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Brownian Motion Revisited

SDEs and Generators

Brownian motion with transition kernel p,(x, -) ~ N(x, /7):

Sample Realizations of the Brownian Motion
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Paths of the Brownian motion started at
Xo = 0.
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Distributions of the Brownian motion.
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Brownian Motion

Definition

A stochastic process B; € R is a Brownian motion started at a € R if

(i) By = aalmost surely.

(ii) The paths B;, t > O are almost surely continuous.

(iii) The process possesses independent increments: Forall ¢t > s > 0, B; — B;
is independent of B, and the distribution of B; — B; is a normal distribution with
mean zero and spread \/t — s.

A Brownian Motion in R is just a vector of d independent one-dim. Brownian
motions.
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Motivation for SDEs

Consider a deterministic ODE X; = b(x;):
(XH-dl' — Xt) = dXt ~ b(Xt)dt
Let us add some noise by means of an increment of the Brownian motion:

(Xevar — Xe) = b(Xe)dt + o (Xt)(Bevar — Bt)
= b(Xt)dt + O'(Xt)dBt.,

where o (+) is a matrix field. Brownian Motion is used to generate normally
distributed noise.
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Formal Definition

The above reasoning can be made precise in integral form: X; is the solution of
an SDEif

t t
x,:x0+/ b(Xs)ds+/ o (Xs) dBs.
0 0

O The second integral is the /to stochastic integral, which can be defined
similarly to a Riemann-Stieltjes Integral.

o Given typical Lipschitz-type conditions, local existence and uniqueness can
be shown.

o biscalled the driftfield, and o is the diffusion field.
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1. Brownian Motion itself: just set b = 0, 0 = Id.
2. Ornstein-Uhlenbeck Process on the real line: set b(x) = —x,
o= +/28"1d:

0 50 100 150 200 0 50 100 150 200
t t x

Stationary measure is 1 ~ N'(0, /7).
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Examples

O More generally, consider the overdamped Langevin dynamics

dX; = —VV(X)dt + /23~ 1dB;.

The scalar function V is called potential. The invariant measure is
~ exp(—/V(x)), called the Boltzmann distribution. In physics, /3 is
related to temperature via 5~ = kgT.
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How to Simulate an SDE

We can simply adapt the Euler Scheme to the SDE world:

Algorithm 1 Euler-Maruyama Scheme

1: procedure EULER-MARUYAMA(xp, A¢, m)

2: fork=0,...,m—1do

3 Xest = X+ b(x) A + o (4 )N(0,VAy).
4; end for

5. end procedure
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Ito’s Formula
The chain rule for SDEs: Ito’s Formula
Theorem (Ito's Lemma)

Let X; € R solve the stochastic differential equation
dX; = b(X;)dt + o(X;)dB; , and let f € CX(RY). Then Y; := f(X;) solves the
SDE

dY; = VfT(Xt)b(Xt)Jr%VZf(Xt):a(Xt) dt + V(X))o (X;)dB,

where Vf € RY is the gradient of f, V2f € RY*9 js the Hessian matrix,
a:= oo’ is the covariance matrix of the diffusion, and the colon denotes the
Frobenius inner product between matrices: A : B =3, ; A;Bj.
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Semigroup

From the Chapman-Kolmogorov equation, we know that the Koopman operators
form a semigroup:

Definition

A familiy of bounded linear operators 77, 7 > 0 on a Banach space X is called
a strongly continuous semigroup if:

()7°=1d.

(i) 77+ =TT forall0 < 7y < 7.

(iii) lim; o 7T7x = xforall x € X.
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The Generator

Definition
Consider the strongly continuous semigroup of Koopman operators /™ on
Lﬁ(X). The generator £ is a linear operator acting on a function f by

£f = lim (KT — Ta)f,

T—0 T

whenever this limit exists. The domain of of the generator, that is the set of all f
where the above limit exists, is denoted D(L).
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Generator and Time Evolution

Theorem
The generator L is defined on a dense subspace D(L). Moreover, we have the
differential equation

%/cff = LKTf=K"Lf, feDL).
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The Generator of an SDE

Proposition

Letf € C5°(RY) and X; solve an SDE with drift b and diffusion o. Then
f € D(L) and the action of the generator is given by

1a(x) - V2(x).

LFf(x) = b(x) - VF(x)+ )
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Proof
Proof.

Lf(x) = lim 1E"(f(XT) — £(Xo))

70T
1
T~>O T 2

+E* U VfT ]

— lim 1B [ / v Xs)b(Xs)+;a(Xs) Vf(XS)ds]

T—=0 T
= VT (x)b(x) + %a(x) - V().
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More about Generators

Corollary

Letf € C3°(IRY) and consider the function v(r, x) = EX[f(X, )], with X;
solution of an SDE. Then v solves the PDE

;TV(T, x) = Lv(r,x) = b(x) - Vyv(1,x) + %a(x) : ViV(Ta X).
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