation
• Control problems
• Sensitivity analysis

high-fidelity
model

outer-loop
application

ou
tp

u
t
y in

p
u

t
z

.

.

4 / 170

Model reduction reduces expensive models

Offline
• Generate snapshots/library (data), using high-fidelity models
• Generate reduced models

Online
• Select appropriate library records and/or reduced models
• Rapid prediction, control, optimization, UQ using (multi-fidelity)

methods
[Figure: Bernard Haasdonk]

5 / 170

[Slide: Karen Willcox]

6 / 170

[Slide: Karen Willcox]

7 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

8 / 170

Format

Talk about concepts, try them in hands-on sessions, learn about
details in references

Lectures/discussions
• Takes about 45min per meeting
• Slides/board
• Strongly encouraged to ask questions
• This should be interactive

Hands-on session
• Download handout and Matlab code (ownCloud)
• Will start breakout rooms and randomly assign you to rooms
• There will be 5-8 people per room
• I will go through the rooms and will be available for questions/discussion

White board notes and slides will be available for download (ownCloud)
9 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

10 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

10 / 170

Model reduction

white board

11 / 170

MOR: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

u(ξ1)

u(ξ2)

u(ξM)

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V)︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

12 / 170

MOR: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

u(ξ1)

u(ξ2)

u(ξM)

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V)︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

12 / 170

MOR: References
Model reduction

• G Rozza, DBP Huynh, AT Patera, Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations, Archives of
Computational Methods in Engineering 15 (3), 1

• AC Antoulas, Approximation of large-scale dynamical systems, Society for Industrial and
Applied Mathematics, 2004

• P Benner, S Gugercin, K Willcox, A survey of projection-based model reduction methods for
parametric dynamical systems, SIAM review 57 (4), 483-531

• JS Hesthaven, G Rozza, B Stamm, Certified reduced basis methods for parametrized partial
differential equations, Springer, 2016

Interpolating reduced operators
• D Amsallem, C Farhat, Interpolation method for adapting reduced-order models and

application to aeroelasticity, AIAA Journal 46 (7), 1803-1813

• J Degroote, J Vierendeels, K Willcox, Interpolation among reduced-order matrices to obtain
parameterized models for design, optimization and probabilistic analysis, International Journal
for Numerical Methods in Fluids 63 (2), 207-230

Working with quadratic and polynomial systems
• Peter Benner and Tobias Breiten, Two-Sided Projection Methods for Nonlinear Model Order

Reduction, SIAM Journal on Scientific Computing 2015 37:2, B239-B260, 2015

• B Kramer, K Willcox, Nonlinear Model Order Reduction via Lifting Transformations and
Proper Orthogonal Decomposition, AIAA Journal 57 (6), 2297-2307, 2019

• B Peherstorfer, K Willcox, Data-driven operator inference for nonintrusive projection-based
model reduction, Computer Methods in Applied Mechanics and Engineering 306, 196-215,
2016

13 / 170

14 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

15 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

15 / 170

Learning dynamical-system models from data

PDE reduced
model

error
control

data low-dim.
model ?

Learn low-dimensional model from data of dynamical system

• Interpretable
• System & control theory

• Fast predictions
• Guarantees for finite data

Learn reduced model from trajectories of high-dim. system
• Recover exactly and pre-asymptotically reduced models from data
• Then build on rich theory of model reduction to establish error control

16 / 170

Recovering reduced models from data

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

Learn low-dimensional model from data of dynamical system

• Interpretable
• System & control theory

• Fast predictions
• Guarantees for finite data

Learn reduced model from trajectories of high-dim. system
• Recover exactly and pre-asymptotically reduced models from data
• Then build on rich theory of model reduction to establish error control

16 / 170

Intro: Polynomial nonlinear terms
Models with polynomial nonlinear terms

d
dt

x(t;µ) =f (x(t;µ),u(t);µ)

=
∑̀
i=1

Ai (µ)x i (t;µ) + B(µ)u(t)

• Polynomial degree ` ∈ N
• Kronecker product x i (t;µ) =

⊗i
j=1 x(t;µ)

• Operators Ai (µ) ∈ RN×N i

for i = 1, . . . , `
• Input operator B(µ) ∈ RN×p

Lifting and transformations
• Lift general nonlinear systems to quadratic-bilinear ones [Gu, 2011], [Benner,

Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox,

2019], [Qian, Kramer, P., Willcox, 2019]

• Koopman lifts nonlinear systems to infinite linear systems [Rowley et al, 2009],

[Schmid, 2010]

17 / 170

Intro: Beyond polynomial terms (nonintrusive)

18 / 170

Intro: Beyond polynomial terms (nonintrusive)

18 / 170

Intro: Beyond polynomial terms (nonintrusive)

18 / 170

Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

d
dt

x(t;µ) =f (x(t;µ),u(t);µ)

=
∑̀
i=1

Ai (µ)x i (t;µ) + B(µ)u(t)

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK] ∈ RN×K

U = [u1, . . . ,uK] ∈ Rp×K

19 / 170

Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

d
dt

x(t) =f (x(t),u(t))

=
∑̀
i=1

Aix i (t) + Bu(t)

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK] ∈ RN×K

U = [u1, . . . ,uK] ∈ Rp×K

19 / 170

Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

xk+1 =f (xk ,uk)

=
∑̀
i=1

Aix i
k + Buk , k = 0, . . . ,K − 1

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK] ∈ RN×K

U = [u1, . . . ,uK] ∈ Rp×K

19 / 170

Intro: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

u(ξ1)

u(ξ2)

u(ξM)

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V)︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

20 / 170

Intro: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

u(ξ1)

u(ξ2)

u(ξM)

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V)︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

20 / 170

Our approach: Learn reduced models from data

Sample (gray-box) high-dimensional system with inputs

U =
[
u0 · · · uK−1

]
to obtain trajectory

X =

 | | |
x0 x1 · · · xK

| | |

Learn model f̂ from data U and X

x̂k+1 =f̂ (x̂k ,uk)

=
∑̀
i=1

Âix i
k + B̂uk , k = 0, . . . ,K − 1

initial condition
inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

state trajectory

21 / 170

Intro: Literature overview
System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

Learning in frequency domain [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010],

[Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea,

Ionita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

Learning from time-domain data (output and state trajectories)
• Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...

• Learning models with dynamic mode decomposition [Schmid et al., 2008],

[Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...

• Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...

• Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...

• Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

Correction and data-driven closure modeling
• Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy,

2015], [Iliescu et al, 2018, 2019], ...

• Higher order dynamic mode decomposition [Le Clainche and Vega, 2017],

[Champion et al., 2018]
22 / 170

OpInf: Fitting low-dim model to trajectories
1. Construct POD (PCA) basis of dimension n� N

V = [v1, · · · , vn] ∈ RN×n

2. Project state trajectory onto the reduced space

X̆ = V TX = [x̆1, · · · , x̆K] ∈ Rn×K

3. Find operators Â1, . . . , Â`, B̂ such that

x̆k+1 ≈
∑̀
i=1

Âi x̆ i
k + B̂uk , k = 0, · · · ,K − 1

by minimizing the residual in Euclidean norm

min
Â1,...,Â`,B̂

K−1∑
k=0

∥∥∥∥∥x̆k+1 −
∑̀
i=1

Âi x̆ i
k − B̂uk

∥∥∥∥∥
2

2

[P., Willcox, Data driven operator inference for nonintrusive projection-based model reduction; Computer Methods in
Applied Mechanics and Engineering, 306:196-215, 2016]

23 / 170

OpInf: Inferred operators

Fit operators Â1, . . . , Â`, B̂ by solving least-squares problem

min
Â1,...,Â`,B̂

K−1∑
k=0

∥∥∥∥∥x̆k+1 −
∑̀
i=1

Ai x̆ i
k − B̂uk

∥∥∥∥∥
2

2

• Transform into n independent least-squares problem
• Can be solved efficiently with standard solvers

Recover “intrusive operators” [P., Willcox, 2016]

• Need sufficient data
• Need that V spans RN for n→ N

• Of little practical value because no rate of convergence

If ` = 1 (linear), then the inferred operators are the DMD operators
[Schmid et al., 2008], [Rowley et al., 2009], [Tu et al., 2013], [Chung, Chung, 2014], [Proctor et al., 2016], [Xie,

Mohebujjaman, Rebholz, Iliescu, 2017]

24 / 170

An experiment

• Generate a 10× 10 matrix A with eigenvalues logarithmically spaced
between −10−1 and −10−2

• Gives rise to the time-continuous autonomous system ẋ(t) = Ax(t)

• Discretize in time with Runge-Kutta 4th order scheme and δt = 1 and
K = 100 time steps

• Obtain time-discrete system xk+1 = A1xk , k = 1, . . . ,K
• Set x0 = [1, 0, . . . , 0]T ∈ R10 and generate trajectory

X = [x0, x1, . . . , xK]

• Set basis matrix

V =

1 0
0 1
0 0
...

...
0 0

 ∈ R10×2

• Intrusive model reduction with Galerkin projection gives x̃k+1 = Ã1x̃k

with Ã1 = V TA1V
25 / 170

An experiment (cont’d)

• Project trajectory X̆ = V TX
• Fit OpInf model x̂k+1 = Â1x̂k

• Test models with initial condition x test0 = [1, 1, 0, . . . , 0]T ∈ R10

Matlab experiment

https://github.com/pehersto/reproj

26 / 170

OpInf: Learning from projected trajectory
Fitting model to projected states

• We fit model to projected trajectory

X̆ = V TX

• Would need X̃ = [x̃1, . . . , x̃K] because

K−1∑
k=0

∥∥∥∥∥x̃k+1 −
∑̀
i=1

Ãi x̃ i
k − B̃uk

∥∥∥∥∥
2

2

= 0

• However, trajectory X̃ unavailable
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 10 20 30 40 50 60 70 80 90 100

2-
no
rm

of
st
at
es

time step k

projected trajectory
intrusive model reduction

OpInf (w/out re-proj)

Thus, ‖f̂ − f̃ ‖ small critically depends on ‖X̆ − X̃‖ being small
• Increase dimension n of reduced space to decrease ‖X̆ − X̃‖

⇒ increases degrees of freedom in OpInf ⇒ ill-conditioned
• Decrease dimension n to keep number of degrees of freedom low

⇒ difference ‖X̆ − X̃‖ increases
27 / 170

OpInf: Closure of linear system
Consider autonomous linear system

xk+1 = Axk , x0 ∈ RN , k = 0, . . . ,K − 1

• Split RN into V = span(V) and V⊥ = span(V⊥)

RN = V ⊕ V⊥

• Split state
xk = V V Txk︸ ︷︷ ︸

x‖k

+V⊥V T
⊥xk︸ ︷︷ ︸
x⊥kRepresent system as

x‖k+1 =A11x
‖
k + A12x⊥k

x⊥k+1 =A21x
‖
k + A22x⊥k

with operators

A11 = V TAV︸ ︷︷ ︸
=Ã

, A12 = V TAV⊥ ,A21 = V T
⊥AV , A22 = V T

⊥AV⊥

[Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006] [Parish, Duraisamy, 2017]

28 / 170

OpInf: Closure term as a non-Markovian term
Projected trajectory X̆ mixes dynamics in V and V⊥

V Txk+1 = x̆k+1 = x‖k+1 = A11x
‖
k + A12x⊥k

Mori-Zwanzig formalism gives [Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006]

V Txk+1 = x‖k+1 =A11x
‖
k + A12x⊥k

=A11x
‖
k +

k−1∑
j=1

Ak−j−1
22 A21x

‖
j + A12Ak−1

22 x⊥0

Non-Markovian (memory) term models unobserved dynamics

0.00e+00

5.00e-04

1.00e-03

1.50e-03

2.00e-03

2.50e-03

0 200 400 600 800 1000

no
rm

of
cl
os
ur
e
te
rm

time step 29 / 170

ReProj: Handling non-Markovian dynamics

Ignore non-Markovian dynamics
• Have significant impact on model accuracy (much more than in classical

model reduction?)
• Guarantees on models?

Fit models with different forms to capture non-Markovian dynamics
• Length of memory (support of kernel) typically unknown
• Time-delay embedding increase dimension of reduced states, which is

what we want to reduce
• Model reduction (theory) mostly considers Markovian reduced models

Our approach: Control length of memory when sampling trajectories
• Set length of memory to 0 for sampling Markovian dynamics
• Increase length of memory in a controlled way (lag is known)
• Modify the sampling scheme, instead of learning step
• Emphasizes importance of generating the “right” data

30 / 170

ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as

V Txk+1 = x‖k+1 = A11x
‖
k︸ ︷︷ ︸

reduced model

+
k−1∑
j=1

Ak−j−1
22 A21x

‖
j︸ ︷︷ ︸

memory

+A12Ak−1
22 x⊥0︸ ︷︷ ︸

noise

Sample Markovian dynamics by setting memory and noise to 0
• Set x0 ∈ V, then noise is 0
• Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto V

Establishes “independence”

31 / 170

ReProj: Sampling with re-projection
Data sampling: Cancel non-Markovian terms via re-projection
1. Project initial condition x0 onto V

x̄0 = V Tx0

2. Query high-dim. system for a single time step with V x̄0

x1 = f (V x̄0,u0)

3. Re-project to obtain x̄1 = V Tx1
4. Query high-dim. system with re-projected initial condition V x̄1

x2 = f (V x̄1,u1)

5. Repeat until end of time-stepping loop

Obtain trajectories

X̄ = [x̄0, . . . , x̄K−1] , Ȳ = [x̄1, . . . , x̄K] , U = [u0, . . . ,uK−1]

[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]

32 / 170

ReProj: Operator inference with re-projection
Operator inference with re-projected trajectories

min
Â1,...,Â`,B̂

∥∥∥∥∥Ȳ − ∑̀
i=1

Âi X̄
i − B̂U

∥∥∥∥∥
2

F

Theorem (Simplified) Consider time-discrete system with polynomial
nonlinear terms of maximal degree ` and linear input. If K ≥

∑`
i=1 n

i + 2
and matrix [X̄ ,U , X̄ 2

, . . . , X̄ `
] has full rank, then ‖X̄ − X̃‖ = 0 and thus

f̂ = f̃ in the sense

‖Â1 − Ã1‖F = · · · = ‖Â` − Ã`‖F = ‖B̃ − B̂‖F = 0

• Pre-asymptotic guarantees, in contrast to learning from projected data
• Re-projection is a nonintrusive operation
• Requires querying high-dim. system twice
• Initial conditions remain “physically meaningful”

Provides a means to find model form
[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with

operator inference. arXiv:1908.11233, 2019.]

33 / 170

ReProj: Queryable systems
Definition: Queryable systems [Uy, P., 2020]

A dynamical system is queryable, if the trajectory
X = [x1, . . . , xK] with K ≥ 1 can be computed for
initial condition x0 ∈ V and feasible input trajectory
U = [u1, . . . ,uK].

Details about how trajectories computed unnecessary
• Discretization (FEM, FD, FV, etc)
• Time-stepping scheme
• Time-step size
• In particular, neither explicit nor implicit access to

operators required

Insufficient to have only data available
• Need to query system at re-projected states
• Similar requirement as for active learning

initial condition
inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

state trajectory

34 / 170

An example (cont’d)

Matlab experiment

https://github.com/pehersto/reproj

35 / 170

ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 1000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
36 / 170

ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 3000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
36 / 170

ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 5000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
36 / 170

ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 7000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
36 / 170

ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 9000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
36 / 170

ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

(1)
37 / 170

ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction
OpInf, w/out re-proj

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

(1)
37 / 170

ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction
OpInf, w/out re-proj

OpInf, re-proj

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

(1)
37 / 170

ReProj: Burgers’: Recovery

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

2 4 6 8 10 12 14

di
ffe

re
nc
e
(2
)

dimension n

w/out re-proj
re-proj

The difference between state trajectories
• Model from intrusive model reduction same as OpInf with re-proj.
• Model learned from state trajectories without re-projection differs

(2)
38 / 170

ReProj: Chafee: Chafee-Infante example

Chafee-Infante equation

∂

∂t
x(ω, t) + x3(ω, t)− ∂2

∂ω2 x(ω, t)− x(ω, t) = 0

• Boundary conditions as in [Benner et al., 2018]

• Spatial domain ω ∈ [0, 1]

• Time domain t ∈ [0, 10]

• Forward Euler with δt = 10−4

• Cubic nonlinear term 0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 2 4 6 8 10

ou
tp
ut

time [s]
Operator inference

• Infer operators from single trajectory corresponding to random inputs
• Test inferred model on oscillatory input

39 / 170

ReProj: Chafee: Recovery

1e-04

1e-03

1e-02

1e-01

1e+00

2 4 6 8 10 12

te
st

er
ro
r
(3
)

dimension n

intrusive model reduction
OpInf, w/out re-proj
OpInf, re-proj

Error of reduced models on test parameters
• Projected data leads to unstable inferred model
• Inference from data with re-projection shows stabler behavior

(3)
40 / 170

ReProj: AB2 time-stepping
Two-step Adams-Bashforth time stepping for cubic system

xk+2 = xk+1 +
3
2
(
(A1 − I)xk+1 + A2x2k+1 + A3x3k+1 + Buk+1

)
− 1

2
(
(A1 − I)xk + A2x2k + A3x3k + Buk

)
• The first time step is with explicit Euler
• Re-projection is applicable in the first time step

1e-04

1e-03

1e-02

1e-01

1e+00

2 4 6 8 10 12

te
st

er
ro
r
(3
)

dimension n

intrusive model reduction
OpInf, re-proj

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

0 0.5 1 1.5 2 2.5 3 3.5 4

di
ffe

re
nc
e
(2
)

dimension n

intrusive Euler vs. OpInf AB
intrusive AB vs. OpInf AB

(a) Adams-Bashforth time stepping (b) time-stepping with Euler vs. Adams-Bashforth (AB)

41 / 170

Different point of view: Run ROM and learn ROM

Time-discrete dynamical system

xk+1 = f (xk ,uk)

Galerkin-reduced model with basis matrix V

x̃k+1 = V T f (V x̃k ,uk)

Interpretation
• Data generation with re-projection solves the Galerkin-reduced model

without explicitly assembling it
• Paves the way for extensions for other time-stepping schemes and

Petrov-Galerkin projection

42 / 170

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

43 / 170

Exercise in breakout rooms

44 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

45 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

45 / 170

Recap from last time

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

46 / 170

Error estimation in intrusive model reduction
Error estimation is major topic in intrusive model reduction

• Rigorously upper bound the error of reduced to full prediction
• Efficient in pre-asymptotic regime, i.e., for dimension n small
• Error estimators are key building blocks for constructing reduced models

Requirements
• Offline/online splitting to compute error estimators with costs

independent of full-model dimension
• Estimators should not overestimate error by too much
• All constants and quantities need to be computable

Error estimation in model reduction
• Martin A. Grepl and Anthony T. Patera, A posteriori error bounds for reduced-basis

approximations of parametrized parabolic partial differential equations, ESAIM: M2AN, 39 1
(2005) 157-181

• Veroy, K. and Patera, A.T. (2005), Certified real-time solution of the parametrized steady
incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds. Int.
J. Numer. Meth. Fluids, 47: 773-788

• G Rozza, DBP Huynh, AT Patera, Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations, Archives of
Computational Methods in Engineering 15 (3), 1

• JS Hesthaven, G Rozza, B Stamm, Certified reduced basis methods for parametrized partial
differential equations, Springer, 2016

47 / 170

ErrEst: Error of linear time-invariant systems

Consider LTI system [Grepl, Patera, 2005], [Haasdonk, Ohlberger, 2009]

xk+1 = Axk + Buk+1

Reduced model (w/out intrusive model reduction)

x̃k+1 = Ãx̃k + B̃uk+1

Residual
r k+1 = AV x̃k + Buk+1 − V x̃k+1

State error is

xk − V x̃k = Ak(x0 − V x̃0) +
k−1∑
i=0

Ak−l−1r l+1

[Haasdonk, Ohlberger, Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by
offline/online decomposition, 2009], [Grepl, Patera, A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations, 2005]

48 / 170

ErrEst: Error of linear time-invariant systems
(cont’d)
Define the quantity

∆x
k(c0, . . . , ck ; x0,U) = c0‖x0 − V x̃0‖2 +

k−1∑
i=0

cl+1‖r l+1‖2

• Initial condition x0
• Input trajectory U = [u0,u1, . . . ,uk]

• Constants c0, . . . , ck ∈ R

Bounding the norm of the state error

‖xk − V x̃k‖2 ≤∆x
k(‖Ak‖2, . . . , ‖A0‖2; x0,U)

=‖Ak‖2‖x0 − V x̃0‖2 +
k−1∑
i=0

‖Ak−l−1‖2‖r l+1‖2

[Haasdonk, Ohlberger, Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by
offline/online decomposition, 2009], [Grepl, Patera, A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations, 2005]

49 / 170

ErrEst: Quantities
Bounding the norm of the state error

‖xk − V x̃k‖2 ≤∆x
k(‖Ak‖2, . . . , ‖A0‖2; x0,U)

=‖Ak‖2‖x0 − V x̃0‖2 +
k−1∑
i=0

‖Ak−l−1‖2‖r l+1‖2

• Need either ‖Ai‖2 or at least ‖Ai‖2 ≤ C for i = 0, . . . , k
• Need residual norm ‖r i‖2 for i = 1, . . . , k
• We know the initial condition x0 and V and so can compute ‖x0−V x̃0‖

Residual norm [Haasdonk, Ohlberger, 2009]

‖r k‖22 = rTk r k =x̂T
k V TAT

1 A1V︸ ︷︷ ︸
M1

x̂k + uk BTB︸ ︷︷ ︸
M2

uk + x̂k+1V TV x̂k+1

+ 2uTk BTA1V︸ ︷︷ ︸
M3

x̂k − 2x̂T
k+1Â1x̂k+1 − 2x̂k+1B̂uk

50 / 170

ErrEst: Error estimation for learned models
Assumptions∗: Linear time-invariant system

• Derive reduced model with operator inference and re-projection
• Requires full residual of reduced-model states in training phase

Error estimation based on [Haasdonk, Ohlberger, 2009]
• Residual at time step k

r k = A1V x̂k + Buk − V x̂k+1

• Bound on state error if initial condition in span{V }

‖xk − V x̂k‖2 ≤ C1

(
k−1∑
i=1

‖r k‖2

)
• Offline/online splitting of computing residual norm ‖r k‖2

‖r k‖22 =x̂T
k V TAT

1 A1V︸ ︷︷ ︸
M1

x̂k + uk BTB︸ ︷︷ ︸
M2

uk + x̂k+1V TV x̂k+1

+ 2uTk BTA1V︸ ︷︷ ︸
M3

x̂k − 2x̂T
k+1Â1x̂k+1 − 2x̂k+1B̂uk

51 / 170

ErrEst: Learning error operators from data
From [Haasdonk, Ohlberger, 2009] have

‖r k‖22 =x̂T
k V TAT

1 A1V︸ ︷︷ ︸
M1

x̂k + uk BTB︸ ︷︷ ︸
M2

uk + x̂k+1V TV x̂k+1

+ 2uTk BTA1V︸ ︷︷ ︸
M3

x̂k − 2x̂T
k+1Â1x̂k+1 − 2x̂k+1B̂uk

Query system at training inputs to compute residual trajectories

R =

 | | |
r1 r2 . . . rK
| | |

Learn quantities M1,M2,M3 via operator inference

• Fit error operators M1,M2,M3 to residual trajectories
• Least-squares problem with unique solution that is M1,M2,M3

Obtain certified reduced models from data alone

[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]

52 / 170

ErrEst: Probabilistic bounds of constants

For l ∈ N, let Θ(l) = AlZ 1 where Z 1 ∼ N(0N×1, IN) so that Θ(l) is an
N-dimensional Gaussian random vector with mean zero and covariance
Al(Al)T .

Suppose that {Θ(l)
i }Mi=1 are M ∈ N independent and identically distributed

N-dimensional random vectors with the same law as Θ(l). Then, for γl > 0,

P

(
γl max

i=1,...,M
‖Θ(l)

i ‖
2
2 ≥ ‖A

l‖22
)
≥ 1−

[
Fχ21

(
1
γl

)]M
(4)

where Fχ21 is the cumulative distribution function of the chi-squared
distribution with 1 degree of freedom.
[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial

differential equations with control inputs, in preparation, 2020]

53 / 170

ErrEst: Probabilistic bounds on constants (cont’d)

To generate a random variable Θ(l) ∼ N(0N×1,Al(Al)T), simulate the
system at x0 ∼ N(0, IN) with input u = [0, 0, . . . , 0]

x1 =Ax0 + Bu1 = Ax0 + B0 = Ax0
x2 =Ax1 = A2x0

...

x l =Alx0 ∼ N(0N×1,Al(Al)T)

• Exploits that system is LTI
• Exploits that the system is queryable

[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]

54 / 170

ErrEst: Algorithm

Offline phase
1: Construct a low-dimensional basis V n from the snapshot matrix
2: Generate {x̄k}Kk=0 via re-projection and its residual {r̄ k}K−1k=0 using U train

3: Perform operator inference to obtain Ã, B̃
4: Infer M1,M2,M3 for computing residual norms
5: Simulate M realizations {z i}Mi=1 of Z ∼ N(0N×1, IN)

6: Produce M realizations {θ(l)
i }Mi=1 of Θ(l) for l = 1, . . . , J by querying full

system for J time steps with x0 = z i , i = 1, . . . ,M and input 0

7: Compute ξl =

√
γl maxi=1,...,M ‖θ(l)

i ‖22 for l = 1, . . . , J

Online phase
8: Calculate the low-dimensional solution {x̃ testk }Jk=1 using the inferred Ã, B̃

and input U test

9: Evaluate ‖r testk ‖22 for k = 1, . . . , J utilizing the inferred M1,M2,M3
10: Estimate the a posteriori error with probabilistic bound for k = 1, . . . , J

[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]

55 / 170

ErrEst: Convection-diffusion in a pipe
Governed by parabolic PDE

∂x

∂t
= ∆x − (1, 1) · ∇x , in Ω

x = 0, Γ\{Ei}5i=1

∇x · n = gi (t), in Ei

• Discretize with finite elements
• Degrees of freedom N = 1121
• Forward Euler method δt = 10−5

• End time is T = 0.5

Input signals
• Training signal is sinusoidal
• Test signal is exponentially decaying

sinusoidal with different frequency than
training

0 0.5 1
-0.1

0

0.1

0.2

0.3

56 / 170

ErrEst: Recovering reduced models from data

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0 2 4 6 8 10 12 14 16 18

av
g
re
lL

2
er
ro
r
of

st
at
es

basis dimension

intrusive
OpInf, re-proj

Recover reduced models from data
• Error averaged over time
• Recover reduced model up to numerical errors

57 / 170

ErrEst: Error bounds

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 2 4 6 8 10 12 14 16 18

re
l.
av
e.

st
at
e
er
r.

ov
er

tim
e

basis dimension

OpInf, err
OpInf, bound

intrusive, bound

Learn certified reduced model from data alone
• Train with sinusoidal and test with exponential input
• Infer quantities from residual of full model (offline/training)
• Estimate error for test inputs

58 / 170

ErrEst: Variance of estimators

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

2 4 6 8 10 12 14 16

st
at
e
er
r.

an
d
er
r.

bo
un

ds
at

t
=

0.
1

basis dimension

learned err. est. (??)
intrusive err. est. (??)

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

2 4 6 8 10 12 14 16

st
at
e
er
r.

an
d
er
r.

bo
un

ds
at

t
=

0.
5

basis dimension

learned err. est. (??)
intrusive err. est. (??)

(a) error estimates at t = 0.1 (b) error estimates at t = 0.5

Variation of error estimator is rather low in this example
• Mean, minimum, and maximum over 50 realizations
• Fixed γ = 1 and number of samples M = 35

59 / 170

ErrEst: Output bounds

−0.005
0

0.005
0.01

0.015
0.02

0.025
0.03

0 0.1 0.2 0.3 0.4 0.5ou
tp

ut
an

d
er

ro
r

bo
un

ds
(?

?)

time

output (??)
ỹk −∆y

k
ỹk + ∆y

k −0.005
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035

0 0.1 0.2 0.3 0.4 0.5
time

output (??)
ỹk −∆y

k
ỹk + ∆y

k
−0.02

0
0.02
0.04
0.06
0.08
0.1

0 0.1 0.2 0.3 0.4 0.5
time

output (??)
ỹk −∆y

k
ỹk + ∆y

k

(a) n = 17 basis (b) n = 12 basis (c) n = 7 basis

If output is linear y k = Cxk in state with operator C and known norm ‖C‖2
• Probabilistic bound of the error ‖y k − ỹ k‖2
• Error bound indicates that error is reduced when dimension n of reduced

spaces is increased

60 / 170

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

61 / 170

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

61 / 170

NonM: Non-Markovian reduced models

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

Learning non-Markovian low-dim. models in model reduction
• (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
• Closure error is high and needs to be corrected (steep gradients, shocks)
• Only partially observed state trajectory available

62 / 170

NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

x̃k+1 =
∑̀
i=1

Ãi x̃ i
k + B̃uk

However, loose dynamics modeled by non-Markovian terms

x̆k+1 =
∑̀
i=1

Ãi x̆ i
k + B̃uk +

k−1∑
i=1

∆i (x̆k−1, . . . , x̆k−i+1,uk , . . . ,uk−i+1) + 0

Learn unresolved dynamics via approximate non-Markovian terms

x̂k+1 =
∑̀
i=1

Âi x̂ i
k + B̂uk +

k−1∑
i=1

∆̂
θi

i (x̂k−1, . . . , x̂k−i+1,uk , . . . ,uk−i+1)

• Parametrization θi ∈ Θ for i = 0, . . . ,K − 1
• Non-Markovian models extensively used in statistics but less so in MOR

63 / 170

NonM: Sampling with stage-wise re-projection
Learning model operators and non-Markovian terms at the same

⇒ Dynamics mixed, same issues as learning from projected states

Build on re-projection to learn non-Markovian terms stage-wise
• Sample trajectories of length r + 1 with re-projection

X̄ (0)
, . . . , X̄ (K−1) ∈ Rn×r+1

• Infer Markovian reduced model f̂ 1 from one-step trajectories

X̄ (i)
1 = [x̄ (i)

0 , x̄
(i)
1] , i = 0, . . . ,K − 1

• Simulate f̂ 1 to obtain

X̂
(i)

2 = [x̂ (i)
0 , x̂

(i)
1 , x̂

(i)
2] , i = 0, . . . ,K − 1

• Fit parameter θ1 of non-Markovian term ∆̂
θ1
1 to difference

min
θ1∈Θ

K−1∑
i=0

‖x̄ (i)
2 − x̂ (i)

2 − ∆̂
(θ1)

1 (x̄ (i)
0 ,u i)‖22

• Repeat this r times to learn f̂ r with lag r
64 / 170

NonM: Learning non-Markovian terms

Parametrization of non-Markovian terms
• Set θi = [D i ,E i] with D i ∈ Rn×n and E i ∈ Rn×p

• Non-Markovian term is

∆̂
(θi)

i (x̂k−1, . . . , x̂k−i+1,uk , . . . ,uk−i+1) = D i x̂k−i+1 + E iuk−i+1

• Other parametrizations with higher-order terms and neural networks

Choosing maximal lag
• Assumption (observation) is that

non-Markovian term of system
has small support

• Need to go back in time only a few steps
• Lag r can be chosen small 0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

200 400 600 800 1000

no
n-
M
ar
ko
vi
an

te
rm

time steps

65 / 170

NonM: Learning from partially observed states

Partially observed state trajectories
• Unknown selection operator
S ∈ {0, 1}Ns×N with Ns < N and

zk = Sxk

• Learn models from trajectory
Z = [z0, . . . , zK−1] instead
of X = [x0, . . . , xK−1]

• Apply POD (PCA) to Z to find basis
matrix V of subspace V of RNs

xi−1 xi xi+1

zi−1 zi zi+1

high-dimensional
states

partially observed
states

Non-Markovian terms to compensate unobserved state components
• Mori-Zwanzig formalism applies
• Non-Markovian terms compensate unobserved components

66 / 170

NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 1000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
67 / 170

NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 3000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
67 / 170

NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 5000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
67 / 170

NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 7000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
67 / 170

NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 9000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
67 / 170

NonM: Burgers’: Partial observations

1e-02

1e-01

1e+00

0 5 10 15 20

av
g

re
lL

2
er

ro
r

of
st

at
es

#delays

intrusive model reduction
projection

inferred model

Observe only about 50% of all state components
• Linear time-delay terms with stage-wise re-projection
• Reduces error of inferred model by more than one order of magnitude

68 / 170

NonM: Burgers’: Shock formation

(a) ground truth (full model) (b) intrusive model reduction

Modify coefficients of Burgers’ equation to obtain solution with shock
• Solutions with shocks are challenging to reduce with model reduction
• Here, reduced model from intrusive model reduction has oscillatory error

69 / 170

NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

70 / 170

NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model
OpInf, 0 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model
OpInf, 0 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

70 / 170

NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model
OpInf, 0 delays
OpInf, 4 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model
OpInf, 0 delays
OpInf, 4 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

70 / 170

NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model
OpInf, 0 delays
OpInf, 4 delays
OpInf, 8 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model
OpInf, 0 delays
OpInf, 4 delays
OpInf, 8 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

70 / 170

Conclusions

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

Learning dynamical-system models from data with error guarantees
• Operator inference exactly recovers reduced models from data
• Generating the right data is key to learning reduced models in our case
• Pre-asymptotic guarantees (finite data) under certain conditions
• Going beyond reduced models by learning non-Markovian corrections

References: https://cims.nyu.edu/∼pehersto
• Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems

governed by linear parabolic partial differential equations with control inputs, in preparation,
2020.

• P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced
models from data with operator inference. arXiv:1908.11233, 2019.

• P., Willcox, Data-driven operator inference for nonintrusive projection-based model reduction.
Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016.

71 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

72 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

72 / 170

Loewner: Dynamical systems

Consider linear time-invariant (LTI) system

Σ :

{
Exk+1 = Axk + Buk , k ∈ N ,

yk = Cxk

• Time-discrete single-input-single-output (SISO) LTI system
• System matrices E ,A ∈ RN×N , B ∈ RN×1, C ∈ R1×N

• Input uk and output yk at time step tk , k ∈ N
• State xk at time step tk , k ∈ N
• Asymptotically stable

Important is the mapping u 7→ y , not the complete state
• Want to find a reduced model that accurately approximates the

input-output map u 7→ y

• Consider y to be the quantity of interest

73 / 170

74 / 170

Loewner: Impulse response

The output yk is the convolution of the impulse response of the system Σ
with the inputs u0, . . . , uk

yk =
k∑

i=0

hiuk−i ,

with impulse response

hk =

{
C (E−1A)k−1(E−1B) , k > 0
0 , k ≤ 0

.

• Impulse response hk defines the input-output map u 7→ y

• In the continuous-time setting, the convolution-sum becomes a
convolution-integral

75 / 170

Loewner: Transfer function

Transform the time-domain output {yk}∞k=0 into frequency domain with
Z-transform (Laplace transform)

Y (z) =
∞∑
k=0

ykz
−k

Transform the impulse response {hk}∞k=0 to obtain the transfer function

H(z) =
∞∑
k=0

hkz
−k

Convolution becomes multiplication in frequency domain

Y (z) = H(z)U(z)

The transfer function defines the map u 7→ y

76 / 170

Loewner: Transfer function (cont’d)

Different representation of transfer function of LTI system Σ

H(z) = C (zE − A)−1B , z ∈ C

Consider reduced model Σ̃ with

H̃(z) = C̃ (zẼ − Ã)−1B̃ , z ∈ C

Measure error of reduced transfer function H̃ as

‖H − H̃‖H∞ = sup
|z|=1
|H(z)− H̃(z)|

Relate to error in quantity of interest

‖y − ỹ‖2 ≤ ‖H − H̃‖H∞‖u‖2

If H̃ approximates H well, then know that ỹ approximates y well

77 / 170

Loewner: Model reduction via projection

• Choose trial subspace spanned by columns of V ∈ RN×n

• Choose test subspace spanned by columns of W ∈ RN×n

• Approximate xk ≈ V x̃k by forcing x̃k to satisfy

W T (EV x̃k+1 − AV x̃k − Buk) = 0

• Petrov-Galerkin projection because trial and test subspaces can be
different

• Leads to reduced model

Ẽ = W TEV , Ã = W TAV , B̃ = W TB, C̃ = CV

78 / 170

Loewner: Interpolatory model reduction

Select m = 2n interpolation points

z1, . . . , zm ∈ C

Construct bases as

V =
[
(z1E − A)−1B . . . (znE − A)−1B

]
∈ RN×n

W =
[
(zn+1ET − AT)−1CT . . . (zn+nET − AT)−1CT

]
∈ RN×n

Project (Petrov-Galerkin) to obtain operators

Ẽ = W TEV , Ã = W TAV , B̃ = W TB, C̃ = CV

Then obtain reduced model Σ̃ with H̃

H(zi) = H̃(zi) , i = 1, . . . ,m

79 / 170

Loewner: Interpolatory model reduction

Select m = 2n interpolation points

z1, . . . , zm ∈ C

Construct bases as

V =
[
(z1E − A)−1B . . . (znE − A)−1B

]
∈ RN×n

W =
[
(zn+1ET − AT)−1CT . . . (zn+nET − AT)−1CT

]
∈ RN×n

Project (Petrov-Galerkin) to obtain operators

Ẽ = W TEV , Ã = W TAV , B̃ = W TB, C̃ = CV

Then obtain reduced model Σ̃ with H̃

H(zi) = H̃(zi) , i = 1, . . . ,m

Requires full operators E ,A,B,C either in assembled or implicit form
79 / 170

Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives Σ̃ directly from H(z1), . . . ,H(zm) with

Lij =
H(zi)− H(zn+j)

zi − zn+j
, L(s)

ij =
ziH(zi)− zn+jH(zn+j)

zi − zn+j
, i , j = 1, . . . , n

Reduced operators of Σ̃ are

Ẽ = −L, Ã = −M, B̃ =
[
H(z1) . . . H(zn)

]T
,

and C̃ =
[
H(zn+1) . . . H(zn+n)

]
Data-driven (nonintrusive) construction of Σ̃

• No access to E ,A,B,C required (explicit or implicit)
• Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, Antoulas, 2007]

80 / 170

Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives Σ̃ directly from H(z1), . . . ,H(zm) with

Lij =
H(zi)− H(zn+j)

zi − zn+j
, L(s)

ij =
ziH(zi)− zn+jH(zn+j)

zi − zn+j
, i , j = 1, . . . , n

Reduced operators of Σ̃ are

Ẽ = −L, Ã = −M, B̃ =
[
H(z1) . . . H(zn)

]T
,

and C̃ =
[
H(zn+1) . . . H(zn+n)

]
Data-driven (nonintrusive) construction of Σ̃

• No access to E ,A,B,C required (explicit or implicit)
• Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, Antoulas, 2007], [Antoulas, 2016], [Gustavsen, Semlyen,
1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, Ionita, 2016], [Gosea, Antoulas, 2018], [Schulze, Unger,
Beattie, Gugercin, 2018], [Benner, Goyal, Van Dooren, 2019], ...

80 / 170

Loewner: (Classical) Loewner reduced model
Given m = 2n interpolation points on unit disc in C

{z1, . . . , zm} = {µ1, . . . , µn}] {γ1, . . . , γn}

Evaluate transfer function

H(z) = C (zE − A)−1B

of Σ at z1, . . . , zm
H(z1), . . . ,H(zm)

Derive Loewner matrices L ∈ Cn×n and M ∈ Cn×n

Lij =
H(µi)− H(γj)

µi − γj
, L(s)

ij =
µiH(µi)− γjH(γj)

µi − γj
, i , j = 1, . . . , n

Construct reduced system Σ̃ with H(zi) = H̃(zi), i = 1, . . . ,m

Ẽ = −L, Ã = −L(s), B̃ =
[
H(µ1) . . . H(µn)

]T
,

and C̃ =
[
H(γ1) . . . H(γn)

] }
nonintrusive but
requires values of
transfer function

[Antoulas, Anderson, 1986]
[Lefteriu, Antoulas, 2010]

[Mayo, Antoulas, 2007]

81 / 170

Matlab demo

82 / 170

Loewner: Noisy transfer-function values

• Let µ ∈ C and 0 < σ ∈ R to define

ε ∼ CN (µ, σ) ,

where real part R(ε) and imaginary part I (ε) are independent normal
with mean R(µ) and I (µ), respectively

• Consider ε1, . . . , εn ∼ CN (0, 1) and η1, . . . , ηn ∼ CN (0, 1)

• Noisy transfer-function values

Hσ(µi) = H(µi)(1 + σεi) , Hσ(γi) = H(γi)(1 + σηi)

• Noise pollutes transfer-function values in a relative sense (measurement
error relative to value)

• Define noisy Loewner matrices

L̂ij =
Hσ(µi)− Hσ(γj)

µi − γj
L̂

(s)
ij =

µiHσ(µi)− γjHσ(γj)

µi − γj
[Drmac, P. Learning low-dimensional dynamical-system models from noisy frequency-response data with Loewner rational
interpolation. arXiv:1910.00110, 2019.]

83 / 170

Loewner: Structure in noise

• Key observation is that
L̂ = L + σδL ,

with
δLi,j =

H(µi)εi − H(γi)ηj
µi − γj

• Similar decompositions possible for L̂(s)
σ and B̂ and Ĉ

• Building on this structure in the noise, the following holds:

Under certain assumptions on the size of the standard deviation σ,
there exists a constant Cs > 0 such that

|H̃(s)− Ĥ(s)| ≤ Csσ ,

with probability at least 1− 4 exp(−n/2)

[Drmac, P. Learning low-dimensional dynamical-system models from noisy frequency-response data with Loewner rational
interpolation. arXiv:1910.00110, 2019.]

84 / 170

Loewner: Numerical example with noisy data

1e-15

1e-10

1e-05

1e+00

1e+05

1e+10

1e-15 1e-10 1e-05 1e+00 1e+05

m
ea
n
of

er
ro
r
(?

?)

std. deviation σ of noise

error
linear growth

0

50

100

150

200

1e-15 1e-10 1e-05 1e+00 1e+05

#
po

in
ts

std. deviation σ of noise

#points

(a) error, dimension n = 20 (b) assumption violated, dimension n = 20

• CD player example (same as in Matlab demo)
• Linear growth of error with standard deviation σ until assumptions are

violated
• Results indicate that bound is conservative

[Drmac, P. Learning low-dimensional dynamical-system models from noisy frequency-response data with Loewner rational
interpolation. arXiv:1910.00110, 2019.]

85 / 170

Loewner: Interpolatory model reduction (cont’d)

Loewner framework derives Σ̃ directly from H(z1), . . . ,H(zm) with

Lij =
H(zi)− H(zn+j)

zi − zn+j
, L(s)

ij =
ziH(zi)− zn+jH(zn+j)

zi − zn+j
, i , j = 1, . . . , n

Reduced operators of Σ̃ are

Ẽ = −L, Ã = −M, B̃ =
[
H(z1) . . . H(zn)

]T
,

and C̃ =
[
H(zn+1) . . . H(zn+n)

]
Data-driven (nonintrusive) construction of Σ̃

• No access to E ,A,B,C required (explicit or implicit)
• Requires transfer function values (frequency-response data)

[Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Mayo, Antoulas, 2007], [Antoulas, 2016], [Gustavsen, Semlyen,
1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, Ionita, 2016], [Gosea, Antoulas, 2018], [Schulze, Unger,
Beattie, Gugercin, 2018], [Benner, Goyal, Van Dooren, 2019], ...

86 / 170

Loewner: Problem formulation
Can time-step LTI model Σ for K ∈ N time steps

• Given inputs u = [u0, u1, . . . , uK−1]T ∈ CK

• Compute outputs y = [y0, y1, . . . , yK−1]T ∈ CK

via time stepping
• Transfer function H unavailable (E ,A,B,C

unavailable as well); no states

Goal: Approximate transfer function values from y
• Given are interpolation points z1, . . . , zm
• Perform single time-domain simulation of Σ until

steady state is reached
• Derive approximate Ĥ(z1), . . . , Ĥ(zm) values from

output trajectory y
• Construct Σ̂ to approximate (classical) Loewner Σ̃

H(zi)︸ ︷︷ ︸
full model

= H̃(zi)︸ ︷︷ ︸
classical

Loewner model

≈ Ĥ(zi)︸ ︷︷ ︸
time-domain

Loewner model

, i = 1, . . . ,m

inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

output trajectory

87 / 170

Loewner: Problem formulation
Can time-step LTI model Σ for K ∈ N time steps

• Given inputs u = [u0, u1, . . . , uK−1]T ∈ CK

• Compute outputs y = [y0, y1, . . . , yK−1]T ∈ CK

via time stepping
• Transfer function H unavailable (E ,A,B,C

unavailable as well); no states

Goal: Approximate transfer function values from y
• Given are interpolation points z1, . . . , zm
• Perform single time-domain simulation of Σ until

steady state is reached
• Derive approximate Ĥ(z1), . . . , Ĥ(zm) values from

output trajectory y
• Construct Σ̂ to approximate (classical) Loewner Σ̃

H(zi)︸ ︷︷ ︸
full model

= H̃(zi)︸ ︷︷ ︸
classical

Loewner model

≈ Ĥ(zi)︸ ︷︷ ︸
time-domain

Loewner model

, i = 1, . . . ,m

inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

output trajectory

87 / 170

Loewner: Laplace (or Z-) transform
Input/output relationship in time domain (convolution)

yk =
k∑

l=0

hluk−l

with impulse/response

hk = C (E−1A)k−1(E−1B) , k > 0, h0 = 0

Z-Transform of outputs {yk}∞k=1

Y (z) =
∞∑
k=0

ykz
−k

Z-Transform of impulse/response {hk}∞k=1

H(z) =
∞∑
k=0

hkz
−k

Input/output relationship in frequency domain

Y (z) = H(z)U(z)

88 / 170

Loewner: Output of LTI system
Define points on the unit circle

qi = e
2πj
K i , i = 0, . . . ,K − 1

Represent input in discrete Fourier coefficients U = [U0, . . . ,UK−1]T

uk =
K−1∑
i=0

Uiq
k
i , k = 0, . . . ,K − 1

W.l.o.g. have set Ir = {1, . . . , r} of non-zero Fourier coefficients

uk =
r∑

i=1

Uiq
k
i , k = 0, . . . ,K − 1

Output is convolution of impulse response hk and input uk

yk =
k∑

l=0

hluk−l =
k∑

l=0

hl

r∑
i=1

Uiq
k−l
i︸ ︷︷ ︸

uk−l

=
r∑

i=1

Uiq
k
i

k∑
l=0

hlq
−l
i︸ ︷︷ ︸

=Hk (qi)

, k = 0, . . . ,K−1

89 / 170

Loewner: Asymptotic properties of Hk(z)

Relationship between output yk and Hk(qi)

yk =
r∑

i=1

Uiq
k
i

k∑
l=0

hlq
−l
i︸ ︷︷ ︸

=Hk (qi)

=
r∑

i=1

Hk(qi)Uiq
k
i , k = 0, . . . ,K − 1

Transfer function H is z-transform of impulse response

H(z) =
∞∑
l=0

hlz
−l , z ∈ D

Sequence (Hk(z)) converges to H(z) for z ∈ D

|H(z)− Hk(z)| ≤ cρk

Decay of error |H(z)− Hk(z)| depends on spectral radius ρ of E−1A
• Problem-dependent rate of decay of error |H(z)− Hk(z)|
• Slow decay of error if many time steps to reach steady state

90 / 170

Loewner: Regression problem
Relationship between output yk and Hk(qi)

yk =
r∑

i=1

Hk(qi)Uiq
k
i , k = 0, . . . ,K − 1

Solve for approximate transfer function values Ĥ1, . . . , Ĥr ∈ C

arg min
Ĥ1,...,Ĥr∈C

K−1∑
k=kmin

(
yk︸︷︷︸

output

−
r∑

i=1

Ĥi Uiq
k
i︸︷︷︸

non-zero
Fourier

component

)2

⇒ Note that dim of optimization problem grows with r
For tolerance ε > 0, select value kmin ∈ N such that

|H(qi)− Hkmin(qi)| < ε , i = 1, . . . , r

• Controls the time step from which on Hk(qi) sufficiently accurate
• Asymptotic analysis confirms that kmin is problem-dependent
• If kmin ≤ K − r , then system overdetermined

91 / 170

Loewner: Time-domain Loewner algorithm

Time-domain Loewner approach
1. Time-step full model Σ for input u to obtain output y
2. Select value kmin

3. Determine indices {i1, . . . , ir} of non-zero Fourier coefficients of u
4. Solve for approximate transfer function values Ĥ1, . . . , Ĥr

5. Select interpolation points z1, . . . , zm ⊂ {qi1 , . . . , qir }
6. Use Loewner with Ĥ1, . . . , Ĥm to derive Σ̂ with

H(zi) ≈ Ĥ(zi) , i = 1, . . . ,m

Choice of interpolation points
• Restricted by non-zero Fourier coefficients of input
• Number of time steps K determines frequency range[

2π
K
,
2π(K − 1)

K

]
⊂ R

92 / 170

Loewner: Numerical results

1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00

0.01 0.1 1

re
la
tiv

e
er
ro
r

spectral radius ρ

freq ω1 = 0.12566
freq ω2 = 0.37699
freq ω3 = 1.00531
freq ω4 = 2.51327
freq ω5 = 6.15752

1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00

0.01 0.1 1

re
la
tiv

e
er
ro
r

spectral radius ρ

kmin = b3/4Kc
kmin = b1/2Kc
kmin = b1/4Kc

(a) dependence on ρ, K = 50 (b) dependence on kmin, K = 50

• Synthetic example where we can control ρ
• Relative error of approximate transfer function values

errrel(Ĥl) =
|H(qil)− Ĥl |
|H(qil)|

, l = 1, . . . ,m

• A large spectral radius leads to larger error for fixed K

• Large kmin avoids early, inaccurate transfer function approximations
• Setting kmin too large, leads to ill-conditioned least-squares problem

93 / 170

Loewner: Numerical results

1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00

0.01 0.1 1

re
la
tiv

e
er
ro
r

spectral radius ρ

freq ω1 = 0.12566
freq ω2 = 0.37699
freq ω3 = 1.00531
freq ω4 = 2.51327
freq ω5 = 6.15752

1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00

0.01 0.1 1

re
la
tiv

e
er
ro
r

spectral radius ρ

kmin = b3/4Kc
kmin = b1/2Kc
kmin = b1/4Kc

(a) dependence on ρ, K = 100 (b) dependence on kmin, K = 100

• Synthetic example where we can control ρ
• Relative error of approximate transfer function values

errrel(Ĥl) =
|H(qil)− Ĥl |
|H(qil)|

, l = 1, . . . ,m

• A large spectral radius leads to larger error for fixed K

• Large kmin avoids early, inaccurate transfer function approximations
• Setting kmin too large, leads to ill-conditioned least-squares problem

93 / 170

Loewner: Eady example
Eady LTI system

• Order of system is N = 598
• Discretize with 4th-order scheme
• Time step size δt = 10−1 and K = 103

Time-domain Loewner reduced model
• Dimension of reduced model n = 5
• Set kmin = b1/4Kc
• Select m logarithmic interpolation pts

qi1 , . . . , qim ⊂ {q0, . . . , qK−1}

• Input uk at time tk , k = 0, . . . ,K − 1

uk =
1
K

m∑
l=1

(1 + j) qkil

• Simulate full model Σ once

1e+01

1e+02

1e+03

1e+04

1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω

full model

(a) magnitude

-3e+00

-2e+00

-2e+00

-2e+00

-1e+00

-5e-01

0e+00

1e-02 1e-01 1e+00

ph
as
e

frequency ω

full model

(b) phase

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

94 / 170

Loewner: Eady example: Transfer function

1e+01

1e+02

1e+03

1e+04

1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω [rad/s]

full model
classical Loewner
time Loewner −3

−2.5

−2

−1.5

−1

−0.5

0

1e-02 1e-01 1e+00

ph
as
e

frequency ω [rad/s]

full model
classical Loewner
time Loewner

(a) magnitude (b) phase

‖H−H̃‖H2
‖H‖H2

‖H−Ĥ‖H2
‖H‖H2

‖H̃−Ĥ‖H2
‖H‖H2

‖H−H̃‖H∞
‖H‖H∞

‖H−Ĥ‖H∞
‖H‖H∞

‖H̃−Ĥ‖H∞
‖H‖H∞

1.41× 10−1 1.11× 10−1 5.42× 10−2 3.63× 10−1 2.42× 10−1 1.85× 10−1

• Construct time-domain Loewner from single trajectory
• Magnitude of transfer function matched well; slight difference in phase
• Time-domain (& classical) Loewner model are asymptotically stable

95 / 170

Loewner: Penzl example

Penzl LTI system
• Order of system is N = 1006
• Discretize in time with implicit Euler
• Time step size δt = 10−4

• Number of time steps K = 106

Time-domain Loewner reduced model
• Dimension of reduced model n = 10
• Set kmin = b1/4Kc
• Select m logarithmic interpolation pts
• Construct input as in Eady example
• Simulate full model Σ once

1e-01

1e+00

1e+01

1e+02

1e-04 1e-03 1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω

full model

(a) magnitude

-3e+00

-2e+00

-1e+00

0e+00

1e+00

2e+00

3e+00

1e-04 1e-03 1e-02 1e-01 1e+00

ph
as
e

frequency ω

full model

(b) phase

[Penzl, 2006], [Ionita, 2013] 96 / 170

Loewner: Penzl example: Transfer function

1e-01

1e+00

1e+01

1e+02

1e-04 1e-03 1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω [rad/s]

full model
classical Loewner
time Loewner −3

−2

−1

0

1

2

3

1e-04 1e-03 1e-02 1e-01 1e+00

ph
as
e

frequency ω [rad/s]

full model
classical Loewner
time Loewner

(a) magnitude (b) phase

• Number of interpolation points m = 64
• Test points logarithmically distributed in range [10−4, 1]

• Time-domain Loewner matches classical Loewner model well

97 / 170

Loewner: Penzl example: Poles

−0.04
−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04

0.98 0.99 1

im
ag
in
ar
y
pa
rt

real part

classical L.
time L.

0.940

0.950

0.960

0.970

0.980

0.990

1.000

1.010

1 2 3 4 5 6 7 8 9 10

m
ag
ni
tu
de

of
ei
ge
nv
al
ue

index of eigenvalue

classical Loewner
time Loewner

(a) eigenvalues (b) magnitude of eigenvalues

‖H−H̃‖H2
‖H‖H2

‖H−Ĥ‖H2
‖H‖H2

‖H̃−Ĥ‖H2
‖H‖H2

‖H−H̃‖H∞
‖H‖H∞

‖H−Ĥ‖H∞
‖H‖H∞

‖H̃−Ĥ‖H∞
‖H‖H∞

5.88× 10−1 5.88× 10−1 1.07× 10−4 2.67× 10−3 2.67× 10−3 9.97× 10−6

• Time-domain Loewner model matches poles of classical Loewner
• Time-domain (& classical) Loewner model are asymptotically stable

98 / 170

Loewner: Beam example
Cantilever beam

• Full 3D finite-element model of beam
• Force applied at tip of beam
• Implicit Euler, δt = 10−4,K = 106

Time-domain Loewner
• Dimension of reduced model n = 8
• Select m = 150 interpolation points
• Same kmin and input as in Eady
• Simulate full model Σ once

forcex3

x1

x2

(a) geometry of beam

[Panzer et al., 2009]

(b) beam at time step 4452 (c) beam at time step 5061
99 / 170

Loewner: Beam example: The kmin value

1e+00
1e+02
1e+04
1e+06
1e+08
1e+10
1e+12
1e+14
1e+16
1e+18

2.5e+05

5e+05
7.5e+05

9e+05
9.9e+05

9.99e+05

co
nd

iti
on

nu
m
be
r

kmin

• The kmin significantly influences the condition number
• Conservative choice seems sufficient in practice

100 / 170

Loewner: Beam example: Transfer function

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e-04 1e-03 1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω [rad/s]

full model
classical Loewner
time Loewner −3

−2

−1

0

1

2

3

1e-04 1e-03 1e-02 1e-01 1e+00

ph
as
e

frequency ω [rad/s]

full model
classical Loewner
time Loewner

(a) magnitude (b) phase

• Time-domain Loewner model matches transfer function well
• Differences can be seen for high frequencies

101 / 170

Loewner: Beam example: Error

1e-15
1e-14
1e-13
1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05

1e-04 1e-03 1e-02 1e-01 1e+00

ab
s
er
ro
r

frequency ω [rad/s]

classical Loewner
time Loewner

-1e+02

0e+00

1e+02

0 2000 4000 6000 8000 10000

-1e+02

0e+00

1e+02

0 2000 4000 6000 8000 10000

ou
tp
ut

time step

classical Loewner

ou
tp
ut

time step

time Loewner

(a) absolute error (b) output

‖H−H̃‖H2
‖H‖H2

‖H−Ĥ‖H2
‖H‖H2

‖H̃−Ĥ‖H2
‖H‖H2

‖H−H̃‖H∞
‖H‖H∞

‖H−Ĥ‖H∞
‖H‖H∞

‖H̃−Ĥ‖H∞
‖H‖H∞

2.51× 10−2 1.28× 10−2 2.12× 10−2 2.26× 10−4 2.16× 10−4 1.21× 10−4

• Absolute error is low for low frequencies
• Perform time-domain simulation of reduced model
• Output of time-domain Loewner matches output of classical Loewner

102 / 170

Loewner: Beam example: Input signals

−2

−1.5

−1

−0.5

0

0.5

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

in
pu

t

time step k

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e-04 1e-03 1e-02 1e-01 1e+00

m
ag
ni
tu
de

frequency ω [rad/s]

full model
classical Loewner
time Loewner

(a) chirp signal (b) magnitude

• Extract input u from “chirp” signal (non-zero Fourier coefficients)
• Simulate Σ at u and construct time-domain Loewner model
• Time-domain Loewner shows similar behavior as for synthetic input

103 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Generalization error of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

104 / 170

Outline

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Generalization error of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

104 / 170

Intro: What is uncertainty quantification?

There are known knowns;
there are things we know we know.

We also know there are known unknowns; that is to say, we know
there are some things we do not know.

But there are also unknown unknowns the ones we do not know we
do not know.

U.S.Secretary of Defense, Donald Rumsfeld, DoD News Briefing; Feb. 12, 2002

105 / 170

Intro: What is uncertainty quantification?

There are known knowns;
there are things we know we know.

We also know there are known unknowns; that is to say, we know
there are some things we do not know.

But there are also unknown unknowns the ones we do not know we
do not know.

U.S.Secretary of Defense, Donald Rumsfeld, DoD News Briefing; Feb. 12, 2002

105 / 170

Intro: Known unknowns

[Figure: NOAA]

106 / 170

Intro: No hope to exhaustively model physics

[Figure: University of Michigan]

107 / 170

Intro: Rapidly changing dynamics

[Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the Common Research Model
configuration. Group (ADODG), 6(7), 8-9.]

108 / 170

Intro: Uncertainties due to data

[Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.]

109 / 170

Intro: UQ and the scientific computing paradigm

[Figure: Oliver Ernst]

110 / 170

Intro: UQ and the scientific computing paradigm

[Figure: Oliver Ernst]

110 / 170

Intro: UQ and the scientific computing paradigm

[Figure: Oliver Ernst]

110 / 170

Intro: Confidence in computer predictions

Validation: Are we solving the right problem?

Determine if a mathematical model adequately represents
physical/engineering phenomena under study

Verification: Are we solving the problem correctly?

Determine if an algorithm and/or computer code correctly implements a
given mathematical model

• Code verification (software engineering)
• Solution verification (a posterior error estimation)

111 / 170

Intro: Model

Model of system of interest
• Model describes response of system to inputs, parameters, configurations
• Response typically is a quantity of interest
• Evaluating a model means numerically simulating the model
• Many models given in form of partial differential equations

model
input output

Mathematical formulation
f : D → Y

• Input domain D and output domain Y
• Maps z ∈ D input onto y ∈ Y output (quantity of interest)

112 / 170

Intro: Model - Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∆u + g

Examples of inputs
• Density ρ
• Dynamic viscosity µ

Examples of outputs (quantities of interest)
• Velocity at monitoring point
• Average pressure

[Figure: MFIX, NETL, DOE]

113 / 170

Intro: Model - Diffusion-convection-reaction flow

∂u

∂t
= ∆u − v∇u + g(u,µ)

Examples of inputs
• Activation energy and pre-exponential factor (Arrhenius-type reaction)
• Temperature at boundary
• Ratio of fuel and oxidizer

Examples of outputs
• Average temperature in chamber

x
1
 [cm]

x 2 [c
m

]

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p
[K

]

0

500

1000

1500

2000

x
1
 [cm]

x 2 [c
m

]

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p
[K

]

0

500

1000

1500

2000

114 / 170

Intro: Uncertain inputs

Inputs are uncertain
• Measurement errors in boundary conditions
• Manufacturing variations
• Model parameters determined by engineering judgment, etc.

Mathematically formulate uncertain inputs as random variables

Z : Ω→ D

Quantify effect of uncertainties in inputs on model outputs

computational
model

input output

115 / 170

Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

z1, . . . , zn ∈ D

• Evaluate model f at all z1, . . . , zn realizations

y1 = f (z1), . . . , yn = f (zn)

• Estimate statistics from outputs y1, . . . , yn

model
f : D → Y

input z output y

.

.

116 / 170

Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

z1, . . . , zn ∈ D

• Evaluate model f at all z1, . . . , zn realizations

y1 = f (z1), . . . , yn = f (zn)

• Estimate statistics from outputs y1, . . . , yn

model
f : D → Y

input z output y

y1
y2
...
yn

z1
z2
...
zn

.

.

116 / 170

Intro: General sampling-based approach to UQ

• Take many realizations of input random variable Z

z1, . . . , zn ∈ D

• Evaluate model f at all z1, . . . , zn realizations

y1 = f (z1), . . . , yn = f (zn)

• Estimate statistics from outputs y1, . . . , yn

model
f : D → Y

input z output y

uncertainty
quantification

.

.

116 / 170

[Figure: Martinp1, Wikipedia]

Monte Carlo

• Models treated as black box
• Dimension independent
• Easily parallelizable

117 / 170

[Figure: Martinp1, Wikipedia]

Monte Carlo

• Models treated as black box

• Dimension independent
• Easily parallelizable

117 / 170

[Figure: Martinp1, Wikipedia]

Monte Carlo

• Models treated as black box
• Dimension independent

• Easily parallelizable

117 / 170

[Figure: Martinp1, Wikipedia]

Monte Carlo

• Models treated as black box
• Dimension independent
• Easily parallelizable

117 / 170

Intro: Challenges of sampling-based UQ

computational model
f : D → Y

exp
ens

ive
input z output y

.

.

Challenges
• Formulation and modeling of uncertainties
• Models based on PDEs: nonlinear, multi-scale, multi-physics
• Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
• Uncertain parameters are of high dimension

118 / 170

Intro: Challenges of sampling-based UQ

computational model
f : D → Y

exp
ens

ive
input z output y

.

.

Challenges
• Formulation and modeling of uncertainties
• Models based on PDEs: nonlinear, multi-scale, multi-physics
• Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
• Uncertain parameters are of high dimension

118 / 170

Intro: Challenges of sampling-based UQ

computational model
f : D → Y

exp
ens

ive

input

z1
z2
z3
...

 output

y1
y2
y3
...

many iterations

.

.

Challenges
• Formulation and modeling of uncertainties
• Models based on PDEs: nonlinear, multi-scale, multi-physics
• Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
• Uncertain parameters are of high dimension

118 / 170

Intro: Challenges of sampling-based UQ

computational model
f : D → Y

exp
ens

ive

input

z1
z2
z3
...

 output

y1
y2
y3
...

many iterations

.

.

Challenges
• Formulation and modeling of uncertainties
• Models based on PDEs: nonlinear, multi-scale, multi-physics
• Single model solve expensive; repeated solves prohibitive ⇒ multifidelity
• Uncertain parameters are of high dimension

118 / 170

Intro: Opportunity of low-fidelity models
Given is typically a high-fidelity model

• Large-scale numerical simulation
• Achieves required accuracy
• Computationally expensive

Additionally, often have low-fidelity models
• Approximate same quantity of interest
• Often orders of magnitudes cheaper
• Less accurate

Examples of low-fidelity models

co
st

s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

data-fit models,
response surfaces,
machine learning

coarse-grid
approximations

RN

u(ξ1)

u(ξ2)

u(ξM)

reduced basis,
proper orthogonal
decomposition

simplified models,
linearized models

119 / 170

Intro: Low-fidelity models

Replace high- with low-fidelity model
• Costs of outer loop application reduced
• Often orders of magnitude speedups

Low-fidelity model introduces error
• Control with error bounds/estimators*
• Rebuild if accuracy too low
• No guarantees without bounds/estimators

Issues
• Propagation of output error on estimate
• Applications without error control
• Costs of rebuilding a low-fidelity model

surrogate
model

uncertainty
quantification

ou
tp

u
t
y in

p
u

t
z

120 / 170

Multifidelity: Combine multiple models

Combine high-fidelity and low-fidelity models
• Leverage low-fidelity models for speedup
• Recourse to high-fidelity for accuracy

Multifidelity speeds up computations
• Balance #solves among models
• Adapt, fuse, filter with low-/high-fidelity models

Multifidelity guarantees accuracy of high-fidelity
• Occasional recourse to high-fidelity model
• High-fidelity model is kept in the loop
• Independent of error control for low-fidelity

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization. SIAM Review, 60(3):550-591, 2018]

high-fidelity
model

...

surrogate
model

surrogate
model

uncertainty
quantification

ou
tp

u
t
y in

p
u

t
z

.

.

121 / 170

Intro: Survey with many references

122 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

123 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

123 / 170

MFMC: Monte Carlo estimation

High-fidelity (“truth”) model, costs w1 > 0

f (1) : D → Y

Random variable Z , estimate

s = E[f (1)(Z)]

Monte Carlo estimate of s with real. z1, . . . , zn

y (1)
n =

1
n

n∑
i=1

f (1)(zi)

Computational costs
• Many evaluations of high-fidelity model
• Typically 103 − 106 evaluations
• Intractable if f (1) expensive

high-fidelity
model

outer-loop
application

ou
tp

u
t
y in

p
u

t
z

.

.

124 / 170

MFMC: Control variates

Given is a random variable A with unknown statistics

sA = E[A]

Independent and identically distributed (i.i.d.) samples

a1, . . . , an

Regular Monte Carlo estimator of sA

ān =
1
n

n∑
i=1

ai

Unbiased estimator E[ān] = sA with mean-squared error (MSE)

Var[ān] =
1
n2

Var

[
n∑

i=1

ai

]
=

Var[A]

n

125 / 170

MFMC: Control variates

Given is a random variable A with unknown statistics

sA = E[A]

Independent and identically distributed (i.i.d.) samples

a1, . . . , an

Regular Monte Carlo estimator of sA

ān =
1
n

n∑
i=1

ai

Unbiased estimator E[ān] = sA with mean-squared error (MSE)

Var[ān] =
1
n2

Var

[
n∑

i=1

ai

]
=

Var[A]

n

125 / 170

MFMC: Control variates

Given is a random variable A with unknown statistics

sA = E[A]

Independent and identically distributed (i.i.d.) samples

a1, . . . , an

Regular Monte Carlo estimator of sA

ān =
1
n

n∑
i=1

ai

Unbiased estimator E[ān] = sA with mean-squared error (MSE)

Var[ān] =
1
n2

Var

[
n∑

i=1

ai

]
=

Var[A]

n

125 / 170

MFMC: Control variates

Given is a random variable A with unknown statistics

sA = E[A]

Independent and identically distributed (i.i.d.) samples

a1, . . . , an

Regular Monte Carlo estimator of sA

ān =
1
n

n∑
i=1

ai

Unbiased estimator E[ān] = sA with mean-squared error (MSE)

Var[ān] =
1
n2

Var

[
n∑

i=1

ai

]
=

Var[A]

n

125 / 170

MFMC: Control variates (cont’d)

Additional random variable B with sB = E[B] and samples

b1, . . . , bn

Regular Monte Carlo estimator of sB

b̄n =
1
n

n∑
i=1

bi

Control variate estimator of sA that uses samples from A and B

ŝA = ān +
(
sB − b̄n

)
Introduce coefficient α ∈ R to balance A and B

ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]

126 / 170

MFMC: Control variates (cont’d)

Additional random variable B with sB = E[B] and samples

b1, . . . , bn

Regular Monte Carlo estimator of sB

b̄n =
1
n

n∑
i=1

bi

Control variate estimator of sA that uses samples from A and B

ŝA = ān +
(
sB − b̄n

)
Introduce coefficient α ∈ R to balance A and B

ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]

126 / 170

MFMC: Control variates (cont’d)

Additional random variable B with sB = E[B] and samples

b1, . . . , bn

Regular Monte Carlo estimator of sB

b̄n =
1
n

n∑
i=1

bi

Control variate estimator of sA that uses samples from A and B

ŝA = ān +
(
sB − b̄n

)

Introduce coefficient α ∈ R to balance A and B

ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]

126 / 170

MFMC: Control variates (cont’d)

Additional random variable B with sB = E[B] and samples

b1, . . . , bn

Regular Monte Carlo estimator of sB

b̄n =
1
n

n∑
i=1

bi

Control variate estimator of sA that uses samples from A and B

ŝA = ān +
(
sB − b̄n

)
Introduce coefficient α ∈ R to balance A and B

ŝA = ān + α
(
sB − b̄n

)
Combines n samples of A and n samples of B

[Nelson, 87]

126 / 170

MFMC: Control variates (cont’d)

Control variate estimator

ŝA = ān + α
(
sB − b̄n

)

Unbiased estimator of sA because

E[ŝA] = E[ān]︸ ︷︷ ︸
=sA

+αE[sB − b̄n]︸ ︷︷ ︸
=0

= sA

Variance of control variate estimator for optimal∗ α ∈ R

Var[ŝA] = (1− ρ2)
Var[A]

n
= (1− ρ2) Var[ān]

• Correlation coefficient −1 ≤ ρ ≤ 1 of A and B

• If ρ = 0, same variance as regular Monte Carlo
• If |ρ| > 0, lower variance
• The higher correlated, the lower variance of ŝA

127 / 170

MFMC: Control variates (cont’d)

Control variate estimator

ŝA = ān + α
(
sB − b̄n

)
Unbiased estimator of sA because

E[ŝA] = E[ān]︸ ︷︷ ︸
=sA

+αE[sB − b̄n]︸ ︷︷ ︸
=0

= sA

Variance of control variate estimator for optimal∗ α ∈ R

Var[ŝA] = (1− ρ2)
Var[A]

n
= (1− ρ2) Var[ān]

• Correlation coefficient −1 ≤ ρ ≤ 1 of A and B

• If ρ = 0, same variance as regular Monte Carlo
• If |ρ| > 0, lower variance
• The higher correlated, the lower variance of ŝA

127 / 170

MFMC: Control variates (cont’d)

Control variate estimator

ŝA = ān + α
(
sB − b̄n

)
Unbiased estimator of sA because

E[ŝA] = E[ān]︸ ︷︷ ︸
=sA

+αE[sB − b̄n]︸ ︷︷ ︸
=0

= sA

Variance of control variate estimator for optimal∗ α ∈ R

Var[ŝA] = (1− ρ2)
Var[A]

n
= (1− ρ2) Var[ān]

• Correlation coefficient −1 ≤ ρ ≤ 1 of A and B

• If ρ = 0, same variance as regular Monte Carlo
• If |ρ| > 0, lower variance
• The higher correlated, the lower variance of ŝA

127 / 170

MFMC: Multifidelity Monte Carlo Estimation

Estimate expected value

s = E[f (1)(Z)]

Low-fidelity models
f (2), . . . , f (k) : D → Y

Correlation coefficients

ρ2 = Corr[f (1), f (2)], ρ3 = Corr[f (1), f (3)], . . . , ρk = Corr[f (1), f (k)]

Costs
w1, . . . ,wk > 0

128 / 170

MFMC: Multifidelity Monte Carlo
Reminder: Monte Carlo estimator

y (1)
n =

1
n

n∑
i=1

f (1)(zi)

Multifidelity Monte Carlo (MFMC) estimator

ŝ = y (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
y (i)
mi
− y (i)

mi−1

)
︸ ︷︷ ︸
from low-fid. models

• Monte Carlo estimator

ȳ (i)
mi

=
1
mi

mi∑
i=1

f (i)(z i)

• Number of model evaluations m = [m1, . . . ,mk]T

• Control variate coefficients α = [α2, . . . , αk]T

• Optimal selection of m and α → our code
129 / 170

MFMC: Multifidelity Monte Carlo
Reminder: Monte Carlo estimator

y (1)
n =

1
n

n∑
i=1

f (1)(zi)

Multifidelity Monte Carlo (MFMC) estimator

ŝ = y (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
y (i)
mi
− y (i)

mi−1

)
︸ ︷︷ ︸
from low-fid. models

• Monte Carlo estimator

ȳ (i)
mi

=
1
mi

mi∑
i=1

f (i)(z i)

• Number of model evaluations m = [m1, . . . ,mk]T

• Control variate coefficients α = [α2, . . . , αk]T

• Optimal selection of m and α → our code
129 / 170

MFMC: Recipe 1

Download

https://github.com/pehersto/mfmc

Given
• Models f (1), . . . , f (k)

• Computational budget b

Pilot run
• Draw m0 (≈ 50) realizations of Z
• Evaluate each model f (1), . . . , f (k) at the m0 realizations

Y =

 f (1)(z1) f (2)(z1) . . . f (k)(z1)
...

...
...

f (1)(zm0) f (2)(zm0) . . . f (k)(zm0)

• Estimate computational costs of model evaluations w = [w1, . . . ,wk]T

130 / 170

MFMC: Recipe 1 (cont’d)

Determine number of model evaluations

[m, a] = optiMlevelCorr(Y, w, b)

• Number of model evaluations m = [m1, . . . ,mk]T

• Coefficients a = [α2, . . . , αk]T

Draw realizations
z1, . . . , zmk

Evaluate models

f (i)(z1), . . . , f (i)(zmi) , i = 1, . . . , k

Estimate

ŝ = y (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
y (i)
mi
− y (i)

mi−1

)
︸ ︷︷ ︸
from low.-fid. models

131 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4

5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end

132 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4
5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9

10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end

132 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4
5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11

12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end

132 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4
5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13

14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end

132 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4
5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16

17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end

132 / 170

MFMC: Matlab code for Recipe 1
1 modelList = {HFM ,LFM1 ,LFM2 ,LFM3}; % models
2 w = [100, 50, 20, 10]'; % costs
3 budget = 1000*w(1); % total budget
4
5 mu = drawSamples (50); % pilot samples
6 for i=1: length(modelList)
7 Y(:, i) = modelList{i}(mu);
8 end
9
10 [m, alpha] = optiMlevelCorr(Y, w, budget); % MFMC
11
12 z = drawSamples(m(end)); % draw realizations
13
14 y = modelList {1}(z(1:m(1), :)); % evaluate HFM
15 sHat = alpha (1)*mean(y);
16
17 % evaluate low -fidelity models
18 for i=2: length(modelList)
19 y = modelList{i}(z(1:m(i), :));
20 sHat = sHat+alpha(i)*(mean(y)-mean(y(1:m(i-1))));
21 end 132 / 170

MFMC: Recipe 2 (MFMC as post-processing)
Given

• Model evaluations

f (i)(z1), . . . , f (i)(zmi) , i = 1, . . . , k

• Model evaluation costs w1, . . . ,wk

Pilot samples
• Use the first m0 � m1 samples to form

Y =

 f (1)(z1) f (2)(z1) . . . f (k)(z1)
...

...
...

f (1)(zm0) f (2)(zm0) . . . f (k)(zm0)

• Derive coefficients

[∼, a] = optiMlevelCorr(Y, w, b)
Estimate

s = y (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
y (i)
mi
− y (i)

mi−1

)
︸ ︷︷ ︸
from low.-fid. models

There are theoretic subtleties that are typically negligible in practice
133 / 170

MFMC: Recipe 2 (MFMC as post-processing)
Given

• Model evaluations

f (i)(z1), . . . , f (i)(zmi) , i = 1, . . . , k

• Model evaluation costs w1, . . . ,wk

Pilot samples
• Use the first m0 � m1 samples to form

Y =

 f (1)(z1) f (2)(z1) . . . f (k)(z1)
...

...
...

f (1)(zm0) f (2)(zm0) . . . f (k)(zm0)

• Derive coefficients

[∼, a] = optiMlevelCorr(Y, w, b)
Estimate

s = y (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

αi

(
y (i)
mi
− y (i)

mi−1

)
︸ ︷︷ ︸
from low.-fid. models

There are theoretic subtleties that are typically negligible in practice
133 / 170

MFMC: AeroStruct: Problem setup

Coupled aero-structural wing analysis
• Uncertain are angle of attack, air density,

Mach number
• Estimate expected fuel burn

High-fidelity model f (1)

• OpenAeroStruct code
• Vortex-lattice method
• 6 DoF 3-dim spatial beam model
• Used with default configuration

Low-fidelity models
• Spline interpolants on equidistant grid
• Low-fidelity model f (2) from 343 points
• Low-fidelity model f (3) from 125 points

[Jasa, J. P., Hwang, J. T., and Martins, J. R.
R. A., “Open-source coupled aerostructural
optimization using Python,” Structural and

Multidisciplinary Optimization, 2018.
(submitted)]

https://github.com/johnjasa/OpenAeroStruct/

134 / 170

MFMC: AeroStruct: Distribution of work

Model properties
model evaluation costs [s] offline costs [s] correlation coefficient
high-fid. f (1) 1.61× 10−1 - -
low-fid. f (2) 1.23× 10−7 55.382 9.9552× 10−1

low-fid. f (3) 1.21× 10−7 20.183 9.9192× 10−1

Number of model evaluations
Monte Carlo MFMC with f (1), f (2) MFMC with f (1), f (3)

online costs [s] #evals f (1) #evals f (1) #evals f (2) #evals f (1) #evals f (3)

7.99× 100 50 4.90× 101 4.48× 105 4.90× 101 5.97× 105

1.61× 101 100 9.90× 101 8.95× 105 9.90× 101 1.19× 106

8.07× 101 500 4.96× 102 4.48× 106 4.95× 102 5.97× 106

1.61× 102 1000 9.93× 102 8.95× 106 9.90× 102 1.19× 107

8.07× 102 5000 4.97× 103 4.48× 107 4.95× 103 5.97× 107

MFMC trades high-fidelity evaluations for low-fidelity evaluations
• The high-fidelity model evaluations guarantee unbiased
• The low-fidelity model evaluations help to reduce the variance
• The balance is optimal with respect to the mean-squared error

135 / 170

MFMC: AeroStruct: Distribution of work

Model properties
model evaluation costs [s] offline costs [s] correlation coefficient
high-fid. f (1) 1.61× 10−1 - -
low-fid. f (2) 1.23× 10−7 55.382 9.9552× 10−1

low-fid. f (3) 1.21× 10−7 20.183 9.9192× 10−1

Number of model evaluations
Monte Carlo MFMC with f (1), f (2) MFMC with f (1), f (3)

online costs [s] #evals f (1) #evals f (1) #evals f (2) #evals f (1) #evals f (3)

7.99× 100 50 4.90× 101 4.48× 105 4.90× 101 5.97× 105

1.61× 101 100 9.90× 101 8.95× 105 9.90× 101 1.19× 106

8.07× 101 500 4.96× 102 4.48× 106 4.95× 102 5.97× 106

1.61× 102 1000 9.93× 102 8.95× 106 9.90× 102 1.19× 107

8.07× 102 5000 4.97× 103 4.48× 107 4.95× 103 5.97× 107

MFMC trades high-fidelity evaluations for low-fidelity evaluations
• The high-fidelity model evaluations guarantee unbiased
• The low-fidelity model evaluations help to reduce the variance
• The balance is optimal with respect to the mean-squared error

135 / 170

MFMC: AeroStruct: Speedup results

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-04 1e-02 1e+00 1e+02 1e+04

es
ti

m
at

ed
re

la
ti

ve
M

S
E

online costs [s]

high-fidelity model f (1) alone

low-fidelity model f (3) alone

MFMC with f (1), f (3)

• Low-fidelity model alone leads to biased estimators
• MFMC achieves speedup of about one order of magnitude

136 / 170

MFMC: AeroStruct: Speedup with offline costs

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+02 1e+04

es
ti

m
at

ed
re

la
ti

ve
M

S
E

offline plus online costs [s]

high-fidelity model f (1) alone

low-fidelity model f (3) alone

MFMC with f (1), f (3)

• Constructing low-fidelity models incurs offline costs
• In this example, offline costs low compared to savings

137 / 170

MFMC: AeroStruct: Combining all three models

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+02 1e+04

es
ti

m
at

ed
re

la
ti

ve
M

S
E

online costs [s]

high-fidelity model f (1) alone

MFMC with f (1), f (3)

MFMC with f (1), f (2)

MFMC with f (1), f (2), f (3)

• Model f (2) and f (3) are similar with respect to costs/correlations
• Adding model f (2) as little effect

138 / 170

MFMC: Plate
Locally damaged plate in bending

• Inputs: nominal thickness, load, damage
• Output: maximum deflection of plate
• Only distribution of inputs known
• Estimate expected deflection

Six models
• High-fidelity model: FEM, 300 DoFs
• Reduced model: POD, 10 DoFs
• Reduced model: POD, 5 DoFs
• Reduced model: POD, 2 DoFs
• Data-fit model: linear interp., 256 pts
• Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

(a) wing panel

spatial coordinate x1

0 0.2 0.4 0.6 0.8 1

sp
a
ti
al

co
o
rd

in
a
te

x
2

1

0.8

0.6

0.4

0.2

 0

th
ic

kn
es

s

0.05

0.06

0.07

0.08

(b) damaged plate
139 / 170

MFMC: Plate: Combining many models

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e-04 1e-02 1e+00 1e+02 1e+04

es
tim

at
ed

M
SE

runtime [s]

one model (Monte Carlo)

two models

three models

six models

• Largest improvement from “single → two” and “two → three”
• Adding yet another reduced/SVM model reduces variance only slightly

140 / 170

MFMC: Plate: #evals of models

one m
odel

two m
odels

three m
odels

six m
odels

sh
ar
e
of

sa
m
p
le
s[
%
]

10 -4

10 -2

10 0

10 2

100.00%

99.99%

1.95e-3%

99.69%

0.30%

1.35e-4%

98.29%

1.36%

0.31%

0.03%

2.11e-3%

3.47e-5%

high--delity f (1)

reduced f (2)

reduced f (4)

reduced f (5)

data f (3)

SVM f (6)

• MFMC distributes #evals among models depending on corr/costs
• Number of evaluation changes exponentially between models
• Highest #evals in data-fit models (cost ratio w1/w6 ≈ 106)

141 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

142 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

142 / 170

MFGSA: Sensitivity analysis
Y

Z

Y

Z

Y is sensitive to Z Y is not sensitive to Z

Sensitivity analysis
• Determine which inputs influence output most
• Can sample Y as a black box for inputs Z and need to determine what

components of Z = [Z1, . . . ,Zd]T influence Y most

143 / 170

MFGSA: Sensitivity analysis in engineering

Risk communication for decision-making
• Determine if one can rely on model output or if “noise”
• Communicate to upstream decision-making which inputs are critical

Feedback to improve model
• Determine which inputs need to be sampled carefully
• Prioritize effort on reducing uncertainty
• Modify model with respect to sensitive inputs

Model reduction and dimensionality reduction
• Focus on important inputs and ignore ineffective inputs
• Derive surrogate models that depend on important inputs only

144 / 170

MFGSA: Variance-based global sensitivity analysis

• Input Z = [Z1, . . . ,Zd]T ∈ D is a random vector

• Output of model Y = f (1)(Z1, . . . ,Zd) is sensitive to inputs

• Measure sensitivity with variance

• Main effect sensitivity

Si =
Var[E[Y |Zi]]

Var[Y]

• Main sensitivity indices are normalized

d∑
i=1

Si = 1 , Si ∈ [0, 1]

145 / 170

MFGSA: Multifidelity estimation

Estimation of sensitivity indices
• Estimate variance instead of expected value

Si =
Var[E[Y |Zi]]

Var[Y]

• Requires estimating variance for all d inputs Z = [Z1, . . . ,Zd]

Multifidelity estimation
• Given are low-fidelity models f (2), . . . , f (k)

• Similarly to MFMC, exploit correlations

ρ2 = Corr[f (1), f (2)], ρ3 = Corr[f (1), f (3)], . . . , ρk = Corr[f (1), f (k)]

• Estimator has similar structure as estimator for expected values

146 / 170

MFGSA: Premixed flame

Inputs to model are
• Parameters of Arrhenius reaction
• Temperatures at boundary
• Ratio of fuel and oxidizer
• Activation Energy

Output is maximum
temperature in chamber

x
1
 [cm]

x 2 [c
m

]

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p
[K

]

0

500

1000

1500

2000

x
1
 [cm]

x 2 [c
m

]

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p
[K

]

0

500

1000

1500

2000

Models
• Model based on finite differences serves as high-fidelity model
• Model with lower fidelity derived with proper orthogonal decomposition

147 / 170

MFGSA: Premixed flame: Results

148 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

149 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

149 / 170

MFIS: Failure probabilities

System described by high-fidelity model f (1) : D → Y
• Input z ∈ Z
• Output y ∈ Y
• Costs of one high-fidelity model evaluation w1 > 0

Define indicator function

I (1)(z) =

{
1 , f (1)(z) < 0
0 , else .

Indicator function I (1)(z) = 1 signals failure for input z

Given random variable Z , estimate failure probability

Pf = Ep[I (1)(Z)]

150 / 170

MFIS: Rare event simulation

• Monte Carlo estimator of Pf

using m ∈ N realizations

PMC
f =

1
m

m∑
i=1

I (1)(z i)

• If Pf small, then only few
realizations with f (1)(z) < 0

• Require (very) large m to obtain
Monte Carlo estimator with
acceptable accuracy →
expensive -0.5 0 0.5 1 1.5

outputs f (1)(z)

0

1

2

3

4

5

de
ns

ity

realizations
density

151 / 170

MFIS: Rare event simulation is challenging
Costs of rare event simulation grow inverse proportional to Pf

• Monte Carlo estimation of Pf with m realizations

PMC
f =

1
m

m∑
i=1

I (1)(z i)

• Relative mean-squared error (MSE) of PMC
f

e(PMC
f) = Ep

[(
PMC
f − Pf

Pf

)2]
=

Varp
[
I (1)(Z)

]
P2
f m

=
1− Pf

Pfm

• For constant m, the rel. MSE increases inverse proportional to Pf

• A small failure probability Pf needs to be compensated with a large
number of samples m

• Example: For Pf = 10−5 need m ≈ 107 to achieve e(PMC
f) ≤ 10−2

Challenge

costs per sample + number of samples

152 / 170

MFIS: Rare events in aerospace engineering

Rare event simulation
• Failure probability estimation
• Reliability engineering

Risk assessment
• Communicate to upstream decision-making
• Mitigate catastrophic events

Risk-averse optimization
• Deliver baseline performance outside nominal operating conditions
• Take into account dynamics at limit states

153 / 170

MFIS: Importance sampling

• Importance sampling (IS)
creates biasing density q to put
more weight on failure events

• Let Ẑ be the corresponding
random variable

• Introduce the weight function

r(z ′) =
p(ẑ)

p(ẑ)

• Reformulate failure probability

Pf = Ep[I (1)(Z)] = Eq[I (1)(Ẑ)r(Ẑ)] -0.5 0 0.5 1 1.5
outputs f (1)(z)

0

1

2

3

4

5

de
ns

ity

realizations
nominal
biasing

154 / 170

MFIS: Multifidelity importance sampling

low-fidelity
model

low-fidelity
modellow-fidelity, cheap

biased

high-fidelity
model

high-fidelity
model

high-fidelity, expensive

unbiased

multifidelity

unbiased

step 1
construction of

biasing distribution

step 2
estimation of

failure probability

co
m
pu

ta
tio

na
lc

os
ts

155 / 170

MFIS: Multifidelity importance sampling

low-fidelity
model

low-fidelity
modellow-fidelity, cheap

biased

high-fidelity
model

high-fidelity
model

high-fidelity, expensive

unbiased

multifidelity

unbiased

step 1
construction of

biasing distribution

step 2
estimation of

failure probability

co
m
pu

ta
tio

na
lc

os
ts

155 / 170

MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i)

︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i)
q(ẑ i)

︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f]

156 / 170

MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i)︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i)
q(ẑ i)

︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f]

156 / 170

MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i)︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i)
q(ẑ i)︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f]

156 / 170

MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i)︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i)
q(ẑ i)︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f]

many realizations
but low-fidelity model

156 / 170

MFIS: Recipe 3
Step 1: Construct biasing distribution using low-fidelity model f (2)

• Evaluate f (2) at (many) realizations z1, . . . , zn of Z
• Fit mixture model q (biasing) to realizations → scikit-learn, Matlab

{z i | I (2)(z i) = 1 , i = 1, . . . , n}

• Derive random variable Ẑ with density q

Step 2: Estimate Pf with high-fidelity model f (1)

PMFIS
f =

1
m

m∑
i=1

I (1)(ẑ i)︸ ︷︷ ︸
uses

high-fidelity

p(ẑ i)
q(ẑ i)︸ ︷︷ ︸
uses

low-fidelity

Multifidelity estimator PMFIS
f is unbiased

Pf (1) = Eq[PMFIS
f]

many realizations
but low-fidelity model

high-fidelity model
but only few evals

156 / 170

MFIS: Optimization for risk-averse designs

optimization
st
a
ti
st
ic
s

d
e
si
g
n

v
a
ri
a
b
le

high-fidelity
model

uncertainty
quantification

ou
tp

u
t
y

realization
z

.

.

157 / 170

MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
• Design variables are thickness and position of control points
• Uncertain flight conditions (angle of attack, air density, Mach number)
• Output is fuel burn

Minimize fuel burn at limit states

min
x∈X

E[f (1)(x ,Z) | f (1)(x ,Z) ≤ β]

Derive a data-fit surrogate at current design x
• Take a 3× 3× 3 equidistant grid in stochastic domain
• Evaluate high-fidelity model at those 27 points at current design x
• Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method

158 / 170

MFIS: Risk-averse design of wing

Consider baseline wing definition in OpenAeroStruct
• Design variables are thickness and position of control points
• Uncertain flight conditions (angle of attack, air density, Mach number)
• Output is fuel burn

Minimize fuel burn at limit states

min
x∈X

E[f (1)(x ,Z) | f (1)(x ,Z) ≤ β]

Derive a data-fit surrogate at current design x
• Take a 3× 3× 3 equidistant grid in stochastic domain
• Evaluate high-fidelity model at those 27 points at current design x
• Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method

158 / 170

MFIS: Risk-averse design of wing (cont’d)

400000

600000

800000

1× 106

1.2× 106

1.4× 106

1.6× 106

1.8× 106

2× 106

0e+00 2e+04 4e+04 6e+04 8e+04

ob
je

ct
iv

e

runtime [s]

high-fidelity model alone

multifidelity

159 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

160 / 170

Uncertainty quantification tasks

1. Multifidelity uncertainty propagation

computational model
f : D → Y

input z output y E
.

.

2. Multifidelity sensitivity analysis

computational model
f : D → Y

input z output y

.

.

3. Multifidelity failure probability estimation

computational model
f : D → Y

input z output y

.

.

4. Other multifidelity uncertainty quantification tasks

160 / 170

Outlook: Inverse problems

physics-based
model ?

y = f (z) + ε

data inputs

noise and
model bias

Bayesian inference of parameters z from data y
• Parameters represented as random variable z with prior p(z)

• Define likelihood p(y |z) of data y using model f
• Update distribution of z (“infer”) with Bayes’ rule

p(z |y)︸ ︷︷ ︸
posterior

∝ p (y | z)︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

161 / 170

Outlook: Inverse problems (cont’d)
p(z |y)︸ ︷︷ ︸
posterior

∝ p (y | z)︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

Posterior provides complete description of uncertainties in z
• Input to future simulations for predictions with quantified uncertainties
• Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z |y)

• Evaluate posterior expectation for function g

E[g] =

∫
g(z)p(z |y)dz

• Samples required as inputs in upstream simulations
• Explore posterior to decide where to take new data points
• Estimate quantiles

Making sampling tractable ⇒ multifidelity
162 / 170

Outlook: Inverse problems (cont’d)
p(z |y)︸ ︷︷ ︸
posterior

∝ p (y | z)︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

Posterior provides complete description of uncertainties in z
• Input to future simulations for predictions with quantified uncertainties
• Explore posterior to reduce uncertainties in future predictions

Sampling posterior p(z |y)

• Evaluate posterior expectation for function g

E[g] =

∫
g(z)p(z |y)dz

• Samples required as inputs in upstream simulations
• Explore posterior to decide where to take new data points
• Estimate quantiles

Making sampling tractable ⇒ multifidelity
162 / 170

Outlook: Learning surrogates for multifidelity
co

st
s

error

high-fidelity
model

.

.

Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for model reduction that targets multifidelity
163 / 170

Outlook: Learning surrogates for multifidelity
co

st
s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

.

.

Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for model reduction that targets multifidelity
163 / 170

Outlook: Learning surrogates for multifidelity
co

st
s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

high-fidelity
model

...

surrogate
model

surrogate
model

outer loop
application

ou
tp

u
t
y in

p
u

t
z

.

.

Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for model reduction that targets multifidelity
163 / 170

Outlook: Learning surrogates for multifidelity
co

st
s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

high-fidelity
model

...

surrogate
model

surrogate
model

outer loop
application

ou
tp

u
t
y in

p
u

t
z

outer-loop
result

.

.

Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for model reduction that targets multifidelity
163 / 170

Outlook: Learning surrogates for multifidelity
co

st
s

error

high-fidelity
model

surrogate
model

surrogate
model

surrogate
model

surrogate
model

high-fidelity
model

...

surrogate
model

surrogate
model

outer loop
application

ou
tp

u
t
y in

p
u

t
z

outer-loop
result

.

.

context

Traditional model reduction is separate from multifidelity computations
• Measures error w.r.t. HFM output while outer-loop result is goal
• Ignores that surrogates are used together with other information sources
• While approximating HFM can be hard, supporting HFM might be easy

⇒ Need for learning surrogates that target multifidelity
163 / 170

Outlook: Learning surrogates for multifidelity

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+02 1e+03 1e+04 1e+05 1e+06

es
tim

at
ed

M
SE

budget p (runtime [s])

AMFMC
Static MFMC, n = 57
Static MFMC, n = 568

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+02 1e+04 1e+06

#
ad
ap
ta
tio

n
sa
m
pl
es

n

budget p

numerical approximation of n̂∗
lower bound
upper bound

Adapt surrogate models - but not too much
• Adapting surrogate models towards multifidelity is beneficial
• Crude, cheap surrogates can have better costs/benefit ratio
• Proved for MFMC that optimal amount to spend on learning surrogates

is bounded
[P.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA Journal on Uncertainty

Quantification, 2019.]

164 / 170

Survey with many references

165 / 170

Further reading on methods covered in this talk
[1] L. W. T. Ng and K. Willcox.

Multifidelity approaches for optimization under uncertainty.
International Journal for Numerical Methods in Engineering,
100(10):746–772, 2014.

[2] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox.
Multifidelity importance sampling.
Computer Methods in Applied Mechanics and Engineering, 300:490–509,
2016.

[3] B. Peherstorfer, B. Kramer, and K. Willcox.
Multifidelity preconditioning of the cross-entropy method for rare event
simulation and failure probability estimation.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):737–761, 2018.

[4] B. Peherstorfer, K. Willcox, and M. Gunzburger.
Optimal model management for multifidelity monte carlo estimation.
SIAM Journal on Scientific Computing, 38(5):A3163–A3194, 2016.

[5] E. Qian, B. Peherstorfer, D. O’Malley, V. Vesselinov, and K. Willcox.
Multifidelity monte carlo estimation of variance and sensitivity indices.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):683–706, 2018.

166 / 170

Books on uncertainty quantification

167 / 170

Software

Software for uncertainty quantification

[Figure: Pflüger et al., 2016]
Software with explicit multifidelity support

MFMC
https://dakota.sandia.gov/ https://github.com/pehersto/mfmc

168 / 170

Further reading on methods covered in this talk
[1] L. W. T. Ng and K. Willcox.

Multifidelity approaches for optimization under uncertainty.
International Journal for Numerical Methods in Engineering,
100(10):746–772, 2014.

[2] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox.
Multifidelity importance sampling.
Computer Methods in Applied Mechanics and Engineering, 300:490–509,
2016.

[3] B. Peherstorfer, B. Kramer, and K. Willcox.
Multifidelity preconditioning of the cross-entropy method for rare event
simulation and failure probability estimation.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):737–761, 2018.

[4] B. Peherstorfer, K. Willcox, and M. Gunzburger.
Optimal model management for multifidelity monte carlo estimation.
SIAM Journal on Scientific Computing, 38(5):A3163–A3194, 2016.

[5] E. Qian, B. Peherstorfer, D. O’Malley, V. Vesselinov, and K. Willcox.
Multifidelity monte carlo estimation of variance and sensitivity indices.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):683–706, 2018.

169 / 170

What we covered this week

• Introduction to (intrusive) model reduction

• Learning reduced models from data

• Error estimation of learned reduced models

• Learning from frequency-response data

• Multi-fidelity uncertainty quantification

170 / 170

	Introduction
	Introduction to model reduction
	Loewner
	Loewner results
	Introduction to multi-fidelity uncertainty quantification
	Multifidelity Monte Carlo
	Multifidelity sensitivity analysis
	Multifidelity importance sampling
	Outlook
	Further reading and software
	Conclusions

