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Semigroup

The Chapman-Kolmogorov equation implies that the Koopman operators form a
semigroup:

Definition
A familiy of bounded linear operators T τ , τ ≥ 0 on a Banach space X is called
a strongly continuous semigroup if:
(i) T 0 = Id.
(ii) T τ1+τ2 = T τ1T τ2 for all 0 ≤ τ1 ≤ τ2.
(iii) limτ→0 T τ x = x for all x ∈ X .
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The Generator

In accordance with semigroup theory, we define:

Definition
The generatorL of the semigroup of Koopman operatorsKτ on L2

µ(X) acts on a
function f by

Lf := lim
τ→0

1
τ

(Kτ − Id)f ,

whenever this limit exists. The domain of of the generator is the set of all f where
the above limit exists, is denotedD(L).
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Generator and Time Evolution

We also know from semigroup theory that:

Theorem
The generatorL is defined on a dense subspaceD(L). Consider the function
v(τ, x) = Kτ f (x) for f ∈ D(L). Then we have the differential equation

d
dτ

v(τ, x) = Lv(τ, x).

This is the analogue of ẏ = Ly from last night’s talk. The dynamics of the
expectation value of a function inD(L) are linear.
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The Generator of an SDE

Proposition

Let f ∈ C∞0 (Rd ) and Xt solve an SDE with drift b and diffusion σ. Then
f ∈ D(L) and the action of the generator is given by

Lf (x) = b(x) · ∇f (x) +
1
2

a(x) : ∇2f (x).
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Proof
Proof.

Lf (x) = lim
τ→0

1
τ
Ex (f (Xτ )− f (X0))

= lim
τ→0

1
τ
Ex
[∫ τ

0
∇f T (Xs)b(Xs) +

1
2

a(Xs) : ∇2f (Xs) ds
]

+ Ex
[∫ τ

0
∇f T (Xs)σ(Xs) dBs

]
= lim

τ→0

1
τ
Ex
[∫ τ

0
∇f T (Xs)b(Xs) +

1
2

a(Xs) : ∇2f (Xs) ds
]

= ∇f T (x)b(x) +
1
2

a(x) : ∇2f (x).
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Generators and PDEs

Corollary

Let f ∈ C∞0 (Rd ) and consider the function v(τ, x) = Kτ f (x), with Xτ

solution of an SDE. Then v solves the PDE

∂

∂τ
v(τ, x) = Lv(τ, x) = b(x) · ∇x v(τ, x) +

1
2

a(x) : ∇2
x v(τ, x).
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Summary

Markovian stochastic dynamics are defined by a transition kernel.
Time evolution of expectation values of observable functions is carried out
by the semigroup of Koopman operators.
The time evolution of these expectations in linear (in function space).
For an SDE, this time evolution corresponds to a PDE. In particular, the
"system matrix" is an unbounded differential operator.
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Galerkin Projection of the Koopman
Operator: EDMD

Consider the Koopman operatorKτ on the Hilbert space L2
µ. Choose an

N-dimensional subspace W with basis {ψi}N
i=1 (the functions g from last night).

Find a matrix K , such that, for any functionψv ∈W with coefficient vector v ,
we have thatψKv −Kτψv is as small as possible. By standard
best-approximation in Hilbert space, the optimal matrix representation is

K τ = G−1A, Aij =
〈
ψi , Kτψj

〉
µ
, Gij =

〈
ψi , ψj

〉
µ
.
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Data-Based Approximation

If the process Xt is ergodic, i.e. time averages converge to spatial averages, we
can approximate the Galerkin projection based on simulation data:

Proposition

Let µ be the unique invariant measure of the process Xt . Moreover, let {xk}∞k=1
be an infinitely long realization of the process, started from the initial
distribution µ and sampled at time step τ . Then, with probability one

Gij =
〈
ψi , ψj

〉
µ

= lim
m→∞

1
m

m∑
k=1

ψi (xk )ψj (xk )

Aij =
〈
ψi , Ktψj

〉
µ

= lim
m→∞

1
m − 1

m−1∑
k=1

ψj (xk )ψj (xk+1).

Williams et al, J. Nonlinear Sci. (2015), Klus, Nüske, et al, J. Nonlinear Sci. (2018)
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Comments

With matrices ΨX = [ψi (xk )] ,ΨY = [ψi (xk+1)] ∈ RN×(m−1), we
basically obtain EDMD:

K ≈ (ΨX ΨT
X )−1ΨX ΨT

Y = (ΨT
X )†ΨT

Y .

The lag time τ can also equal an integer multiple of the elementary time
step between data points. In this case, all pairs with time spacing τ in
between can be used ("sliding window").
Similar results can be obtained for non-stationary systems, upon replacing
a single long trajectory by many short ones.
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Example: Markov State Model

For k = 1, . . . ,N , let Sk be a subset of X such that Sk ∩ Sl = ∅ if k 6= l , and
X =

⋃N
k=1 Sk . Let W = {1Sk}

N
k=1 be the subspace spanned by the indicator

functions of those sets.

Proposition

Let Sk , k = 1, . . . ,N and W as described above. Then the resulting matrix
approximation T = G−1A is a stochastic transition matrix of conditional
transition probabilities between the discrete sets Sk . If the dynamics are
reversible w.r.t. to the invariant measure µ, then T is also a reversible transition
matrix.
Dellnitz and Junge, SIAM J. Numer. Anal. (1999), Schütte et al, J. Comp. Phys. (1999),
Prinz et al, J. Chem. Phys. (2011)
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