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SDEs and Generators

Brownian Motion Revisited
Brownian motion with transition kernel pτ (x , ·) ∼ N (x ,

√
τ):
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X0 = 0.
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Brownian Motion

Definition
A stochastic process Bt ∈ R is a Brownian motion started at a ∈ R if
(i) B0 = a almost surely.
(ii) The paths Bt , t ≥ 0 are almost surely continuous.
(iii) The process possesses independent increments: For all t ≥ s ≥ 0, Bt − Bs
is independent of Bs , and the distribution of Bt − Bs is a normal distribution with
mean zero and spread

√
t − s .

A Brownian Motion in Rd is just a vector of d independent one-dim. Brownian
motions.
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Motivation for SDEs

Consider a deterministic ODE Ẋt = b(xt ):

(Xt+dt − Xt ) = dXt ≈ b(Xt )dt .

Let us add some noise by means of an increment of the Brownian motion:

(Xt+dt − Xt ) ≈ b(Xt )dt + σ(Xt )(Bt+dt − Bt )

= b(Xt )dt + σ(Xt )dBt .,

where σ(·) is a matrix field. Brownian Motion is used to generate normally
distributed noise.
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Formal Definition
The above reasoning can be made precise in integral form: Xt is the solution of
an SDE if

Xt = X0 +

∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dBs .

The second integral is the Ito stochastic integral, which can be defined
similarly to a Riemann-Stieltjes Integral.
Given typical Lipschitz-type conditions, local existence and uniqueness can
be shown.
b is called the drift field, and σ is the diffusion field.
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SDEs and Generators

Examples

1. Brownian Motion itself: just set b ≡ 0, σ ≡ Id.
2. Ornstein-Uhlenbeck Process on the real line: set b(x) = −x ,
σ =

√
2β−1Id:
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Stationary measure is µ ∼ N (0,
√
β).
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SDEs and Generators

Examples

More generally, consider the overdamped Langevin dynamics

dXt = −∇V (Xt )dt +
√

2β−1dBt .

The scalar function V is called potential. The invariant measure is
µ ∼ exp(−βV (x)), called the Boltzmann distribution. In physics, β is
related to temperature via β−1 = kBT .
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How to Simulate an SDE

We can simply adapt the Euler Scheme to the SDE world:

Algorithm 1 Euler-Maruyama Scheme

1: procedure EULER-MARUYAMA(x0, ∆t , m)
2: for k = 0, . . . ,m − 1 do
3: xk+1 = xk + b(xk )∆t + σ(xk )N d (0,

√
∆t ).

4: end for
5: end procedure
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Ito’s Formula
The chain rule for SDEs: Ito’s Formula

Theorem (Ito’s Lemma)

Let Xt ∈ Rd solve the stochastic differential equation
dXt = b(Xt )dt + σ(Xt )dBt , and let f ∈ C 2(Rd ). Then Yt := f (Xt ) solves the
SDE

dYt =

[
∇f T (Xt )b(Xt ) +

1
2
∇2f (Xt ) : a(Xt )

]
dt +∇f T (Xt )σ(Xt )dBt ,

where∇f ∈ Rd is the gradient of f ,∇2f ∈ Rd×d is the Hessian matrix,
a := σσT is the covariance matrix of the diffusion, and the colon denotes the
Frobenius inner product between matrices: A : B =

∑
i ,j Aij Bij .
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Semigroup

From the Chapman-Kolmogorov equation, we know that the Koopman operators
form a semigroup:

Definition
A familiy of bounded linear operators T τ , τ ≥ 0 on a Banach space X is called
a strongly continuous semigroup if:
(i) T 0 = Id.
(ii) T τ1+τ2 = T τ1T τ2 for all 0 ≤ τ1 ≤ τ2.
(iii) limτ→0 T τ x = x for all x ∈ X .
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The Generator

Definition
Consider the strongly continuous semigroup of Koopman operatorsKτ on
L2
µ(X). The generatorL is a linear operator acting on a function f by

Lf := lim
τ→0

1
τ

(Kτ − Id)f ,

whenever this limit exists. The domain of of the generator, that is the set of all f
where the above limit exists, is denotedD(L).
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Generator and Time Evolution

Theorem
The generatorL is defined on a dense subspaceD(L). Moreover, we have the
differential equation

d
dτ
Kτ f = LKτ f = KτLf , f ∈ D(L).
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The Generator of an SDE

Proposition

Let f ∈ C∞0 (Rd ) and Xt solve an SDE with drift b and diffusion σ. Then
f ∈ D(L) and the action of the generator is given by

Lf (x) = b(x) · ∇f (x) +
1
2

a(x) : ∇2f (x).
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Proof
Proof.

Lf (x) = lim
τ→0

1
τ
Ex (f (Xτ )− f (X0))

= lim
τ→0

1
τ
Ex
[∫ τ

0
∇f T (Xs)b(Xs) +

1
2

a(Xs) : ∇2f (Xs) ds
]

+ Ex
[∫ τ

0
∇f T (Xs)σ(Xs) dBs

]
= lim

τ→0

1
τ
Ex
[∫ τ

0
∇f T (Xs)b(Xs) +

1
2

a(Xs) : ∇2f (Xs) ds
]

= ∇f T (x)b(x) +
1
2

a(x) : ∇2f (x).
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More about Generators

Corollary

Let f ∈ C∞0 (Rd ) and consider the function v(τ, x) = Ex [f (Xτ )], with Xτ
solution of an SDE. Then v solves the PDE

∂

∂τ
v(τ, x) = Lv(τ, x) = b(x) · ∇x v(τ, x) +

1
2

a(x) : ∇2
x v(τ, x).
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