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Trajectories vs Statistics

Example: 1000 realizations of a random process.

Individual Trajectories All Trajectories

Study of individual trajectories is often not too helpful!
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Time Evolution of Statistics
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Basic Setting

We study a stochastic process X;, which assumes a position X; € X in some
state space X for every moment in time t > O.

The process is not assumed to be deterministic, but can be stochastic. More
formally, there is a probability space (€2, X, IP) such that X is a family of
random variables parametrized by time, i.e. X; = X(t,w) forw € Q.

Feliks Niiske 6



|L( PADERBORN

UNIVERSITY

Markov Property

We focus our attention on processes "without memory of the past":

Definition
A process X; is a Markov process if for all choices of times sy < ... < §; < t, we

have
P(X: € AlX, ..., Xs) =P(X: € AXy),

"Given knowledge of the present, the future is independent of the past."
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Centerpiece for the definition of a Markov process is a stochastic transition
kernel.

Definition

A family of two-argument functions p; = p,(x, A) € [0, 1] is called a family of
stochastic transition kernels, if

1. Foreach x € X, the map p-(x, -) is a probability measure on X.
2. For each (suitable) A C X, the map p-(-, A) is measurable.
3. The Chapman-Kolmogorov equation is fulfilled for all 74, 7 > O:

p7’1+Tz(X7A):/Xpﬂ(xad}/)pﬁ(y)’q)'

4. For 7 = 0, the measure py (X, -) is the Dirac measure at x.
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Transition Kernel

Definition

For a transition kernel p. and a probability measure v on X, define a Markov
process via the finite-dimensional distributions

th cA,... Xt1 GA])
/A /A/Pr, t_(Xi—1,dx1) . .. py (X0, dx1)vo(dxo),
| 1

fortimeindicesO < f; < ... < tjand Ay, ... A, C X
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Example 1

Deterministic Flow X; = ®*(Xo) with transition kernel p.(x, -) = dot(xy)-

Transition Kernel for t=[0, 1, 2, 3,5, 10]

Path of Linear ODE
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Distributions at times

Linear ODE X; = —X;, Xo = 2. 7 €{0,1,2,3,5,10}.

Feliks Niiske 10



( PADERBORN
(N Diezeony

Example 2

Brownian motion with transition kernel p.-(x, -) ~ N (x, /7):

Sample Realizations of the Brownian Motion Distributions of the Brownian motion.
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Paths of the Brownian motion started at Distributions at times
Xo = 0. 7 € {0.1,1.0,10.0}.
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Perron-Frobenius Operator

Definition
Let 1« be a probability measure. The Perron-Frobenius operatoris a linear
operator P7 : L}, ~— L], defined by

P70 dut) = [ #)p. . A) )

The operator 7P; maps densities to densities. Hence, it describes the evolution of
the probability distribution of the process associated to p..
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Koopman Operator

Definition
Let 1« be a probability measure. The Koopman operator is the adjoint of P™
defined on L;° by:

0= [ po(xdy)fy) = EFCX)

Knowledge of the Koopman operator allows to make predictions about system
statistics in the future.
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Examples

o Flow Map X; = ®!(Xp):

K F(x) = F(®!(x)).

iz oo ((UT )«

The Koopman operator allows the study of a complex system by means of linear
operator.

O Brownian Motion:

KTf(x) =
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Invariant Measure

Definition
Let 1« be a probability measure. The measure 1. is called stationary or invariant if
forall7 > 0and A C X:

quémMMMM-
In other words, the distribution of the system does not change in time.
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Koopman on Hilbert Space
Proposition

Let 11 be stationary for a transition kernel p.. Then the Koopman operator can be
extended to the Hilbert space LIZL (X). This extension is the adjoint of the
Perron-Frobenius operator restricted to LZL (X).

Proof.

For f € qu Jensen’s inequality shows that
T2 _ X 2 X 2
A = [ EOON dnt < [ B[00 antn
= [ [ e anlf R duty) dut) = [ 1) auty).
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Reversibility

Definition
Let p- be a stochastic transition kernel and 1 be a measure. Then p- is said to be
reversible with respect to 1. if for all sets A, B:

/mxsw /mwa

which is the same as requiring P#(Xo € A, X; € B) = P#(Xo € B, X; € A),
i.e. there is no preferred direction in the system.
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Reversibility

For a reversible system, the Koopman operator becomes a self-adjoint operator
on the Hilbert space LfL(X), and P™ = K7 forall 7 > 0.
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Solutions
(i)

P(X: € A) /pfodu /pT x) = u(A).

(ii) Set f =14, g = 15 for measurable A, B C X.

07t g = [ K7 F0 a0 = [ [ et dy) duo)
/pTxAdu ~ [ prtx.Byau)

(f, ICTg>
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