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Spectral Mapping Theorem
Proposition

Let κi be an eigenvalue of the generatorL. Then eκiτ is an eigenvalue of the
Koopman operatorKτ for all lag times τ , with the same eigenfunctions.

Since ‖Kτ‖ = 1, all eigenvalues ofLmust lie in the non-positive complex
half-plane.
For a reversible SDE, the spectrum ofL is part of the non-positive real-half
line.
If, in addition, uniform ellipticity holds, we have a simple eigenvalue
κ1 = 0 and κi < 0 for all i > 1.

Pazy, Semigroups of linear operators and applications to partial differential equations (2012)
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Spectral Decomposition

Consider the reversible generatorL. If the spectrum is fully discrete, we can
expand the Koopman operator as

Kτ f =
∞∑
i=1

e−κiτ 〈f , ψi 〉µ ψi

= 〈f , 1〉µ +
∞∑

i=2

e−κiτ 〈f , ψi 〉µ ψi .

Spectral decomposition is related to convergence to equilibrium. If the system is
metastable, there must be a cluster of eigenvalues ofL close to zero.
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Variational Principle for the Rayleigh
Trace
Theorem
LetK be a self-adjoint operator on Hilbert space H with leading eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λM > R, where R is an upper bound on the essential
spectrum. Then

M∑
k=1

λk = sup
V:dim(V)=M

M∑
k=1

〈ψk , Kψk 〉 .

The functionsψk form an orthonormal basis of the M-dimensional subspace V,
and the sum on the right-hand side is called the Rayleigh trace. The maximum is
attained by choosing V spanned by the first M exact eigenfunctions.
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Variational Approximation of the
Koopman Operator
Proposition

Let the reversible Koopman operator possess leading eigenvalues
1 = λ1 > λ2 ≥ . . . ≥ λM > R. Let W be a space of N ≥ M linearly
independent trial functionsψi , i = 1, . . . ,N. The coefficient vectors vm of
M ≤ N mutually orthonormal functionsψvm ∈W which maximize the Rayleigh
trace restricted to W, is given by the first M eigenvectors of the generalized
eigenvalue problem

Avk = λ̂k Gvk , Aij =
〈
ψi , Kτψj

〉
µ
, Gij =

〈
ψi , ψj

〉
µ
.

Noé and Nüske, Multiscale Model. Simul. (2013)
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Comments
This result can be generalized to non-reversible systems with compact
Koopman operator, applying the variational principle to its SVD.
We can define a "subspace score"

J(W) = max
V∈RN×m

V T A(W)V
V T G(W)V

,

which can be compared and maximized across subspaces.
Deep Learning and other ML techniques can be applied based on this score.
This seems a very promising direction.
Open problems: hyper-parameter tuning, interpretation, application to
systems with more complex spectrum, ..
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Example: VAMPnets
Model the trial space as a neural network and train the network to optimize the
"subspace score" above (called VAMP score here):

Mardt et al, Nature Communications (2018)
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Approximation of the Generator
Recall that for SDEs, the generator is the differential operator:

Lψ(x) = b(x) · ∇ψ(x) + 1
2

a(x) : ∇2ψ(x).

Galerkin approximation toL on a trial space W = span{ψi}n
i=1:

L = G−1A, Gij =
〈
ψi , ψj

〉
µ
, Aij =

〈
ψi , Lψj

〉
µ
.

By ergodicity, data-driven approximations are (gEDMD):

G =
1

M
XXT , A =

1
M

XdXT , Xim = ψi (Xtm), dXim = Lψi (Xtm).

Klus and Nüske et al, Physica D (2020)
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System Identification
Assume that B ∈ RN×d is the matrix such that x =: g(x) = BT · ψ(x). Then
the drift b can be identified via

b = (Lg) ≈ (LB)T · ψ.

In addition to the drift term, we need to identify the diffusion term. Note that for
hij (x) = xi · xj , it holds that

(Lhij ) = bi · xj + bj · xi + aij .

Since we already obtained a representation of b in the previous step, we can
subtract the first two terms to obtain aij

Klus and Nüske et al, Physica D (2020)
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