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Approximation of the Generator

Recall that for SDEs, the generator is the differential operator:

£0(x) = b(x) - V(x) + ga(x) : TH(x).

Galerkin approximation to £ on a trial space W = span{1;}7_;:

L=G'A, Gj = (Ui, ¥j),, - Aj = (i, L), -
By ergodicity, data-driven approximations are (gEDMD):

1 1
G= XX A= XdXT Xim = 0i(X,,),  dXin = L0i(X,).

I(lug and N_ﬁske et al, Physica D (2020)
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Reproducing Kernel Hilbert Space

Let H C C(X) be a Hilbert space of continuous functions on a domain X.
Assume the point evaluation functional o, f = f(x) is continuous for some
x € X. Then there is a function k() € H such that

F(x) = 0xf = (£, k()

forall f € H. If the above is true for all x € X, we can define a two-parameter

function
k(x,y) == ke(y)

which is called the reproducing kernel for H.

Feliks Niiske 5
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Definition RKHS

Definition
Let X be a suitable domain and H a space of continuous functions f: X — R.

Then H is called a reproducing kernel Hilbert space (RKHS) with inner product
(-, )y ifafunction k: X x X — R exists such that

1. H = span{k(x,-), x € X},
2. (f, k(x,-))y = f(x)forall f € H.

Feliks Niiske 6
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Basic Properties

1. Symmetry:
k(x,y) = dyke(-) = (k(x,-), k(y, "))
= <k(y7 ')v k(Xv )>H = k(y7 X)
2. Positive semi-definiteness: letx; € X, g € R, j=1,... N
N
Z Gark(x, %) = <Zq X,), > Gk(x;, -)> >
Jok=1 j=1 -

The Gramian matrix is always positive semi-definite.

éemg-ﬁlﬁ%%nent function with these properties is called positive semi-definite.7
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Equivalence Result

Theorem (Moore-Aronszajn)

Letk(-, ) be a positive semi-definite function. Then there is a unique RKHS TH
with k as its reproducing kernel.

Idea of the Proof.

Consider the linear span H of all finite combinations Z/’-V:1 Gik(x;, -), with semi
inner product > _;  G;aik(X;, x¢). It can be shown that this is actually a genuine

inner product, and Il is a pre-Hilbert space. Complete it and identify elements
of the completion H with a function by f(x) = <1N‘, k(x, -)>H. O

Feliks Niiske 8
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In summary, a RKHS is a Hilbert space of functions where inner products can be
evaluated by kernel evaluations (the "kernel trick").

Example

The most popular kernel is the Gaussian k(x, y) = exp(— - 2),

252
Many other kernels with rich properties have been developed for a broad
range of applications.

Feliks Nuiske . 9
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Derivative Reproducing Property

The Reproducing Property can be extended to derivatives if the kernel is smooth:

Theorem

Letk(-,-) € C*(X x X) bea positive definite function on an open set X. Then
all functions inH are C* and we have for all || < k:

D*f(x) = (f, Dk(x,"))g »

where the derivative acts on the first argument of k.

Feliks Niiske 10
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Rank-one Operators

In order to approximate the generator on an RKHS, we introduce rank-one
operators of the type:
T H— H, x € X,
7;04)( = <fa Dak(X> )>H k(Xv )
We can verify forall f, g € H:

<7:(af7 g>1HI = <f, Dak(X7 )>H </((X, ')7 g>]HI
= D*f(x) (k(x;-), &)m = D*F(x)g(x).

Feliks Niiske 13
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Approximating Differential Operators
Consider a formal operator
Tt = [ W) (£, DK(x, Vs k(x, ) du(x)
X

where w is a weight function. This is a bounded linear operator on H if:

/X!W(X)HDO‘/((Xa el K Cx, ) llez dpe(x) < oc.

Feliks Nuske 14
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We can then verify that

(Tt s = ([ W) (7. D°Kx ke ) ). )
_ /X w(x) (f, Dk(x, ) (k(X,-), &)z dpu(x)
_ /X w(x) D F(x)g(x) dp(x).

The last term is an inner product in Lﬁ between a function g and the action of a
differential operator w(-)D*f(-) on another function f.

Feliks Niiske 15
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Approximating the Generator

For the generator of an SDE, we can make the definitions:

1
ch_/ {Zb ) (D7k(x). B+ 5 D ai(x) (D7 k(x. ). Fyg
)

k(x. ) dpu(),
Coof = / k(x,), P k(x, ) dpa(x).
X

Feliks Niiske 16
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Galerkin Approximation

Theorem
Assume that L C D(L), and that

[ 13001107 k(. Y, s ) <
/ 130011 D%k (x, ) K, ) s (x) < oo,
/ 1k (x, ) dpa(x) < oo

Then, forallf,g € H,

f.g) = (Coof.
Klus, Niiske, <and i—lamf‘ Entropy (2053) ' {f. g >u (Coof, g)u
Feliks Niiske 7
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Numerical Algorithm

Data-driven approximations of the RKHS operators:

1 e _
dk(xm) = 5 > ai(Xm) DTk (X, -) + D bj(Xm) DT k(Xim, ),
if i

Convergence: || £gs — L|lus — 0, [[Coo — Coollms — O with m — co.

Klus, Niiske, and Hamzi, Entropy (2020)
Feliks Niske 18
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Comments

o Finite-dimensional matrix representations of these operators can be
obtained. These matrices require evaluations of drift / diffusion, and of
derivatives of the kernel function, at the data sites.

O The same formalism can be applied to derive kernel approximations for
other differential operators, e.g. Schrédinger operators.

Klus, Niiske, and Hamzi, Entropy (2020)

Feliks Niiske 19
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Example

Schrédinger operator for the hydrogen atom in R3:

Feliks Niiske 20
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Discussion

+ Large approximation spaces can be used implicitly to approximate the
Koopman generator.

+ Approximation quality of RKHS has been studied for a long time.

+- Requires solution of matrix eigenvalue problems of the same size as the
data.

- These problems may be poorly conditioned.
- Hyper-parameters of the kernel function need to be tuned.

Feliks Niiske 21
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