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In this lecture, we discuss theory, numerics and application of advanced prob-
lems in linear algebra:

(II) matrix equations (example: solve AX `XB “ C),

(III) matrix functions: compute fpAq or fpAqb, where A P Cnˆn, b P Cn,

(IV) randomized algorithms.

The main focus is on problems defined by real matrices/vectors. In most chap-
ters, we have to make the distinction between problems defined by

• dense matrices of small /moderate dimensions and

• large, sparse matrices, e.g. A P Cnˆn, n ą 104 or greater, but only Opnq
nonzero entries, often from PDEs.

We first have to review two important standard problems in numerical linear
algebra, namely solving linear systems of equations and eigenvalue problems.

I.1 Linear systems of equations

We consider the linear system

Ax “ b, (I.1)

with A P Cnˆn pRnˆnq, b P Cn pRnq. The linear system (I.1) admits a unique
solution, if and only if

• there exists an inverse A´1

• detpAq ‰ 0

• no eigenvalues/ singular values are equal to zero

• . . .
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Numerical methods for small and dense A P Cnˆn

Gaussian Elimination (LU-factorization):

We decompose A such that

A “ LU, L “

„

@
@

1

1

@@



, U “

„

@
@
@



.

We obtain, that

(I.1) ô LUx “ b ô x “ U´1pL´1bq.

Hence, we solve (I.1) in two steps:

1. Solve Ly “ b via backward substitution.

2. Solve Ux “ y via backward substitution.

This procedure is numerically more robust with pivoting PAQ “ LU , where
P, Q P Cn,n are permutation matrices. This method has a complexity of Opn3q

and is, therefore, only feasible for small (moderate) dimensions.

QR-decomposition:

We decompose A into a product of Q and R where Q is an orthogonal matrix
and R is an upper triangular matrix leading to the so-called Gram-Schmidt or
the modified Gram-Schmidt algorithm. Numerically this can be done either with
Givens rotations or with Householder transformations.

Methods for large and sparse A P Cnˆn

Storing and computing dense LU-factors is infeasible for large dimensions n
(Opn2q memory, Opn3q flops). One possibility are sparse direct solvers, i.e.
find permutation matrices P and Q, such that PAQ “ LU has sparse LU-
factors (cheap forward/ backward substitution and Opnq memory).

Example: We consider the LU-factorization of the following matrix

A “

«

˚ . . . ˚

.

.

.
. . .

˚ ˚

ff

“

„

@
@

1

1

@@

 „

@
@
@



.

With the help of permutation matrices P and Q, we can factorize

PAQ “

«

˚ ˚

. . .
.
.
.

˚ . . . ˚

ff

“

«

˚

.

.

.
. . .

˚ ˚

ff«

˚ . . . ˚

. . .
˚

ff

.



4 Chapter I. Introduction

Algorithm 1 Arnoldi method
Input: A P Cnˆn, b P Cn
Output: Orthonormal basis Qk of (I.2)

1: Set q1 “
b
}b} and Qq :“ rq1s.

2: for j “ 1, 2, . . . do
3: Set z “ Aqj .
4: Set w “ z ´QjpQ

H
j zq.

5: Set qj`1 “
w
}w} .

6: Set Qj`1 “ rQj , qj`1s.
7: end for

Finding such P and Q and still ensuring numerical robustness is difficult and
based e.g. on graph theory.

In MATLAB, sparse-direct solvers are found in the "z"-command: x “ Azb or
lupAq-routine. (Never use invpAq!)

Iterative methods

Often an approximation px « x is sufficient. Hence, we generate a sequence
x1, x2, . . . , xk by an iteration, such that

lim
kÑ8

xk “ x “ A´1b

and each xk, k ě 1 is generated efficiently (only Opnq computations). Of
course, we want xk « x for k ! n.

Idea: Search approximated solution in a low-dimensional subspace Qk Ă Cn,
dimpQkq “ k. Let Qk be given as rangepQkq “ Qk for a matrix Qk P Cnˆk.

A good choice of the subspace is the Krylow-subspace

Qk “ KkpA, bq “ spantb, Ab, . . . , Ak´1bu. (I.2)

It holds for z P KkpA, bq, that z “ ppAqb for a polynomial of degree k ´ 1
p P Πk´1. An orthonormal basis of KkpA, bq can be constructed with the Arnoldi
process presented in Algorithm 1.

The Arnoldi process requires matrix-vector products z “ Aq. These are cheap
for sparse A and therefore feasible for large dimensions.

We find an approximation xk P x0 `Qk by two common ways:

• Galerkin-approach:
Impose r “ b´Axk K rangepQkq ô pQH

kAQkqyk “ QH
k b.

We have to solve a k-dimensional system ñ low costs.
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• Minimize the residual:

min
xkPrangepQkq

}b´Axk}

in some norm. If xk is not good enough, we expand Qk.

There are many Krylov-subspace methods for linear systems. (Simplification
for A “ AH: Arnoldi ù Lanczos)

In practice: Convergence acceleration by preconditioning:

Ax “ b ô P´1Ax “ P´1b

for easily invertible P P Cn,n and P´1A "nicer" than A (ù Literature NLA I).

Another very important building block is the numerical solution of eigenvalue
problems.

I.2 Eigenvalue problems (EVP)

For a matrix A P Cn,n we want to find the eigenvectors 0 ‰ x P Cn and the
eigenvalues λ P C such that

Ax “ λx.

The set of eigenvalues ΛpAq “ tλ1, . . . , λnu is called the spectrum of A.

Small, dense problems:

Computing the Jordan-Normal-Form (JNF)

X´1AX “ J “ diagpJs1pλ1q, . . . , Jskpλkqq, Jsj pλjq :“

»

–

λj 1
. . . 1

λj

fi

fl

to several eigenvalues and eigenvectors is numerically infeasible, unstable
(NLA I).

Theorem I.1 (Schur): For all A P Cnˆn exists a unitary matrix Q P Cn,n
(QHQ “ I), such that

QHAQ “ R “

»

—

–

λ1 ˚
. . .

0 λn

fi

ffi

fl

loooooooomoooooooon

Schur form of A
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with λi P ΛpAq in arbitrary order.

The Schur form can be numerically stable computed in Opn3q (NLA I) by the
Francis-QR-algorithm. It is this basis for dense eigenvalue computations. In
MATLAB we use rQ,Rs “ schurpAq. Additionally, the routine eigspAq uses the
Schur form. In general, the columns of Q are no eigenvectors of A, but Qk “
Qp:, 1 : kq spans an A-invariant subspace for all k:

AQk “ QkRk, for a matrix Rk P Ckˆk with ΛpRkq Ď ΛpAq.

But because of the Opn3q complexity and Opn2q memory, the Schur form is
infeasible for large and sparse matrices A.

Eigenvalue problems defined by large and sparse matrices A can again be
treaded with the Arnoldi-process and projections on the Krylov-subspace
KkpA, bq “ rangepQkq. We obtain the approximated eigenpair
xk “ Qkyk « x, µ « λ by using the Galerkin-condition on the residual of
the eigenvalue problem:

rk “ Axk ´ µxk K rangepQkq ô QH
kAQkyk “ µ yk,

which means pµ, ykq are the eigenpairs of the k ˆ k-dimensional eigenvalue
problem for QH

kAQk. This small eigenvalue problem is solvable by the Francis-
QR-method. This is the basis of the eigspAq routine in MATLAB for computing
a few (! n) eigenpairs of A.

Summary: Solving linear systems and eigenvalue problems is for small or large
and sparse matrices A no problem!
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II.1 Preliminaries

Up to now we know linear systems of equations

Ax “ b,

where A P Rnˆn and b P Rn are given and x P Rn has to be found.

In this course we consider more general equations

F pXq “ C, (II.1)

where F : Rqˆr Ñ Rpˆs, C P Rpˆs is given, and X P Rqˆr has to be found.
Equations of the form (II.1) are called algebraic matrix equations.

II.1.1 Examples of Algebraic Matrix Equations

1) F pXq “ AXB, i. e., (II.1) is

AXB “ C.

2) Sylvester equations:

AX `XB “ C,

3) algebraic Lyapunov equations:

a) continuous time:

AX `XAT “ ´BBT , X “ XT ,

b) discrete time:

AXAT ´X “ ´BBT , X “ XT ,

4) algebraic Riccati equations:

a) continuous time:

ATX `XA´XBR´1BTX ` CTQC “ 0, X “ XT ,

b) discrete time:

ATXA´X ´ pATXBqpR`BTXBq´1pBTXAq

` CTQC “ 0, X “ XT .
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c) non-symmetric

AX `XM ´XGX `Q “ 0.

Examples 1) – 3) are linear matrix equations, since the map F is linear. Equa-
tions of the type 4) are called quadratic matrix equations. The goal of this
lecture is to understand the solution theory as well as numerical algorithms for
the above matrix equations. Our focus will be on the equations 2),3a) and 4a)
since these are the equations mainly appearing in the applications.

The term continuous-/discrete-time in 3a,b), 4a,b) refers to applications in con-
text of continuous-time dynamical systems

9xptq “ Axptq, t P R

or discrete-time dynamical systems

xk`1 “ Axk, k P N,

respectively. More info in courses on control theory or model order reduction.

There are also variants of the above equations containing XT or XH – these
will not play a prominent role here. Furthermore, there are matrix equations
where X “ Xptq is a matrix-valued function and F contains derivative informa-
tion of X. Such equations are called differential matrix equations, for example
the differential Lyapunov equation

9Xptq `AptqTXptq `XptqAptq `Qptq “ 0,

whereA, Q P Cprt0, tfs,Rnˆnq, andX P C1prt0, tfs,RnˆnqwithQptq “ QptqT ě
0 and Xptq “ XptqT for all t P rt0, tf s and the initial condition Xpt0q “ X0.
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II.2 Linear Matrix Equations

In this chapter we discuss the solution theory and the numerical solution of
linear matrix equations as defined precisely below.

Definition II.1 (linear matrix equation): Let Ai P Cpˆq, Bi P Crˆs, and C P

Cpˆs, i “ 1, . . . , k be given. An equation of the form

k
ÿ

i“1

AiXBi “ C (II.2)

is called a linear matrix equation.

II.2.1 Solution Theory

To discuss solvability and uniqueness of solutions of (II.2) we need the following
concepts.

Definition II.2 (vectorization operator and Kronecker product): For X “

“

x1 . . . xm
‰

“

»

—

–

x11 . . . x1m
...

...
xn1 . . . xnm

fi

ffi

fl

P Cnˆm and Y P Cpˆq

a) the vectorization operator vec : Cnˆm Ñ Cnm is given by

vecpXq :“

»

—

–

x1
...
xm

fi

ffi

fl

,

b) the Kronecker product is given by

X b Y “

»

—

–

x11Y . . . x1mY
...

...
xn1Y . . . xnmY

fi

ffi

fl

P Cnpˆmq.

Lemma II.3: For T P Cnˆm, O P Cmˆp, and R P Cpˆr it holds

vecpT ORq “
`

RT b T
˘

vecpOq
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(Note that it has to be RT in the above formula, even if all the matrices are
complex.)

Proof. Exercise.

By this lemma, and the obvious linearity of vecp¨q, we see that

k
ÿ

i“1

AiXBi “ C ô

k
ÿ

i“1

`

BT
i bAi

˘

looooooomooooooon

A

vecpXq
loomoon

X

“ vecpCq ,
looomooon

B

and we find that (II.2) has a unique solution if and only if the linear system of
equations AX “ B has one. Equivalently, A has to be nonsingular.

Theorem II.4: The linear matrix equation (II.2) with ps “ qr has a unique solu-
tion iff all eigenvalues of the matrix

A “
k
ÿ

i“1

`

BT
i bAi

˘

are non-zero.

In the following we will focus on the case k ď 2 and p “ s “ q “ r, since
Lyapunov equations pk “ 2, A1 “ A, B1 “ A2 “ In, B2 “ AT q and Sylvester
equations pk “ 2, A1 “ A, B2 “ B, A2 “ In, B1 “ Imq are important special
cases of interest in applications.

To check the above condition for unique solvability, we do not want to evaluate
the Kronecker products. Therefore, we now derive easily checkable conditions
based on the original matrices.

Lemma II.5: a) Let W,X, Y, Z be matrices such that the products WX and
Y Z are defined. Then pW b Y qpX b Zq “ pWXq b pY Zq.

b) Let S,G be nonsingular matrices. Then S b G is nonsingular, too, and
pS bGq´1 “ S´1 bG´1.

c) If A and B, as well as, C and D are similar matrices then AbC and BbD
are similar (A similar to B if DQ nonsingular s.t. A “ Q´1BQ).

d) Let X P Cnˆn and Y P Cmˆm be given. Then

ΛpX b Y q “ tλµ | λ P ΛpXq, µ P ΛpY qu.
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Proof. Exercise.

Theorem II.6 (Theorem of Stephanos): Let A P Cnˆn and B P Cmˆm with
ΛpAq “ tλ1, . . . , λnu, ΛpBq “ tµ1, . . . , µmu be given. For a bivariate polyno-

mial ppx, yq “
k
ř

i,j“0
cijx

iyj we define by

ppA,Bq :“
k
ÿ

i,j“0

cijpA
i bBjq

a polynomial of the two matrices. Then the spectrum of ppA,Bq is given by

ΛpppA,Bqq “ tppλr, µsq | r “ 1, . . . , n, s “ 1, . . . , mu.

Proof. Use JNF or Schurforms of A,B + Lemma II.5.

Now we are ready to consider our preferred special cases of (II.2).

a) AXB “ C:

A “ BT bA invertible ô λ ¨ µ ‰ 0 @λ P ΛpAq and µ P ΛpBq

ô λ ‰ 0 and µ ‰ 0 @λ P ΛpAq and µ P ΛpBq

ô both A and B are nonsingular.

b) continuous-time Sylvester equation AX ` XB “ C, where A P Cnˆn,
B P Cmˆm, C, X P Cnˆm:

A “ Im bA`B
T b In invertible ô λ` µ ‰ 0 @λ P ΛpAq and µ P ΛpBq

ô ΛpAq X Λp´Bq “ H.

c) continuous-time Lyapunov equationAX`XAH “W , whereA, X P Cnˆn,
W “WH P Cnˆn:

A “ In bA`Ab In invertible ô ΛpAq X Λp´AHq “ H.

For example, this is the case when A is asymptotically stable.

d) discrete-time Lyapunov equations Ñ exercise.

The following result gives some useful results about the solution structure of
Sylvester equations.
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Theorem II.7: Let A P Cnˆn, B P Cnˆn with ΛpAq Ă C´,ΛpBq Ă C´. Then
AX `XB “W has a (unique) solution

X “ ´

8
ż

0

eAtW eBtdt

Proof. Exercise.

From now on

AX `XA˚ “W, W “W ˚. (II.3)

Definition II.8 (controllability): Let A P Cnˆn and B P Cnˆm. We say pA,Bq is
controllable if rankrB,AB, . . . An´1Bs “ n.

Lemma II.9: The above controllability condition is equivalent to

rankrA´ λI,Bs “ n for all λ P C
ðñ y˚B ‰ 0 @y ‰ 0 : y˚A “ y˚λ pleft. eigenvecs ofq A

Proof. We first prove that rankrA ´ λI,Bs “ n @λ P C is equivalent to Def-
inition II.8. Assuming that rankrA ´ λI,Bs ă n for a λ P C then there exists
a w ‰ 0 such that wT rA ´ λI,Bs “ 0 which means that wT pA ´ λIq “ 0
and wTB “ 0 and that means that wT rB,AB, . . . An´1Bs “ 0 which means
pA,Bq is not controllable. Assuming pA,Bq is not controllable and therefore
rankrB,AB, . . . An´1Bs ă n we define a matrix M contains a basis of the im-
age of rB,AB, . . . An´1Bs. Then there is a matrix M̃ such that T “ rM, M̃ s is
invertible and

Ã “ T´1AT “

«

rA11
rA12

0 rA22

ff

(II.4)

B̃ “ T´1B “

„

rB1

0



(II.5)

Let λ be an eigenvalue of Ã22 and w22 a left eigenvector. Then

w :“

„

0
w̃22



T´1 ‰ 0.
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It also holds that wTA “ λwT and wTB “ 0 and therefore rankrA´ λi,Bs not
full. The proof of the equivalence is basically also done within this proof.

Theorem II.10: Consider Lyapunov equation (II.3) with W “ W ˚ “ ´BBT ď

0, B P Rnˆm.

a) For ΛpAq Ă C´: pA,Bq controllable ô D unique sol. X “ X˚ ą 0.

b) Let pA,Bq be controllable and assume there D unique sol. X “ X˚ ą 0.
Then ΛpAq Ă C´.

Proof. a) If the spectrum of A is in the left half plane and W “W ˚ then there
exist a unique symmetric solution of the Lyapunov equation. What is left to
prove is the equivalence of pA,Bq being controllable and the solution being
positive definite. The solution is given by

X “

8
ż

0

eAtBBT eA
˚tdt

which is positive if and only if pA,Bq are controllable.

b) Take an eigenvalue λ P ΛpAq and a corresponding left eigenvector y. Then

0 ą ´y˚BBT y “ y˚AXy ` y˚XA˚y “ pλ` λ̄qy˚Xy

Since X “ X˚ ą 0 we must have that λ` λ̄ “ 2Reλ ă 0 and since λ was
arbitrary that ΛpAq Ă C´
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II.2.2 Direct Numerical Solution

We have seen that linear matrix equations are equivalent to linear systems.
Why do we not just apply a linear solver? Consider a (real) Lyapunov equation
where we obtain the system matrix A “ In b A ` A b In P Rn2ˆn2

. For
computing an LU-factorization of A and a forward/backwards substitution we
need approximately 2

3pn
2q3 “ 2

3n
6 FLOPS and n4 memory. This is only feasible

for small n. If n Á 50, then this is already prohibitively expensive (even if we
exploit the structure and symmetry).

Therefore, our first goal is to develop a basic algorithm with complexity Opn3q

for moderately sized linear matrix equations.

The Bartels-Stewart Algorithm

The idea of this method is the transformation of the matrix A into Schur form.

The Schur form can be computed in a numerically stable fashion by the QR
algorithm and it is the backbone of many dense eigenvalue algorithms (MAT-
LAB schur).

Consider (II.3) with ΛpAq X Λp´AHq “ H and let QHAQ “ T with be the
(complex) Schur form of A.

Premultiplication of (II.3) by QH and postmultiplication by Q leads to

QHAXQ`QHXATQ “ QHWQ

ô QHAQQHXQ
loomoon

“:X̃

`QHXQQHATQ “ QHWQ
looomooon

“:W̃

ô TX̃ ` X̃TH “ W̃ (II.6)

We partition this in the form
„

T1 T2

0 T3

 „

X1 X2

XH
2 X3



`

„

X1 X2

XH
2 X3

 „

TH1 0
TH2 TH3



“

„

W̃1 W̃2

W̃H
2 W̃3



,

where T1 P Cpn´1qˆpn´1q, T2 P Cn´1, T3 P C. Thus we get
$

’

&

’

%

T1X1 ` T2X
H
2 `X1T

H
1 `X2T

H
2 “ W̃1,

T1X2 ` T2X3 `X2T
H
3 “ W̃2,

T3X3 `X3T
H
3 “ W̃3,

ô

$

’

&

’

%

T1X1 `X1T
H
1 “ W̃1 ´ T2X

H
2 ´X2T

H
2 , pn´ 1q ˆ pn´ 1q

T1X2 `X2T3 “ W̃2 ´ T2X3, pn´ 1q ˆ 1

pT3 ` T 3qX3 “ W̃3. 1ˆ 1
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Algorithm 2 Bartels-Stewart algorithm (complex version)

Input: A, W P Cnˆn with W “WH .
Output: X “ XH solving (II.3).

1: Compute T “ QHAQ with the QR algorithm.
2: if diagpT q X diag

`

´TH
˘

‰ H then
3: STOP (no unique solution)
4: end if
5: Set W̃ :“ QHWQ.
6: Set k :“ n´ 1.
7: while k ą 1 do
8: Solve (II.7a) with W̃3 “ W̃ pk ` 1, k ` 1q and T3 “ T pk ` 1, k ` 1q to

obtain Xpk ` 1, k ` 1q.
9: Solve (II.7b) with T1 “ T p1 : k, 1 : kq, T2 “ T p1 : k, k ` 1q, W̃2 “ W̃ p1 :

k, k ` 1q, and X3 “ Xpk ` 1, k ` 1q to obtain Xp1 : k, k ` 1q.
10: Set W̃ “ W̃ p1 : k, 1 : kq ´ T2X

H
2 ´X2T

H
2

11: Set k :“ k ´ 1.
12: end while
13: Solve (II.7c) with T1 “ T p1, 1q and Ŵ1 “ W̃ p1, 1q.
14: Set X :“ QXQH .

Now we get

X3 “
W̃3

T3 ` T 3

, (II.7a)

where T3 ` T 3 ‰ 0 since T3 P ΛpAq R iR. Next we obtain

T1X2 `X2T3 “ W̃2 ´ T2X3 “: Ŵ2, (II.7b)

which is a special Sylvester equation that is equivalent to the linear system

pT3In´1 ` T1qX2 “ Ŵ2,

and can easily be solved by backward substitution. Its solution always exists
since ΛpT1q X

 

´T3

(

“ H. It remains to solve the smaller pn ´ 1q ˆ pn ´ 1q
sized ’triangular’ Lyapunov equation

T1X1 `X1T
H
1 “ W̃1 ´ T2X

H
2 ´X2T

H
2 “: Ŵ1, (II.7c)

which is also solvable since ΛpT1q XΛp´TH1 q “ H and Ŵ1 “ ŴH
1 . This leads

to the complex Bartels-Stewart algorithm, see Algorithm 2. As a convention
we use MATLAB notation, i. e., we denote the section of a matrix A P Cnˆn
consisting only of the rows r1 to r2 and the columns c1 to c2 by Apr1 : r2, c1 :
c2q. If for example, r1 “ r2, then we shortly write Apr1, c1 : c2q.
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Remark: a) In total this algorithm needs approximately

32n3 « 25n3
loomoon

Schur

` 3n3
loomoon

premult.

` 3n3
loomoon

postmult.

` n3
loomoon

while loop

complex floating point operations.

b) The algorithm uses only numerically backward stable parts and unitary
transformations and thus it can be considered backward stable.

c) The method is implemented in the MATLAB routine lyap and in SLICOT in
SB03MD (real version only).

d) The version for Sylvester equations works analogously (see exercise).

Major drawback: The algorithm uses complex arithmetic operations even if all
data is real. Luckily, it can be reformulated to use real operations only.

Theorem II.11 (real Schur form): For every A P Rnˆn there exists an orthogo-
nal matrix Q P Rnˆn such that A is transformed to real Schur form, i. e.

QTAQ “ T “

»

—

–

T11 . . . T1k

. . .
...
Tkk

fi

ffi

fl

, (II.8)

where for i “ 1, . . . , k, Tii P R1ˆ1 (corresponding to a real eigenvalue of
A) or Tii “

”

αi βi
´βi αi

ı

P R2ˆ2 (corresponding to a pair of complex conjugate
eigenvalues αi ˘ iβi of A).

Proof. See the course on “Numerical Linear Algebra”.

To this end, we replace the Schur form by the real Schur form (II.8). Then T3

may be a 2ˆ 2 block, i. e., T3 “
“

t1 t2
t3 t4

‰

. We obtain

„

t1 t2
t3 t4

 „

x1 x2

x2 x3



`

„

x1 x2

x2 x3

 „

t1 t3
t2 t4



“

„

w1 w2

w2 w3



.

This is equivalent to

$

’

&

’

%

w1 “ t1x1 ` t2x2 ` t1x1 ` t2x2 “ 2pt1x1 ` t2x2q,

w2 “ t1x2 ` t2x3 ` t3x1 ` t4x2 “ t3x1 ` pt1 ` t4qx2 ` t2x3,

w3 “ t3x2 ` t4x3 ` t3x2 ` t4x3 “ 2pt3x2 ` t4x3q.
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We can write this as a linear system of equations
»

–

t1 t2 0
t3 t1 ` t4 t2
0 t3 t4

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

w1
2
w2
w3
2

fi

fl .

Additionally, one can exploit the fact that T3 corresponds to a pair of complex

conjugate eigenvalues λ1,2 “ a˘ ib and T3 “

„

a b
´b a



which leads to

»

–

a b 0
´b 2a b
0 ´b a

fi

fl

»

–

x1

x2

x3

fi

fl “

»

–

w1
2
w2
w3
2

fi

fl .

Now (II.7b) becomes

T1X2 `X2T
T
3 “ Ŵ2 :“ W̃2 ´ T2X3 P Rn´2ˆ2. (II.9)

Consider the partitions corresponding to the quasi-triangular structure of T1:

X2 “

»

—

–

x1
...

xk´1

fi

ffi

fl

, Ŵ2 “

»

—

–

ŵ1
...

ŵk´1

fi

ffi

fl

,

In general we have xi, ŵi P Rniˆnk , where ni, nk P t1, 2u and i “ 1, . . . , k´1.

We now compute X2 block-wise by progressing upwards from xk´1 to x1. It
holds

Tjjxj ` xjT
T
3 “ ŵj ´

k
ÿ

h“j`1

Tjhxh “: w̃j , j “ k ´ 1, k ´ 2, . . . , 1.

For the solution of this Sylvester equation four cases have to be considered:

a) nj “ nk “ 1: We obtain a scalar equation such that xj “ w̃j{pTjj ` T3q.

b) nj “ 2, nk “ 1: We obtain a linear system in R2 with unique solution given
by

pTjj ` T3I2qxj “ w̃j .

c) nj “ 1, nk “ 2: We obtain a linear system in R2 with unique solution given
by

pTjjI2 ` T3qx
T
j “ w̃Tj .

d) nj “ 2, nk “ 2: We obtain a linear system in R4 with unique solution given
by

ppI2 b Tjjq ` pT3 b I2qq vecpxjq “ vecpw̃jq .
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Hence, we get X2 and can set up a Lyap. eqn. for X1 defined by T1. Repeat
whole process until T1 P R or T1 P R2ˆ2. Then back-transform the solution.

Remark II.12: The Sylvester equation (II.9) can be solved alternatively by solv-
ing a linear system of the form

pT 2
1 ` αT1 ` βIn´2qX2 “ W̃2,

where X2 “ rs, ts, W̃2 “ ry, zs P Rn´2ˆ2 and α, β P R (see exercise).

Hammarling’s Method

Now we consider (II.3) with W “ ´BBT . By Theorem II.10 we know that
X “ XT ą 0, provided that ΛpAq Ă C´ and the pair pA,Bq is controllable.
Sometimes it is desirable to only compute a factor U of the solution, i. e., X “

UUH with some matrix U . Later we will see that many further algorithms such
as projection methods for large scale matrix equations proceed with factors
rather than Gramians themselves.

Assume that we have already computed and applied the Schur decomposition
of A “ QHTQ, analogously to (II.6). So our starting point is

TX̃ ` X̃TH “ ´B̃B̃H with X̃ “ QHXQ, B̃ “ QHB. (II.10)

Since X ą 0, we also have X̃ ą 0 by Sylvester’s law of inertia. Our goal is to
compute upper triangular Cholesky factors Ũ of X̃ “ Ũ ŨH .

Partition

Ũ “

„

@
@
@



“

„

U1 u
0 τ



, U1 P Cn´1ˆn´1, u P Cn´1, 0 ă τ P R.

Hammarlings method computes (similar to B.S.) first τ (scalar equation), then
u (LS of size n´ 1), and finally U1 as Cholesky factor or a n´ 1ˆ n´ 1 Lyap.
equation defined by T1. As in B.S., repeat this until T1 P C, afterwards back-
transform U Ð QU . Complexity, stability, real version analog to BS. Details
here omitted.

Remark: Iterative methods for small, dense Matrix Equations: There are sev-
eral, iterative methods computing sequences Xk, k ě 0 converging to the true
solution, i.e., lim

kÑ8
Xk “ X. For instance:

• Matrix sign function iteration

• Alternating directions implicit (ADI) iteration ù later for large problems.
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II.2.3 Iterative Solutions of Large and Sparse Matrix Equations

Now we consider

AX `XAT “ ´BBT , (II.11)

where A P Rnˆn and n is ’large’, but A is sparse, i. e., only a few entries in A
are non-zero. Therefore, multiplication with A can be performed in Opnq rather
than Opn2q FLOPS. Also solves with A or A` pI can be performed efficiently.

However, X P Rnˆn is usually dense and thus X cannot be stored for large n
since we would need Opn2q memory.

Thus the question arises whether it is possible to store the solution X more
efficiently.

The Low-Rank Phenomenon

In practice we often have B P Rnˆm, where m ! n, i. e., the right-hand side
BBT has a low rank. Recall that if pA,Bq is controllable then X “ XT ě 0
and rankpXq “ n.

It is a very common observation in practice that the eigenvalues of X solving
(II.11) decay very rapidly towards zero, and fall early below the machine preci-
sion.

This gives the concept of the numerical rank of X:

rankpX, τq “ argminj“1,...,rankpXqtσjpXq ě τu, e.g., τ “ εmachσ1pXq.

Can we also theoretically explain this eigenvalue decay?

Theorem II.13: Let A be diagonalizable, i. e., there exists an invertible matrix
V P Cnˆn such that A “ V ΛV ´1. Then the eigenvalues of X solving (II.11)
with B P Cnˆm satisfy

λkm`1pXq

λ1pXq
ď }V }22

›

›V ´1
›

›

2

2
ρpMkq

2

for any choice of shift parameters pk used to construct

Mk “

k
ź

i“1

pA´ pkIqpA` pkIq
´1

(in particular, the optimal ones).
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In the Theorem above the spectral radius ρ of a matrix is used:

ρpAq “ max
1ďiďn

|λipAq|.

Remark II.14: • If the eigenvalues of A cluster in the complex plane, only a
few pk in the clusters suffice to get a small ρpMkq and thus λipXq decay
fast.

• If A is normal, then }V }2
›

›V ´1
›

›

2
“ 1 and the bound gives a good expla-

nation for the decay. The nonnormal case is much harder to understand.

• This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of λipXq, then X can be well approxi-
mated as X “ XT « ZZH , where Z P Cnˆr with r ! n is a low-rank solution
factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.
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Projection Methods

Now we consider projection-based methods for the solution of large and sparse
Lyapunov equations

The main idea consists of representing the solution X by an approximation
extracted from a low-dimensional subspace Qk “ imQk with QTkQk “ Ikm,
i. e., X « Xk “ QkYkQ

T
k for some Yk P Rmkˆmk. Impose a Galerkin condition

RpXkq :“ AXk `XkA
T `BBT K Zk,

where

Zk :“
!

QkZQ
T
k P Rnˆn

ˇ

ˇ

ˇ
QTkQk “ Imk, imQk “ Qk, Z P Rkmˆkm

)

and orthogonality is with respect to the trace inner product. Equivalently, Yk
solves the small-scale Lyapunov equation

HkYk ` YkH
T
k `Q

T
kBB

TQk “ 0, Hk :“ QTkAQk, (II.12)

which can be solved by the Bartels-Stewart or Hammerling’s method.

In case that the residual norm }RpXkq} is not small enough, we increase the
dimension of Qk by a clever expansion (orthogonally expand Qk), otherwise
we prolongate to obtain Xk “ QkYkQ

T
k (never formed explicitly).

What are good choices for Qk?

a) Standard block Krylov subspaces

Qk “ KkpA,Bq :“ spantB,AB, . . . , Ak´1Bu :

A matrix Qk with orthonormal columns spanning Qk can be generated by a
block Arnoldi process, i. e. in the kth iteration we have Qk “

“

V1 . . . Vk
‰

fulfilling (assuming there is no breakdown in the process)

AQk “ QkHk ` Vk`1Hk`1,kE
T
k ,

where

Hk “

»

—

—

—

—

—

—

—

–

H11 H12 . . . . . . H1k

H21 H22 . . . . . .
...

0 H32 H33 . . .
...

...
. . . . . . . . .

...
0 . . . 0 Hk,k´1 Hkk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is a block upper Hessenberg matrix and Ek is a matrix of the lastm columns
of Ikm, and

Hk “ QTkAQk.

The residual norm computation for this method is cheap as shown by the
following theorem.
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Theorem II.15: Suppose that k steps of the block Arnoldi process have
been taken. Assume that ΛpHkq X Λp´Hkq “ H. Then the following state-
ments are satisfied:

a) It holds QTkRpQkY Q
T
k qQk “ 0 if and only if Y “ Yk, where Yk solves

the Lyapunov equation (II.12).

b) The residual norm is given by
›

›RpQkYkQ
T
k q
›

›

F
“
?

2
›

›Hk`1,kE
T
k Yk

›

›

F
.

Proof. Exercise.

Unfortunately, this method often converges only slowly. Therefore, one often
chooses modified Krylov subspaces as follows.

b) Extended block Krylov subspaces

EKqpA,Bq :“ KqpA,Bq YKqpA
´1, A´1Bq :

The resulting method is also known as EKSM (extended Krylov subspace
method) or KPIK (Krylov plus inverted Krylov). We obtain a similar construc-
tion formula as for the block Arnoldi method above and also the residual
norm formula is similar. However, the approximation quality is often signif-
icantly better than with KqpA,Bq only. On the other hand, the subspace
dimension grows by 2m in each iteration step (until n is reached).

c) Rational Krylov subspaces

RKqpA,B, Sq (II.13)

:“spantps1In ´Aq
´1B, ps2In ´Aq

´1B, . . . , psqIn ´Aq
´1Bu,

S “ts1, . . . , squ Ă C`, si ‰ sj , i ‰ j : (shifts)

This choice often gives an even better approximation quality compared to
EKqpA,Bq, provided that good shifts S are known. Generating the basis
requires solving LS psiI ´ Aqv “ qi, but this is usually efficiently possible
(cf. Intro).

The shifts si are crucial for a fast convergence, but finding good ones is
difficult. For one possible shift selection approach, let m “ 1. One can
show

}Rk} „ max |ψkpzq| with ψkpzq “
k
ź

j“1

z ´ λj
z ` sj

, λj P ΛpHkq.
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This leads to the following procedure for getting the next shift

sk`1 “ argmaxzPBD |ψkpzq|,

where BD is a discrete set of point taken from the convex hull of ΛpHkq

(BD Ă convpΛpHkqq).

For all choices of subspace a)-c): Is the reduced Lyapunov equation (II.12)
always uniquely solvable?

For general matrices A the answer is no. However, for strictly dissipative matri-
ces, i. e., matrices A with A`AT ă 0 we have the following result.

Theorem II.16: Let A P Rnˆn be strictly dissipative and Qk P Rnˆmk with
QTkQk “ Ikm. Then ΛpHkq Ă C´ and the reduced Lyapunov equation (II.12)
is always uniquely solvable.

Proof. Since A ` AT is symmetric and negative definite, it holds xH
`

A `
AT

˘

x ă 0 for all x P Cn. Then we have

zH
`

Hk `H
T
k

˘

z “ zHpQTkAQk `Q
T
kA

TQkqz

“ yHpA`AT qy ă 0, y :“ Qkz, @ z P Ckm

ñ Hk `H
T
k ă 0

Now let Hkx̂ “ λ̂x̂ for x̂ P Ckmzt0u. Then we have

x̂H
`

Hk `H
T
k

˘

x̂ “ λ̂x̂H x̂` λ̂x̂H x̂ “ 2 Re
´

λ̂
¯

x̂H x̂ ă 0.

Thus ΛpHkq Ă C´ and the reduced Lyapunov equation (II.12) is uniquely solv-
able.
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Low-rank ADI

Consider the discrete-time Lyapunov equations

X “ AXAT `W, A P Rnˆn, W “W T P Rnˆn. (II.14)

The existence of a unique solution is ensured if |λ| ă 1 for all λ P ΛpAq (see
exercise). This motivates the basic iteration

Xk “ AXk´1A
T `W, k ě 1, X0 P Rnˆn. (II.15)

Let A be diagonalizable, i.e., there exists a nonsingular matrix V P Cnˆn such
that A “ V ΛV ´1. Let ρpAq :“ maxλPΛpAq |λ| denote the spectral radius of A.
Since

}Xk ´X}2 “ }ApXk´1 ´XqA
T }2 “ . . . “ }AkpX0 ´XqpA

T qk}2

ď }Ak}22}X0 ´X}2 ď }V }
2
2}V

´1}22ρpAq
2k}X0 ´X}2, (II.16)

this iteration converges because ρpAq ă 1 (fixed point argumentation).

For continuous-time Lyapunov equations, recall the result from the exercise:

Lemma II.17: The continuous-times Lyapunov equation

AX `XAT “W, ΛpAq Ă C´

is equivalent to the discrete-time Lyapunov equation

X “CppqXCppqH ` W̃ ppq, Cppq :“ pA´ pInqpA` pInq
´1,

W̃ ppq :“´ 2 Reppq pA` pInq
´1W pA` pInq

´H
(II.17)

for p P C´.

Proof. Exercise.

We call Cppq a Cayley transformations of A which is the rational function

φppzq “
z ´ p

z ` p
.

applied to A. For z, p P C´ we have |φppzq| ă 1. It can be easily shown that
(special case of spectral mapping theorem)

ΛpCppqq “ tφppλq, λ P ΛpAqu

and therefore ρpCppqq ă 1. Applying (II.15) to (II.17) gives the Smith iteration

Xk “ CppqXk´1Cppq
H ` W̃ ppq, k ě 1, X0 P Rnˆn. (II.18)
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Similarly as in (II.16), we have

}Xk ´X}2 ď }V }
2
2}V

´1}22ρpCppqq
2k}X0 ´X}2.

This means that we obtain fast convergence by choosing p such that ρpCppqq ă
1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (II.18) in every step, we obtain the ADI iteration for
Lyapunov equations

Xk “CppkqXk´1Cppkq
H ` W̃ ppkq, k ě 1, X0 P Rnˆn, pk P C´. (II.19)

Remark: The name alternating directions implicit comes from a different (his-
torical) derivation of ADI for linear systems. To get the main idea for Lyapunov
equations, consider the splitting of the Lyapunov operator

LpXq “ AX `XAT “ L1pXq ` L2pXq, L1pXq “ AX, L2pXq “ XAT .

Obviously, L1p¨q and L2p¨q are commuting linear operators. It is possible to
formulate an iteration working alternately on L1p¨q and L2p¨q, carrying out “half”-
iteration steps for each operator:

pA` piInqXi´ 1
2
“ ´Xi´1pA

T ´ piInq `W,

pA` piInqX
T
i “ ´X

T
i´ 1

2

pAT ´ piInq `W.

Rewriting this into a single step leads to (II.19).

We address two issues of the ADI iteration:

1. ADI requires, similar to the rational Krylov projection method, shift pa-
rameters that are crucial for a fast convergence. How to choose the shift
parameters pi, i ě 1?

2. The iteration (II.19) is in its given form not feasible for large Lyapunov
equations.

The ADI Shift Parameter Problem One can show, similarly to (II.16), that

}Xk ´X}2 ď }V }
2
2

›

›V ´1
›

›

2

2
ρpMkq

2}X0 ´X}2, Mk :“
k
ź

i“1

Cppiq, (II.20)

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations Mk are

ΛpMkq “

#

k
ź

i“1

λ´ pi
λ` pi

ˇ

ˇ

ˇ

ˇ

ˇ

λ P ΛpAq

+

.
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Good shifts p˚1 , . . . , p
˚
k should make ρpMkq ă 1 as small as possible. This

motivates the ADI shift parameter problem

rp˚1 , . . . , p
˚
ks “ argminpiPC´ max

λPΛpAq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

λ´ pi
λ` pi

ˇ

ˇ

ˇ

ˇ

ˇ

. (II.21)

In general, this is very hard to solve. For instance, in general, ρpCppqq is not
differentiable and the problem is very expensive, ifA is a large matrix. However,
there are some procedures that work well in practice:

• Wachspress shifts: Embed ΛpAq in an elliptic function region that de-
pends on the parameters

max
λPΛpAq

Repλq , min
λPΛpAq

Repλq , arctan max
λPΛpAq

ˇ

ˇ

ˇ

ˇ

Impλq

Repλq

ˇ

ˇ

ˇ

ˇ

(or approximations thereof). Then, (II.21) can be solved by employing an
elliptic integral.

• Heuristic Penzl shifts: If A is a large and sparse matrix, ΛpAq is re-
placed by a small number of approximate eigenvalues (e.g., Ritz values).
Then (II.21) is solved heuristically.

• Self-generating shifts: If A is large and sparse, these shifts are based
on projections of A with the data obtained by previous iterations. These
shifts also make use of the right-hand side W .

The Low-Rank ADI For a low-rank version of ADI computing low-rank solu-
tion factors, consider one step of the dense iteration (II.19) and insert Xj “

ZjZ
H
j :

Xj “ CppjqXj´1Cppjq
H ` W̃ ppjq

“ pA´ pjInqpA` pjInq
´1Zj´1Z

H
j´1pA` pjInq

´HpA´ pjInq
H

´ 2 Reppjq pA` pjInq
´1BBT pA` pjInq

´H .

ñ Xj “ ZjZ
H
j , Zj “

“a

´2 ReppjqpA` pjInq
´1B pA´ pjInqpA` pjInq

´1Zj´1

‰

.

With Z0 “ 0 we find a low rank variant the ADI iteration (II.19) forming Zj
successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Zj).

However, there is a remedy to this problem. Obviously,

Si “ pA` piInq
´1 and Tj “ pA´ pjInq



28 Chapter II. Matrix Equations

commute for all i, j with each other and themselves (proof it yourself).

Now consider Zj being the iterate after iteration step j

Zj “
“

αjSjB pTjSjqαj´1Sj´1B . . . pTjSjq ¨ ¨ ¨ pT2S2qα1S1B
‰

with αi “
a

´2 Reppiq. The order of application of the shifts is not important,
and we reverse their application to obtain the following alternative iterate

Z̃j “
“

α1S1B α2pT1S1qS2B . . . αjpT1S1q ¨ ¨ ¨ pTj´1Sj´1qSjB
‰

“
“

α1S1B α2pT1S2qS1B . . . αjpTj´1SjqpTj´2Sj´1q ¨ ¨ ¨ pT1S2qS1B
‰

“
“

α1V1 α2V2 . . . αjVj
‰

,

V1 “ S1B, Vi “ Ti´1SiVi´1, i “ 1, . . . , j.

We have Xj “ Z̃jZ̃
H
j , but in this formulation only the new columns are pro-

cessed. Even more structure is revealed by the Lyapunov residual.

Theorem II.18: The residual at step j of (II.19), started with X0 “ 0, is of rank
at most m and given by

Rj :“AZjZ
H
j ` ZjZ

H
j A

T `BBT “WjW
H
j ,

Wj “MjB “ CppjqWj´1 “Wj´1 ´ 2 ReppjqVj , W0 :“ B,

where Mj :“
śj
i“1Cppiq. Moreover, it holds Vj “ pA` pjInq´1Wj´1.

Proof. We have

Rj “ AXj `XjA
T `BBT “ ApXj ´Xq ` pXj ´XqA

T pby (II.11)q

“ AMjpX0 ´XqM
H
j `MjpX0 ´XqM

H
j A

T

“ ´MjAXM
H
j ´MjXA

TMH
j

“ ´MjpAX `XA
T qMj “MjBB

TMj .

Moreover, it holds

Vj “ Tj´1SjVj´1 “ Tj´1SjTj´2Sj´1Vj´2 “ . . . “

“ Sj

˜

j´1
ź

k“1

TkSk

¸

B “ SjMj´1B “ pA` pjInq
´1Wj´1, (II.22)

and

Wj “MjB “ SjTjWj´1 “Wj´1 ´ 2 ReppjqSjWj´1 “Wj´1 ´ 2 ReppjqVj .
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Algorithm 3 Low-rank ADI (LR-ADI) iteration for Lyapunov equations
Input: A, B from (II.11), shifts P “ tp1, . . . , pmaxiteru Ă C´, residual toler-

ance tol.
Output: Zk such that X “ ZkZ

H
k (approx.) solves (II.11).

1: Initialize j “ 1, W0 :“ B, Z0 :“ r s.
2: while }Wj´1}2 ě tol do
3: Set Vj :“ pA` pjInq

´1Wj´1.
4: Set Wj :“Wj´1 ´ 2 ReppjqVj .
5: Set Zj :“

“

Zj´1

a

´ReppjqVj
‰

.
6: Set j :“ j ` 1.
7: end while

Thank to the above theorem, the norm of the Lyapunov residual norm can be
cheaply computed via }Rj}2 “ }WjW

H
j }2 “ }Wj}

2
2. All this leads to Algorithm

3. Again, the major work is solving the LS pA` pjInqVj “ Wj´1 in each step,
which is efficiently possible for large,sparse A (cf. Introduction).

Algorithm 3 produces complex low-rank factors, if some of the shifts are com-
plex, which might be required for problems with nonsymmetric A. Ensuring that
Zj P Rnˆnj and limiting the number of complex operations can be achieved by
assuming that for a complex shift pi we have pi`1 “ pi (see handout)
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II.3 Algebraic Riccati Equations

In this section we concentrate on the continuous time algebraic Riccati equa-
tion (ARE) briefly introduced in Chapter II.1 as one important representative of
nonlinear matrix equations:

CT Q̂C `ATX `XA´XBR´1BTX “ 0, X “ XT .

Here, we simplify the representation to

F `ATX `XA´XGX “ 0, G ě 0, X “ XT , (II.23)

where A, F “ F T , G “ GT P Rnˆn.

II.3.1 Hamiltonian Matrices and the ARE

Define the matrix

H “

„

A ´G
´F ´AT



P R2nˆ2n.

If X solves the ARE, then we have
„

A ´G
´F ´AT

 „

In 0
X In



“

„

In 0
X In

 „

A´GX ´G
0 ´AT `XG



,

which means that

H

„

In
X



“

„

In
X



pA´GXq,

which means that span
 “

In
X

‰(

is an H-invariant subspace and ΛpA´GXq Ă
ΛpHq.

Assume on the other hand, that

H

„

U
V



“

„

U
V



M for U, V, M P Rnˆn,

in particular, ΛpMq Ă ΛpHq. Then span
 “

U
V

‰(

is an H-invariant subspace.
Now assume that U is invertible. Then we find

AU ´GV “ UM
U´1 D
ô U´1AU ´ U´1GV “M.

Moreover, we have

´FU ´ATV “ VM “ V U´1AU ´ V U´1GV.
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A right-multiplication by U´1 then yields

´F ´ATV U´1 “ V U´1A´ V U´1GV U´1.

With X :“ V U´1 this finally results in

0 “ F `ATX `XA´XGX.

If we can ensure that U is invertible, then computing an invariant subspace for
H provides a solution for the ARE. However, recall that in contrast to linear
matrix equations, solutions are (except in some special cases) not unique. In
practice one is interested in a stabilizing solution X˚ :“ V U´1, i. e., ΛpA ´
GX˚q Ă C´.

Remark: Why a stabilizing solution? Consider the linear quadratic regulator
problem:

minJ puptqq “ 1

2

8
ż

0

}uptq}2 ` }xptq}2dt

subject to 9xptq “ Axptq `Buptq, xpt0q “ x0 P Rn.

for given A P Rnˆn possibly unstable, B P Rnˆm. Such problems are an im-
portant topic for control theory and widely used in practice to stabilize technical
systems.

One can show that, under certain conditions, a solution of this optimal control
problem is given by u˚ptq “ ´BBTX˚xptq, where X˚ is the stabilizing solution
of an ARE similar to (II.23).

So the question arises, which choice of the invariant subspace results in a
symmetric and stabilizing solution. For this we analyze the matrix H in more
detail, which turns out to be a Hamiltonian matrix.

Definition II.19 (Hamiltonian matrix): Define

J :“

„

0 In
´In 0



P R2nˆ2n. (II.24)

A matrix H P R2nˆ2n is called Hamiltonian if

pHJqT “ HJ.

We denote the set of all real Hamiltonian 2nˆ 2n matrices by Hn.
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Figure II.1: Eigenvalues of a real Hamiltonian matrix

Proposition II.20: The following statements are equivalent:

a) H is Hamiltonian.

b) H “ JS for some matrix S “ ST P R2nˆ2n.

c) It holds pJHqT “ JH.

d) H has the block structure

H “

„

H11 H12

H21 ´HT
11



(II.25)

for H11 P Rnˆn, H12 “ HT
12 P Rnˆn, and H21 “ HT

21 P Rnˆn.

Proof. Exercise.

Proposition II.21 (Hamiltonian spectrum): Let H P Hn and pH the character-
istic polynomial of H . Then the following statements are satisfied:

a) It holds pHpλq “ pHp´λq for all λ P C.

b) If pHpλq “ 0, then pHp´λq “ pHp´λq “ pHpλq “ 0 for λ P C.

Proof. Exercise.

Proposition II.21 states that the spectrum of every real Hamiltonian matrix is
symmetric with respect to the real and imaginary axis, see also Figure II.1.
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II.3.2 Characterization of Stabilizing Solutions

Recall that we have started at
„

A ´G
´F ´AT

 „

U
V



“

„

U
V



M, ΛpMq Ă ΛpHq,

where U is assumed to be invertible. From the first row we see

AU ´GV “ UM.

Assuming that U is invertible and a multiplication with U´1 from the right gives
A´GX “ UMU´1, where X :“ V U´1. Thus, we have ΛpA´GXq “ ΛpMq.
In particular, A ´ GX is asymptotically stable if and only if ΛpMq Ă C´. This
means that span

 “

U
V

‰(

is the H-invariant subspace corresponding to ΛpHq X
C´.

First we show that stabilizing solutions (in case they exist) are unique.

Lemma II.22: The ARE (II.23) has at most one stabilizing solution.

Proof. If X˚ is a stabilizing solution of (II.23) then X˚ “ V U´1, where

span

"„

U
V

*

“ span

"„

In
X˚

*

is the invariant subspace of H associated with its eigenvalues in C´. If there
exists a second stabilizing solution X̃˚, then

span

"„

In
X˚

*

“ span

"„

In
X̃˚

*

,

implying that X˚ “ X̃˚.

We still don’t know when a stabilizing solution exists. For this recall a weaker
concept of controllability (Def. II.8) is useful.

Definition II.23: We call pA,Bq stabilizable if rank
“

λIn ´A B
‰

“ n @λ P

C` :“ tλ P C : Repλq ě 0u

The dual concept is detectability: pA,Cq detectable if pAT , CT q stabilizable.

The following theorem gives an equivalent characterization for the existence of
stabilizing solutions.
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Theorem II.24: The ARE (II.23) has a stabilizing solution X˚ if and only if
pA,Gq is stabilizable and the matrix H does not have imaginary eigenvalues.

It remains to check under which conditions there are no eigenvalues of H on
the imaginary axis. A sufficient condition is the following.

Theorem II.25: Let pA,Gq be stabilizable and pA,F q be detectable with F, G ě
0. Then the Hamiltonian matrix H does not have imaginary eigenvalues.

Combining the above findings we can conclude the following theorem.

Theorem II.26: Consider the ARE (II.23) with F ě 0. Let pA,Gq be stabilizable
and pA,F q be detectable. Further let span

 “

U
V

‰(

with U, V P Rnˆn be an
H-invariant subspace corresponding to the eigenvalues of H in the open left
half-plane. Then X˚ “ XT

˚ “ V U´1 is the unique stabilizing solution of (II.23).

We analyze the structure of the stabilizing solution in more detail. First we show
that for AREs with F ě 0 the stabilizing solution is positive semi-definite.

Proposition II.27: If F ě 0, then the stabilizing solution X˚ of the ARE (II.23)
(if it exists) is positive semi-definite. Furthermore, if pAT , F q is controllable,
then X˚ ą 0.

Proof. If X is any symmetric solution of the ARE, we obtain

pA´GXqTX `XpA´GXq “ ´XGX ´ F.

With Â :“ A´GX and F̂ :“ ´XGX ´ F it holds

ÂTX `XÂ “ F̂ .

If X “ X˚ is stabilizing, then ΛpÂq Ă C´. Since F ě 0, we have F̂ ď 0 and
thus X˚ ě 0.

If pAT , F q is controllable, then so ispÂ, F̂ q : If Âv “ λv and F̂ v “ 0 for v ‰ 0,
then we get vH F̂ v “ 0 and therefore, GX˚v “ 0 and Fx “ 0. The former
implies Av “ λv. This yields v “ 0, since pAT , F q is controllable. This implies
X˚ ą 0 by Theorem II.10a).
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Algorithm 4 Schur vector method for solving the ARE

Input: H “

”

A ´G
´F ´AT

ı

corresponding to (II.23).
Output: the stabilizing solution X˚ of (II.23).

1: Apply the standard QR iteration to H to compute a Schur decomposition.
2: Sort the eigenvalues according to (II.26) via orthogonal similarity transfor-

mations.
3: Solve the n linear systems X˚Q11 “ Q21.

II.3.3 Direct Numerical Solution Methods

Now we discuss direct numerical solution algorithms for the ARE (II.23). We
assume that all assumptions of Theorem II.26 are satisfied, such that a unique
stabilizing and positive semi-definite solution X˚ exists. We are interested in
computing this solution.

The Schur Vector Method

From Theorem II.26 we know that the Hamiltonian matrix H “

”

A ´G
´F ´AT

ı

has

exactly n eigenvalues in C´ and exactly n eigenvalues in C`.

The simplest idea consists of using the real Schur decomposition to compute
the H-invariant subspace via

QTHQ “

„

T11 T12

0 T22



“: T (II.26)

where T11, T22 are in real Schur form and ΛpT11q Ă C´. By partitioning

Q “

„

Q11 Q12

Q21 Q22



as T in (II.26), we find that span
!”

Q11
Q21

ı)

is the desired subspace. The com-
putation of the stabilizing solution X˚ is summarized in Algorithm 4.

This method is very simple to implement and all steps numerically backward
stable. On the other hand, the Hamiltonian structure not exploited. This means
that the double symmetry of the Hamiltonian spectrum may be lost in T due to
round-off errors. In particular, the eigenvalues close to the imaginary axis may
move to the wrong half-plane. In this case the computation of X˚ may break
down. Therefore, we are interested in algorithms, that exploit and preserve the
Hamiltonian structure during the computation.



36 Chapter II. Matrix Equations

Hamiltonian Schur Methods

Now we discuss structure-preserving methods for the Hamiltonian eigenvalue
problem. For this we need to define the class of structure-preserving transfor-
mations for which we need symplectic matrices.

Definition II.28 (Symplectic matrix): A matrix S P R2nˆ2n is called symplectic
if

STJS “ J,

where J is as in (II.24).

It can be shown that symplectic similarity transformations preserve the Hamil-
tonian structure. This is stated in the next lemma.

Lemma II.29: If H P R2nˆ2n is Hamiltonian and S P R2nˆ2n is symplectic, then
H̃ :“ S´1HS P R2nˆ2n is Hamiltonian.

Proof. Ex.

In order to have transformations that do not increase the condition number of
the problem we aim at symplectic similarity transformations that are addition-
ally orthogonal. Orthogonal symplectic matrices have a certain block structure
given in the next lemma.

Lemma II.30: Every orthogonal symplectic matrix U P R2nˆ2n is given as

U “

„

U1 U2

´U2 U1



for U1, U2 P Rnˆn.

Proof. Exercise.

Using orthogonal symplectic transformations we can now formulate the follow-
ing result which gives us a Hamiltonian Schur form.

Theorem II.31 (Hamiltonian Schur form): Let H P R2nˆ2n be a Hamiltonian
matrix with ΛpHq X iR “ H. Then there exist an orthogonal symplectic U P

R2nˆ2n and a Hamiltonian matrix T P R2nˆ2n such that

UTHU “ T “

„

T1 T2

0 ´T T1



, (II.27)

where T1 is in real Schur form and T2 “ T T2 P Rnˆn.
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The goal now is to devise an algorithm for computing (II.27). This is not easy!
For preserving Ham. structure by unitary symplectic trafos, all major steps
in the standard QR-Algorithm for the normal Schur form have to be modified
accordingly (Hessenberg-reductions, QR-factorization, . . .). Only in the recent
years this was achieved completely ù literature.

II.3.4 Iterative Solution of the ARE – The Newton-Kleinman Itera-
tion

Now we consider the ARE

RpXq “ F `ATX `XA´XGX “ 0. (II.28)

Assume that pA,Gq is stabilizable, pA,F q is detectable, and F, G ě 0 such
that there exists a unique stabilizing solution X˚ of the ARE. We now consider
(II.28) as a nonlinear system of equations and apply Newton’s method. For this,
we need to evaluate the (Fréchet) derivative of RpXq with respect to X.

Definition II.32 (Fréchet differentiability, Fréchet derivative): Let pX , } ¨ }X q and
pY, } ¨ }Yq be two normed linear spaces and let U Ă X be an open subset. A
linear operator F : U Ñ Y is called Fréchet differentiable at X P U if there
exists a bounded linear operator F 1pXq : X Ñ Y such that

lim
}N}XÑ0

1

}N}X

›

›FpX `Nq ´ FpXq ´ pF 1pXqqpNq
›

›

Y “ 0.

The operator F 1pXq is called Fréchet derivative of F at X. The map F 1 : U Ñ
LpX ,Yq with X ÞÑ F 1pXq is called Fréchet derivative of F on U .

Let us see whether Rp¨q is Fréchet differentiable and (if yes) determine its
Fréchet derivative. If the Fréchet derivative exists it is given by

pR1pXqqpNq “ lim
hÑ0

1

h
pRpX ` hNq ´RpXqq

“ lim
hÑ0

1

h

`

F `AT pX ` hNq ` pX ` hNqA

´pX ` hNqGpX ` hNq ´ pF `ATX `XA´XGXq
˘

“ lim
hÑ0

1

h
phATN ` hNA´ hXGN ´ hNGX ´ h2NGNq

“ lim
hÑ0

pATN `NA´XGN ´NGX ´ hNGNq

“ ATN `NA´XGN ´NGX

“ pA´GXqTN `NpA´GXq.
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Algorithm 5 Newton’s method for the algebraic Riccati equation
Input: A, F, G as in (II.28) and initial value X0 such that ΛpA´GX0q Ă C´.
Output: Stabilizing solution X˚ solving (II.28).

1: for j “ 1, 2 . . . , do
2: Set Aj :“ A´GXj´1.
3: Solve ATj Nj´1 `Nj´1Aj “ ´RpXj´1q for Nj´1.
4: Set Xj :“ Xj´1 `Nj´1.
5: end for

Algorithm 6 Newton-Kleinman iteration for the algebraic Riccati equation
Input: A, F, G as in (II.28) and initial value X0 such that ΛpA´GX0q Ă C´.
Output: Stabilizing solution X˚ solving (II.28).

1: for j “ 1, 2, . . . do
2: Set Aj :“ A´GXj´1 and Fj :“ ´F ´Xj´1GXj´1.
3: Solve ATj Xj `XjAj “ ´Fj .
4: end for

In other words, the Fréchet derivative of a Riccati operator is a Lyapunov oper-
ator. Now the Newton iteration is given by

pR1pXj´1qqpNj´1q “ ´RpXj´1q, Xj “ Xj´1 `Nj´1, j “ 1, 2, . . .

and the iteration is summarized in Algorithm 5. This formulation of the algorithm
has the disadvantage that RpXj´1q is evaluated in every iteration. Therefore,
let us revisit the computation of the update Nj´1. We know that

pA´GXj´1q
TNj´1 `Nj´1pA´GXj´1q

“ ´F ´ATXj´1 ´Xj´1A`Xj´1GXj´1. (II.29)

Plugging in Nj´1 “ Xj ´Xj´1 then gives

pA´GXj´1q
T pXj ´Xj´1q ` pXj ´Xj´1qpA´GXj´1q

“ ´F ´ATXj´1 ´Xj´1A`Xj´1GXj´1.

Some manipulations and rearrangements of the terms finally lead to

pA´GXj´1q
TXj `XjpA´GXj´1q “ ´F ´Xj´1GXj´1. (II.30)

This leads to Kleinman’s formulation of the Newton iteration which is given in Al-
gorithm 6. The question arises whether Algorithm 6 and Algorithm 5 converges
to the right solution.
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Theorem II.33: Consider the ARE (II.28) with stabilizable pA,Gq, detectable
pA,F q, and F, G ě 0. Let X˚ be its unique stabilizing solution. Let further
X0 P Rnˆn be stabilizing, i. e., ΛpA ´ GX0q Ă C´. Then the iterates Xj ,
j “ 1, 2, . . . fulfill the following statements:

a) The matrix Xj is stabilizing.

b) It holds X˚ ď ¨ ¨ ¨ ď Xj`1 ď Xj ď ¨ ¨ ¨ ď X1.

c) It holds limjÑ8Xj “ X˚.

d) The convergence is globally quadratic, i. e., there exists a constant γ ą 0
such that

}X˚ ´Xj} ď γ }X˚ ´Xj´1}
2 , j “ 1, 2, . . . .

Proof. a) Let X˚ be the stabilizing solution of the ARE (II.28) which exists and
is unique due to the assumptions. Now consider (II.30) and the Riccati
equation of the solution [F `ATX˚ `X˚A´X˚GX˚ “ 0]:

ATj´1ppXjq ´X˚q ` ppXjq ´X˚qAj´1

“ ´pXj´1 ´X˚qGpXj´1 ´X˚q. (II.31)

Assume that Xj´1 is stabilizing, i.e. ΛpAj´1 “ A ´ GXj´1q Ă C´ With
G ě 0 it follows

pXjq ´X˚ ě 0 (II.32)

from Lemma II.10 a). Now

(II.31) ´ rNj´1GppXjq ´X˚q ` ppXjq ´X˚qGNj´1s

ñ pA´GXjq
T ppXjq ´X˚q ` ppXjq ´X˚qpA´GXjq

“ ´ppXjq ´X˚qGppXjq ´X˚q ´Nj´1GNj´1 “: W.
(II.33)

The matrix W is negative semi-definite. Assume that A ´ GXj has an
eigenvalue λ P C` with an associated eigenvector v ‰ 0. Then it holds

pA´GXjqv “ λv, v˚pA´GXjq
˚ “ λvH . (II.34)

v˚(II.33)v ñ 2 Repλq vHppXjq ´X˚qv “ vHWv.

The left-hand side is non-negative, since Repλq ě 0 and pXjq´X˚ ě 0. On
the other hand, the right-hand side gives vHWv ď 0. Therefore, vHWv “ 0
and moreover,

vHppXjq ´X˚qGpXj ´X˚qv “ 0.

Since G ě 0, it holds GpXj ´X˚qv “ 0, i. e., we have

GXjv “ GX˚v.
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Thus, together with (II.34) we obtain

λv “ pA´GXjqv “ pA´GX˚qv,

i. e., λ is an eigenvalue of A´GX˚ and thus a contradiction to the asymp-
totic stability of A´GX˚.

b) From (II.32) we directly have that X˚ ď Xj for j ě 1. On the other hand, by
(II.30) and fixed j ě 1 we have

pA´GXj´1q
TXj `XjpA´GXj´1q “ ´F ´Xj´1GXj´1, (II.35)

pA´GXjq
TXj`1 `Xj`1pA´GXjq “ ´F ´XjGXj . (II.36)

By subtracting (II.35) from (II.36) and some manipulations we obtain

pA´GXjq
T pXj`1 ´Xjq ` pXj`1 ´XjqpA´GXjq

“ ´XjGXj `Xj´1GXj´1 `Nj´1GXj `XjGNj´1 “ Nj´1GNj´1.

Since A´GXj is asymptotically stable and G ě 0, it holds Xj`1 ´Xj ď 0
by Lemma II.7 a). Therefore, it holds Xj`1 ď Xj for all j ě 1.

c) From b) we know that tXju
8
j“1 is a monotonically decreasing and bounded

sequence. Therefore, the limit X̂ :“ limjÑ8Xj exists. Since A ´ GXj

is asymptotically stable for all j ě 1 and the eigenvalues of a matrix are
continuous with respect to the matrix entries, it holds ΛpA ´ GX̂q Ă C´.
By taking the limit in (II.30), we see that X̂ solves the ARE (II.28). Thus
”

In
X̂

ı

spans an invariant subspace corresponding to the eigenvalues in C´

of the matrix H “

”

A ´G
´F ´AT

ı

. Since by Theorem II.25, H does not have

imaginary eigenvalues we obtain ΛpA ´ GX̂q Ă C´. Therefore, X̂ is a
stabilizing solution of the ARE. Since by Lemma II.22, the stabilizing solution
is unique, we have X˚ “ X̂.

d) From (II.31) we obtain

pR1pXj´1qqpXj ´X˚q “ ´pXj´1 ´X˚qGpXj´1 ´X˚q.

Note that pR1pXj´1qqp¨q is invertible since A´GXj´1 is asymptotically sta-
ble. This gives

}X˚ ´Xj} ď
›

›pR1pXj´1qq
´1
›

› }G} }X˚ ´Xj´1}
2 ,

where }¨} denotes any consistent norms. Since tXju
8
j“0 converges, the

limit limjÑ8R1pXjq “ R1pX˚q exists. Since A ´ GX˚ is asymptotically
stable, also the limit limjÑ8pR1pXjqq

´1 “ pR1pX˚qq´1 exists. Denote δj :“
›

›pR1pXjqq
´1
›

› and δ˚ :“ limjÑ8 δj . Since the sequence tδju8j“0 converges,

it has a supremum, denoted by δ̂. Therefore, we get

}X˚ ´Xj} ď γ }X˚ ´Xj´1}
2 , j “ 1, 2, . . .
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with γ :“ δ̂ }G} and we have quadratic convergence. The statement for
arbitrary matrix norms follows by equivalence of matrix norms.

Remark II.34: a) Computing X by the Schur vector method costs as much as
6 ´ 7 iterations of Algorithm 6. Often, Algorithm 6 requires more iterations.
However, it is often very useful in refining solutions obtained by other meth-
ods.

b) If A is not asymptotically stable (otherwise X0 “ 0 is stabilizing), then the
computation of a stabilizing X0 usually costs as much as another iteration
step since this requires the solution of one additional Lyapunov equation
(Homework 3, Problem 2).

c) The convergence theory also holds for Xj :“ Xj´1 ` tNj´1 where t P
r0, 2s. There exist line search strategies to optimize the step length after
computation of the direction Nj´1 in Algorithm 5. That is, we use a step
length

t “ argminτPr0,2s }RpXj´1 ` τNj´1q}F.

The computation of t is usually much cheaper than the actual Newton step
which can drastically accelerate the iteration.

II.3.5 Solving large-scale AREs

We now consider large-scale AREs

RpXq “ CTC `ATX `XA´XBBTX “ 0, X “ XT ,

where A P Rnˆn is large and sparse, B P Rnˆm, C P Rpˆn, and m, p !
n. We again assume that the assumptions of Theorem II.26 hold, i.e., pA,Bq
stabilizable and pA,Cq detectable. The constant and the quadratic term are
of low rank, a setting often arising in optimal control problems. Similar to the
linear (Lyapunov) case, this motivates to numerically compute an approximate
solution of low-rank X˚ « ZDZT , Z P Rnˆr, D “ DT P Rrˆr with r ! n.
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The Low-Rank Newton-Kleinman Method

Inserting the low-rank matrices G “ BBT , F “ CTC into the NK iteration
scheme (II.30) gives
`

A´BBTXj´1

˘T
Xj `Xj

`

A´BBTXj´1

˘

“ ´C̃T C̃ ´Xj´1BB
TXj´1 “ ´

“

C̃T Xj´1B
‰

looooooomooooooon

PRnˆpp`mq

“

C̃T Xj´1B
‰T

(II.37)

Thus the right-hand side of the Lyapunov eqn. is of low rank and we can apply
any of the low-rank methods from Section II.2.3 (projection methods, low-rank
ADI) to obtain a low-rank approx. of Xj´1. This results in the low-rank Newton-
Kleinman method for AREs. One problem remains for extended, rational Krylov
and the LR-ADI method: even if A is sparse and B is thin, the closed loop
matrix

Aj :“ A´BBTXj´1 (II.38)

at Newton step j is usually dense ù never explicitly form (II.38).

There are several ways to solve linear systems with the system matrixAj`pjIn
efficiently in the low-rank ADI method or rational Krylov subspace methods:

a) Application of an iterative solver: This option only requires multiplica-
tions with Aj . Since Kj :“ Xj´1B and B have only a few columns and
rows, respectively, these can be carried out efficiently. On the other hand,
the convergence of iterative solvers is often slow, as long as no good pre-
conditioner is available.

b) Application of the Sherman-Morrison-Woodbury identity: It holds for
Sj :“ A` pjIn

`

A` pjIn ´BK
T
j

˘´1
“ S´1

j ` S´1
j B

`

Im ´K
T
j S

´1
j B

˘´1
KT
j S

´1
j .

Then a linear system solve with Sj :“ Aj ` pjIn only requires two sparse
solves with Sj and one small dense solve with the matrix Im ´KT

j SjB.

Projection Approaches

In complete analogy to the Lyapunov case, we can use the Galerkin projection
approach directly onto the large ARE: build subspace U w.r.t. AT , CT , e.g.,
rangepQkq “ EKpAT , CT q or rangepQkq “ RKpAT , CT , sq and solve small,
projected ARE

HkYk ` YkH
T
k ´ YkQ

H
k BB

TQk `QkC
TCQk “ 0, Hj “ QTk pA

TQkq

for stabilizing Yk P Rkˆk in each step (e.g., by (Hamiltonian) Schur vector
method). Approximate stab. solution is X˚ « QkYkQ

T
k .
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III.1 Introduction

By "Matrix Functions" we mean the following: take a scalar function f and
A P Cnˆn and specify fpAq P Cnˆn such that a useful generalization of fpzq,
z P C is obtained.

Other meanings of fpAq which are not part of this lecture are:

• element-wise operations, i.e. fpAq “ rfpaijqsni,j“1,

• scalar valued functions: f : Cnˆn Ñ C, i.e. trace, det, κpAq, . . . ,

• mappings f : Cnˆn Ñ Cmˆm, with m ‰ n, which do not come from a
scalar function, e.g. AT, AH, adjpAq, Ap1 : m, 1 : mq, . . . ,

• function mappings f : C Ñ Cnˆn, e.g. transfer function
fpsq “ CpsI ´Aq´1B, with C P Cnˆm, A P Cnˆn, B P Cnˆm.

Let fptq be a scalar polynomial or rational function. We substitute A for t to
define fpAq, replacing t´1 by A´1, 1 by In.

Example: We consider the following two examples:

• fptq “
ř

αit
i ñ fpAq “

ř

αiA
i,

• fptq “ 1`t3

1´t ñ fpAq “ pI ´Aq´1pI `A3q “ pI `A3qpI ´Aq´1.

This easily generalizes to functions, having a convergent power series:

fptq “
8
ÿ

i“0

αit
i.

For example, we can write a representation of the logarithm logp1` tq

logp1` tq “ t´
t2

2
`
t3

3
´
t4

4
` . . . , |t| ă 1,

ñ logpI `Aq “ A´
A2

2
`
A3

3
´
A4

4
` . . . , ρpAq ă 1.

Next, we want to define fpAq for general f . Moreover, some focus is given
to multivalued functions like

?
t, logptq, where we want to classify all possible

fpAq.
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III.2 Definitions of fpAq

III.2.1 Using the Jordan Canonical Form

We recall the Jordan normal form of an arbitrary matrix A P Cnˆn:

Z´1AZ “ J “ diagpJ1, . . . , Jsq, (III.1)

Jk “ diagpJ1
k , . . . , J

pk
k q, (III.2)

J ik “

»

—

—

—

–

λk 1
. . .

. . .

. . . 1
λk

fi

ffi

ffi

ffi

fl

P Cm
i
kˆm

i
k ,

with Z nonsingular and
řs
k“1

řpk
i“1m

i
k “ n and λ1, . . . , λs are the distinct

eigenvalues of A. The index of λk is the dimension of the largest Jordan block
in which λk appears and denoted by nk “ maxim

i
k.

Definition III.1: A function f is said to be defined on tλi, niusi“1 if the values

f pjqpλiq, j “ 0, . . . , ni ´ 1, i “ 1, . . . , s

exist, where f pjq denotes the jth derivative. We call all this evaluations the
values of f at tλi, niusi“1.

Definition III.2 (Matrix functions via Jordan normal form): Let f be defined on
tλi, niu

s
i“1, where λi in the spectrum of A P Cnˆn and ni the index of λi, and

A “ ZJZ´1 its Jordan normal form (III.1). Then

fpAq :“ ZfpJqZ´1 “ ZdiagpfpJ ikqqZ
´1, (III.3)

fpJ ikq “

»

—

—

—

—

–

fpλkq f 1pλkq . . . f
pmi

k´1q
pλkq

pmi
k
´1q!

. . .
. . .

...
. . . f 1pλkq

fpλkq

fi

ffi

ffi

ffi

ffi

fl

P Cm
i
kˆm

i
k . (III.4)

Remark III.3: 1. Since every square matrixA has a Jordan form, fpAq is
defined as long as the function evaluations of f and its derivatives are
defined at the eigenvalues. In particular is fpAq always defined for a
function f that is smooth on all of C.

2. If A is diagonalizable it follows:
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• fpAq “ ZdiagpfpλiqqZ
´1,

• A and fpAq have the same eigenvectors.

3. In case of multivalued functions such as
?
t, logptq, we have to pick a

branch. But more on that later.

Example: We consider the Jordan normal form J “

„

1
2 1
0 1

2



and the matrix

function fpXq “ X3. Applying the Definition III.2 leads to

fpJq “

„

fp1
2q f 1p1

2q

0 fp1
2q



“

„

1
8

3
4

0 1
8



.

III.2.2 Polynomial Interpolation

Recall: The minimal polynomial of A P Cnˆn is the unique monic polynomial ψ
of lowest degree such that ψpAq “ 0. It results from the Jordan normal form
that

ψptq “ Πs
i“1pt´ λiq

ni

and ψ divides any polynomial p for which ppAq “ 0 holds.

Theorem III.4: Let p and q be two polynomials of A P Cnˆn. It holds
ppAq “ qpAq if and only if p and q take the same values on tλi, niusi“1 where
λi in the spectrum of A P Cnˆn and ni the index of λi. (Here we do not use the
definition III.2 but the polynomial in the matrix as Am is a defined quanitity for
matrices.)

Proof. Exercise

Definition III.5 (Matrix functions via Hermite interpolation): Let f be defined
on tλi, niusi“1 where λi in the spectrum of A P Cnˆn and ni the index of λi
and ψ be the minimal polynomial of A. Then fpAq :“ ppAq, where degppq ă
degpψq “

řs
i“1 ni and p satisfies the Hermite interpolation condition

ppjqpλiq “ f pjqpλiq, j “ 0, . . . , ni ´ 1, i “ 1, . . . , s. (III.5)

p is unique and called Hermite interpolation polynomial.
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Example: We consider the matrix A “

„

2 2
1 3



and the function fptq “
?
t

(principal branch t1{2 of square root function), ΛpAq “ t1, 4u, s “ 2,
n1 “ n2 “ 1. The interpolation has to satisfy pp1q “ fp1q “ 1, pp4q “
fp4q “ 2.

ñ pptq “ fp1q t´4
1´4 ` fp4q

t´1
4´1 “

1
3pt` 2q

ñ fpAq “ ppAq “ 1
3pA` 2Iq “ 1

3

„

4 2
1 5



and obviously fpAq2 “ A.

Attention: We do not have to use the same branch of square root for each
eigenvalue:

fp1q “ 1, fp4q “ ´2 ñ pptq “ 2´ t and fpAq “

„

0 ´2
´1 ´1



.

The following properties result immediately from the Definition III.5:

• fpAq “ ppAq with polynomial depending on A,

• fpAqA “ AfpAq,

• fpATq “ fpAqT.

Since ψptq divides the characteristic polynomial qptq “ detptI ´Aq it follows

• qpAq “ 0 (Cayley-Hamilton),

• any power series collapses to polynomial in A:

8
ÿ

k“0

αkA
k “

n´1
ÿ

k“0

dkpAqA
k,

dk dependent on A.

III.2.3 Cauchy integral definition

Excursus: Useful concepts from complex analysis

A function f : D Ñ C, D Ă C is called analytic in an open set U , if it is complex
differentiable for all z0 P U , i.e.

f 1pz0q “ lim
zÑz0

fpzq ´ fpz0q

z ´ z0
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exists. An other name for this property is holomorphic. Analytic functions can
be expressed as convergent power series.

The following properties hold for analytic functions:

• It holds
ű

γ fpzqdz “ 0, where γ is a closed curve in U (Cauchy integral
theorem).

• Cauchy integral formula: We consider f : U Ñ C analytic,
D “ tz : |z ´ z0| ď ru Ă U , γ circle around BD. For all a in the
interior of D it holds

fpaq “
1

2πi

ż

γ

fpzq

z ´ a
dz. (III.6)

The equation (III.6) follows from elementary integral calculus and limit
considerations.

• A function f that is holomorphic on a disc is completely determined by its
values on the boundary of the disc.

This inspires the following definition of a matrix function for analytic functions f .

Definition III.6 (Matrix functions via Cauchy integral): For a matrix A P Cnˆn
we define the matrix function

fpAq :“
1

2πi

ż

Γ
fpzqpzI ´Aq´1dz, (III.7)

where f analytic on and inside the closed contour Γ that encloses ΛpAq.

III.2.4 Equivalence of definitions

Theorem III.7: Definition III.2 and III.5 are equivalent. If f is analytic then also
Definition III.6 is equivalent to Definition III.2 and III.5.

Proof (part). Definition III.5ô fpAq “ ppAq for a Hermite interpolation polyno-
mial that satisfies the condition III.5.

Assume A has a Jordan normal form (III.1).

ñ fpAq “ ppAq “ ppZJZ´1q “ ZppJqZ´1 “ ZdiagpppJkqqZ
´1

ñ exersice ñ (III.4)
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III.2.5 Non-primary matrix functions

The three equivalent definitions lead to "primary matrix functions", which is
what we are mostly interested. However there is something called non-primary
matrix functions. Consider the nonlinear matrix equation

X2 “ A

and the solutions X of this equation. If this where a scalar equation the solutions
of this equation for X is given by the square root of A.

But for some matrices A , some solutions of X2 “ A are not obtained as
primary matrix functions (i.e. in the sense of Definition III.2, III.5 and III.6 with

fpxq “ ˘
?
x). We consider A “

„

1 0
0 1



and we want to solve X2 “ A. We

take fptq “
?
t as in Definition III.5 with pp1q “

?
1 “ ˘1. It follows pp1q “ 1

or pp1q “ ´1. Both I and ´I are square roots of I. Definition III.2 leads to the
same results.

If we ignore the demand that the same branches of
?
t are used for different

Jordan blocks associated to λ “ 1, we find
„

´1 0
0 1



and
„

1 0
0 ´1



as extra

square roots (the double eigenvalue 1 was sent to different square roots).

Are there more?

Yes! It holdsA “ I “ ZIZ´1 for all nonsingularZ. It follows thatZ
„

1 0
0 ´1



Z´1

and Z
„

´1 0
0 1



Z´1 give an infinite number of square roots. This includes the

matrices
„

cos θ sin θ
sin θ ´cos θ



(Housholder reflectors).

All these are examples of non-primary matrix functions. They occur when f
is multivalued, A is derogatory (a distinct evaluation occurs in more than one
Jordan block), and when equal eigenvalues in different branches are mapped
to different branches of f in Definition III.2. Nonprimary matrix functions are
not expressible as polynomials of A. Nor all nonprimary matrix functions come

from Jordan normal forms: A “

„

0 0
0 0



ñ X “

„

0 1
0 0



is square root of f .

Luckily, virtually all algorithms and applications need primary matrix functions.
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III.3 Applications

Differential equations

The differential equation

9xptq “ Axptq, x0 “ xp0q

with A P Rnˆn, xptq P Rn has the solution xptq “ eAtx0.

The general differential equation

9xptq “ Axptq ` fpt, xq, x0 “ xp0q

has the solution xptq “ eAtx0 `
şt
0 eApt´τqfpτ, xqdτ . For the case of second

order time derivatives

:xptq `Axptq “ 0, xp0q “ x0, 9xp0q “ 9x0

we obtain the solution xptq “ cosp
?
Atqx0 ` p

?
Aq´1 sinp

?
Atq 9x0. We can

define
?
A by the matrix function coming from each of the two branches. We

can also use different branches on different eigenvalues or we can pick an
arbitrary matrix satisfying that its square is equal to A. The solution xptq is
independent of that. ùExercise

We can also rewrite the differential equation as

d

dt

„

xptq
9xptq



“

„

0 I
´A 0

 „

xptq
9xptq



.

Matrix equations in control theory

We consider the dynamical system

9xptq “ Axptq `Buptq, (III.8a)

yptq “ Cxptq (III.8b)

with A P Rnˆn, ΛpAq P C´. We know Lyapunov equations are important for
working with (III.8). The Lyapunov equation

AX `XAT “ ´BBT

has the solution

X “

ż 8

0
eAtBBTeA

Ttdt

“

ż 8

´8

piwI ´Aq´1BBTpiwI ´Aq´Tdw.
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1

2

3

4

Figure III.1: Undirected network graph

Exponential integrators

Define the phi-function φkpzq recursive via

φk`1pzq “
φkpzq ´ 1{k!

z
, φ0pzq “ ez.

It holds that

9xptq “ Axptq, xp0q “ x0 ñ xptq “ φ0pAtqx0

9xptq “ Axptq ` b, xp0q “ x0 ñ xptq “ φ0pAtqx0 ` tφ1ptAqb

9xptq “ Axptq ` ct, xp0q “ x0 ñ xptq “ φ0pAtqx0 ` t
2φ2ptAqc

what extends to general polynomial inhomogenities

9xptq “ Axptq ` pptq.

Note: exp

„

A b
0 0



“

„

eA φ1pAqb
0 1



.

Complex networks

Let A P Rn,n be the adjacency matrix of the undirected network graph pre-

sented in Figure III.3, A “

»

—

–

0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

fi

ffi

fl

.
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Important network measures are

• Centrality peAqii ( how important is note i )

• Commutativity peAqij ( how well is information from note i to j ).

Other measures involve coshpAq, . . . .

Statistics

We want to sample a multivariate normal distribution Y „ Npµ,Cq, µ P Rn
(mean), C “ CT “ LLT ą 0 (covariance matrix). Let X „ Np0, Iq which is
easy to simulate ,

Y “ µ` LX „ Npµ,Cq if C “ LLT.

But

Y “ µ` C1{2X „ Npµ,Cq

preferred because computing C1{2X is easier, especially if n is very large.

The next sections will discuss the numerical algebra for fpAq. We have to
distinguish two problems:

1. A P Cnˆn is small moderately sized and computing matrix-factorizations
(e.g. Schur form) is possible.

2. A P Cnˆn large, sparse (Schur form not possible), but matrix vector linear
system solves with A possible and only fpAqb for b P Cn desired.
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III.4 Methods for computing fpAq

We start with approaches for general f and A.

III.4.1 Taylor series

If f has a Taylor expansion

fpzq “
8
ÿ

k“0

akpz ´ αq
k

with convergence radius r, it can be used as basic tool for fpAq:

fpAq “
8
ÿ

k“0

akpA´ αIq
k, if |λi ´ α| ă r @λi P ΛpAq. (III.9)

In practice, we truncate the sum after m terms. Important Taylor series are:

eA “ I `A`
A2

2!
`
A3

3!
` . . . ,

cospAq “ I ´
A2

2!
`
A4

4!
´
A6

6!
` . . . ,

sinpAq “ A´
A3

3!
`
A5

5!
´ . . . ,

logpI `Aq “ A´
A2

2!
`
A3

3!
´ . . . , ρpAq ą 1.

III.4.2 Rational and Padé approximations

The Taylor series (III.9) provides a polynomial approximation of f , f « p with
degppq “ m.

A generalization is given by

fpzq « rkmpzq “
pkmpzq

qkmpzq
(III.10)

with numerator and denominator polynomials pkm, qkm of degree k and m,
respectively. We hope to achieve a better approximation of f with lower degrees
k, m compared to (III.9). We call (III.10) a rk{ms Padé approximant of f if
qkmp0q “ 1 and fpzq ´ rkmpzq “ Opzk`m`1q. For many important functions
(exppzq, logpzq,. . . ), Padé approximents are explicitly known ( book on (rational)
approximation theory). The evaluation of rkmpAq for an example can be done
via:
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• rkmpAq “ qkmpAq
´1pkmpAq and pkmpAq, qkmpAq evaluated appropriate

(Horner scheme,. . . ),

• continued fraction form rmmpzq “ b0 `
a2z

b1`
a2z

b2`
a3z
b3`...

,

• partial function expansion.

III.4.3 Methods based on matrix functions

Easy start: Let A be diagonalizable A “ XDX´1, D “ diagpλiq such that

fpAq “ XfpDqX´1 “ XdiagpfpλiqqX
´1.

From the point of numerical stability, this computation is not recommended be-
cause of the error application by κpXq “ }X}}X´1} ě 1.

Better: Use a unitary factorization, e.g. our beloved Schur form (Theorem I.1)

A “ QRQH, QHQ “ I, R “
@
@
@
, such that

fpAq “ QfpRqQH.

If λi ‰ λj for all i, j P ΛpAq, we can compute first the diagonal of F “ fpRq
and then the strict upper triangular part. This is problematic if λi “ λj or
λi « λj .

Better: reorder and partition the Schurform

R “

»

—

–

R11 . . . R1q

. . .
...
Rqq

fi

ffi

fl

, Rii P Cniˆni ,
q
ÿ

i“1

ni “ n (III.11)

with ΛpRiiq X ΛpRjjq “ H for all i ‰ j P t1, . . . , qu and |λi ´ λk| ă δ, λk P
ΛpRiiq. The spectra ΛpRiiq are well separated from ΛpRjjq, j P t1, . . . , quztiu.

Partition F :“ fpRq in the same way

F “

»

—

–

F11 . . . F1q

. . .
...
Fqq

fi

ffi

fl

.

At first we compute the "atomic block" Fii “ fpRiiq, i “ 1, . . . , q. The eigen-
values of Rii are supposed to be close to each other. Let T P Cm,m be one of
the diagonal blocks of R in (III.11). We write T “ σI `M, σ “ 1

m

řn
k“1 λk “

tracepT q{m ( “ mean of the eigenvalues ). It holds

fpσ ` zq “
8
ÿ

k“0

f pkqpσq

k!
zk (III.12)
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and therefore with Section III.4.1

fpT q “
8
ÿ

k“0

f pkqpσq

k!
Mk.

If T has only one eigenvalue σ, M is a strictly upper triangular matrix and
hence, Mn “ 0, where n is the dimension of the matrix. Otherwise we truncate
(III.12), e.g. when the difference of suczessive terms is small.

Sketch of algorithm:
1: Set σ “ tracepT q{m, M “ T ´ σI, ε “ machine precision.
2: Set F0 “ fpσqI, P “M .
3: for s “ 1, 2 . . . , do
4: Set Fs “ Fs´1 ` f

psqpσqP (Taylor series).
5: Set P “ PM{ps` 1q (power of M ).
6: if }Fs ´ Fs´1}F ď ε}Fs}F then
7: STOP
8: end if
9: end for

Assume we now have the "atomic blocks" Fii “ fpRiiq, i “ 1, . . . , q, but still
require the strictly upper triangular block of F . We know FR “ RF because
F “ fpRq. We compute the "atomic blocks" Fij “ fpRijq by Taylor, Padé
explicit formula
»

—

–

F11 . . . F1q

. . .
...
Fqq

fi

ffi

fl

»

—

–

R11 . . . R1q

. . .
...
Rqq

fi

ffi

fl

“

»

—

–

R11 . . . R1q

. . .
...
Rqq

fi

ffi

fl

»

—

–

F11 . . . F1q

. . .
...
Fqq

fi

ffi

fl

.

We want to find F12:

F11R12 ` F12R22 “ R11F12 ´R12F22

ô R11F12 ´ F12R22 “ F11R12 ´R22F22

which is a Sylvester equation for F12. In general

RiiFij ´ FijRjj “ FiiRij ´RijFjj `

j´1
ÿ

k“i`1

pFikRkj ´RikFkjq (III.13)

(Sylvester equation for Fij) is uniquely solvable because (III.11) and Section
II.2, e.g. by Sylvester variant of Bartels-Steward method II.2.2.

After computing F , we undo the unitary transformation Q: fpAq “ QFQH.
This method is called Schur-Parlett-Algorithm (Handout).

We now proceed towards methods for special f , especially f “ eA
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III.4.4 Scaling and squaring for eA

The exponential of A P Cn,n is omnipresent in applied mathematics. There is a
zoo of approaches for computing fpAq “ eA.

We will only discuss one of the best methods for eA, the scaling and squaring
method which is considered as state of art. We will use the property:

eA “
´

e
A
v

¯v
, v P N.

The idea is, to choose v “ 2s such that eA{v can be reliably computed. By
enforcing }A}{v ď 1. The expression eA{v can be computed by Taylor or Padé
approximations. Here we use the diagonal Padé approximation ([m/m] Padé)

rmpzq “
pmpzq

qmpzq

for ez, where rmpzq ´ fpzq “ Opz2m`1q and qmp0q “ 1. That is scaling and
squaring which can be roughly summarized as

eA «

ˆ

rm

ˆ

A

v

˙˙v

,

and with rmpzq « ez for |z| ă 1 or |z| « 1.

For eA such [m/m] Padé approximations are known explicitly

pmpzq “
m
ÿ

j“0

p2m´ jq!m!

p2mq!pm´ jq!j!
zj , qmpzq “

m
ÿ

j“0

p2m´ jq!m!p´zqj

p2mq!pm´ jq!j!
. (III.14)

Scaling and Squaring in 3 Steps:

1. Find s such that }A{2s} « 1 and replace AÐ A{2s.

2. Evaluate [m/m] Padé approximation: rmpAq “ pmpAqqmpAq
´1.

3. Set X “ prmpAqq
2s « eA.

How to choose the scaling order s P N and Padé order m P N?

In early developments m was fixed and s chosen so that }A{2s} ď 1 or ď 0.5.
Current versions of scaling and squaring select s, m adaptively on the basis of
}A}. The core idea is that if e´AeA “ I we have e´ArmpAq “ I ` G. If we
assume }G} ď 1 we obtain

}H} :“ }logpI `Gq} ď
8
ÿ

j“0

}G}j

j
“ ´logp1´ }G}q
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and consequently rmpAq “ eAeH “ eA`H (A and H commute). If we replace
A by A{2S we get

rm

ˆ

A

2s

˙2s

“ eA`E , E “ 2sH with }E} ď ´2slogp1´ }G}q.

The matrices H and G so depend on s here and the above proves the following
theorem.

Theorem III.8: Let e´2´sArmp2
´sAq “ I `G with }G} ă 1. It holds

rmp2
´sAq2

s
“ eA`E and

}E}

}A}
ď
´logp1´ }G}q

}2´sA}
.

We need to bound }G}. Let wmpzq “ e´zrmpzq´1 “
ř8
i“2m`1 cix

i (from Padé
approximation). We define Θ :“ }2´sA} and obtain

}G} “ }wmp2
´sAq} ď

8
ÿ

i“2m`1

|ci|Θ
i “: fpΘq.

With Theorem III.8 we obtain }E}
}A} ď ´

logp1´fpΘqq
Θ . Lets define β :“ ´logp1 ´

fpΘqq, the ci is known explicitly. We use symbolic math to find the largest Θm

for each m such that β ď ε “ 2´53.

Often m “ 13 and Θ “ 5.4 are chosen for double precision. With Θm “

}2´sA} “ 2´s}A} we find s “ rlog2}A}{Θms and set AÐ A
2s .

Now s, m are chosen , we need to evaluate rmpAq “ pmpAqqmpAq
´1, qmpAq “

pmp´Aq. We observe for even degrees m “ 2d:

pmpAq “ p2dpAq “
2d
ÿ

k“0

βkz
k “ β0I ` β1A` ¨ ¨ ¨ ` β2dA

2d

“ β2dA
2d ` ¨ ¨ ¨ ` β2A

2 ` β0I
loooooooooooooooomoooooooooooooooon

even powers

`β1A` ¨ ¨ ¨ ` β2d´1A
2d´1

loooooooooooooomoooooooooooooon

odd powers

“ β2dA
2d ` ¨ ¨ ¨ ` β2A

2
loooooooooooomoooooooooooon

“:U

`β0I `Apβ1I ` ¨ ¨ ¨ ` β2d´1A
2d´2q

looooooooooooooooooooomooooooooooooooooooooon

“:V

“ U ` V.

what requires d` 1 matrix multiplications for A2, A4, . . . , A2d. We have exactly
the same costs for odd degrees 2d` 1, so we always use odd degrees.

Likewise it holds qpAq “ U ´ V because qpAq “ pp´Aq and therefore

rmpAq “ pU ´ V q
´1pU ` V q “: X

Last step is then X2s .
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III.4.5 Inverse Scaling and Squaring for logpAq

We consider a matrix A P Cn,n with ΛpAq X R´ “ H. We know logpzq `
logpyq “ logpzyq for z, y P R` and logpzq “ k logpz1{kq. Hence, it holds
logpzq “ 2s logpz1{2sq and for |z| small logp1` zq can be approximated well by
a Padé approximation. We use the property

logpAq “ 2s logpA
1
2s q “ 2s logpI `A

1
2s ´ Iq.

Again, we want to use a Padé approximation for logp1`zq, so A1{2s is required.
Since we need successively square roots of A, transforming it first to Schur
form is beneficial

QHAQ “ R “
@
@ .

The Schur-Parlett algorithm can be specially modified to compute R1{2. As-
suming we have computed the successive square roots Z “ R1{2s . We use
Padé of logp1` zq « rmpzq given in partial form

rmpzq “
m
ÿ

j“1

αjz

1` βjz
, (III.15)

where αj and βj are given explicitly. We have to evaluate rmpR1{2s ´ Iq in an
appropriate way directly via (III.15)

X “ rmpZ ´ Iq “ rmpY q “ pI ` β1Y q
´1α1Y ` . . . .

The degrees s andm can be chosen adaptively since for Y P Cn,n with }Y } ă 1
it holds

}rmpY q ´ logpI ` Y q} ď |rmp´}Y }q ´ logp1´ }Y }q|. (III.16)

We wand to find the smallest m such that the right-hand side is below a desired
tolerance ε ą 0. The number s of square roots can be chosen until }Z´I} ă 1.
Only take extra square roots (costly) if this decreases the Padé degree m by
more than 1 in (III.16).

Afterwards, we scale and back transform

logpAq « F “ 2sQXQH.

See handout.
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III.4.6 Methods for matrix square roots

We consider A P Cn,n with ΛpAq X R´ “ H. We want X “
?
A such that

X2 “ A. We already mentioned the Schur-Parlett variant.

Another popular approach is based on the Newtons method for X2 ´A:

With FpXq “ X2 ´ A we have to solve the following matrix equation in every
step to get the increment

F 1pXqE “ FpXq

where we use the Fréchet derivative. This leads to Newtons-method for X2 “

A:

1. Choose X0.

2. Solve EkXk `XkEk “ A´X2
k for Ek.

3. Set Xk`1 “ Xk ` Ek.

Solving the Sylvester-equation in Step 2 is expensive compared to the Schur-
Parlett method.

Theorem III.9: If X commutes with A then Newtons method for X2 “ A can
be reformulated to

Xk`1 “
1

2

`

Xk `AX
´1
k

˘

. (III.17)

Moreover, (III.17) is related to the sign-iteration

Sk`1 “
1

2

`

Sk ` S
´1
k

˘

, S0 “ A´
1
2X0

by Xk “ A1{2Sk.

III.5 Methods for fpAqb

Now let A P Cn,n be large and sparse, b P Cn and f defined on ΛpAq. Because
of the large size of A, methods working with Opn3q operations are infeasible.
But in practice often only the action of fpAq to b is desired:

y “ fpAqb P Cn.

In this section we consider a method that does not work directly with fpAq.
We recall Definition III.5: fpAq “ ppAq where p is the Hermite interpolation
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polynomial determined by values of f on ΛpAq such that the degree of p is the
degree of the minimal polynomial of A. The minimal polynomial of A is the
unique monic polynomial ψA of lowest degree such that ψApAq “ 0:

ψAptq “
s
ź

i“1

pt´ λiq
li , 0 ď li ď ni

where s is the number of distinct eigenvalues and ni the size of the largest
Jordan block.

Theorem III.10: Let f be defined on tλi, liu and ψA the minimal polynomial of
A. It holds fpAqb “ qpAqb for the unique Hermite interpolation polynomial q
with degree

degpqq ă
s
ÿ

i“1

li “ degψA,b

that satisfies the interpolation condition

qpjqpλiq “ f pjqpλiq, j “ 0, . . . , li ´ 1, i “ 1, . . . , s.

Recall the Krylov subspace

KkpA, bq “ spantb, bA, . . . , Ak´1bu “ spantqpAqb, ; degpqq ď k ´ 1u.

With Theorem III.10 we get fpAqb P KdpA, bq, d “ degpψA,bq.

Krylov subspace method

We generate Qk P Cn,k with orthonormal columns such that rangepQkq “
KkpA, bq via an Arnoldi process (recall Section II.2.3)

AQk “ QkHk ` hk`1,kqk`1e
T
k , QH

kAQk “

„

@
@

@
@
@



.

We always set q1 “ b{}b}. We look for fpAqb « y P KkpA, bq. The Arnoldi
approximation is given by

fk “ QkfpHkqQ
Hb. (III.18)

f can be effectively computed on Hk P Ck,k by any of the methods discussed
before. fk is exact when (clearly) k “ n or k “ degpψA,bq.
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Theorem III.11: Let Qk, Hk be given from the Arnoldi process w.r.t A and b.
Then

fk “ QkfppHkqQ
H
k b “ rpk´1pAqb

where rpk´1 is the unique polynomial of degree ď k ´ 1 that interpolates f on
ΛpHkq.

This procedure works well if f is in some sense well approximable by polyno-
mials. In practice, this converges often slow (many Arnoldi steps) for several
fpAq. We essentially get a polynomial approximation.

When to stop the Arnoldi process?

• Relative change }fk´fk´1}

}fk}
ă ε

• Special for eAb: }eb´ fk}2 « }b}2hk`1,k|e
T
k eHke1| ă ε

Extension: rational Krylov subspaces (of Section II.2.3)

We consider

rangepQkq “ RKkpA, b, sq

“ span
!

ps1I ´Aq
´1b, ps1I ´Aq

´1ps2I ´Aq
´1b, . . . ,

k
ź

i“1

psiI ´Aq
´1b

)

with si P C. Let Tk “ QT
kAQk ‰

„

@
@

@
@
@



. We generateQk by rational Arnoldi-

process
fpAq « fRAk “ QkfpTkqQ

H
k b.

Theorem III.12: It holds
fRAk “ rRAm pAqb,

where the rational function rk interpolates f at ΛpTkq.

Often roots of rkpAq “ ΛpTkq, poles ts1, . . . , sku make faster convergence
compared to normal Arnoldi approximation. The selection of the poles ts1, . . . , sku,
however, is not trivial (cf. comments in Section II.3.5) and is typically connected
to rational approximation of f . For the special case s2j “ 0, s2j`1 “ 8 we use
the extended Krylov subspace

EKkpA, bq “ KpA, bq YKkpA
´1, A´1bq.
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It can be shown that this works well for the "Markov" function

fpzq “

ż 0

´8

dγpxq

z ´ x
,

where γ is a measure such that the integral converges for z P Czp´8, 0s, for
example

fpzq “ z´
1
2 “

ż 0

´8

1

z ´ x

dx

Π
?
´x

.
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Goal: fast and accurate approximation of matrix factorizations and "important"
subspaces, when traditional approaches are no longer feasible or become com-
putationally too demanding (CPU time, memory).

Motivation often comes from big data/ data mining applications:

• enormous amount of data and consequently, large matrices which may
not fit into fast memory,

• dense data/ unstructured sparsity (contrast to discretization matrices with
structured sparsity)

• NLA algorithms often aim at best possible accuracy„machine precision.
This is unnecessary if data are uncertain/ highly inaccurate!

Randomized algorithms do not manipulate the large data matrices. They usu-
ally require matrix-matrix or matrix-vector multiplications, similar to Krylov-subspace
methods, but come with the claim of being more robust and better parallelizable.

RNLA exploits that matrices are often of low numerical rank: Let A P Rnˆm,
then A « BC, B P Rnˆk, C P Rkˆm, k ! m,n. In other words,

A “ BC ` E, }E} ď ε (IV.1)

for a small ε. This leads to two computational problems:

1. The fixed precision low-rank approximation problem:
Find B, C of minimal rank, such that

}A´BC} ď ε. (IV.2)

Hence, k “ kpεq, i.e. the rank k depends of ε.

2. The fixed rank (low-rank) approximation problem:

min
BPRnˆk
CPRkˆm

}A´BC} “: ε. (IV.3)

Hence, ε “ εpkq, i.e. the precision ε is dependent on the rank k.

Recall: if } ¨ } “ } ¨ }2, } ¨ }F, the SVD yields solutions to both problems: for
given A P Rnˆm, let its SVD be given by

A “ UΣV T “
“

U1 U2

‰

»

—

—

—

—

—

—

—

—

–

σ1

. . .
σr

0
. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

„

V T
1

V T
2



, (IV.4)
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where σ1 ě ¨ ¨ ¨ ě σr ą 0 and Σ1 :“ diagpσ1, . . . , σrq. The problem (IV.2) is
(for } ¨ }2) solved by

A “ U1Σ1V
T

1 “: U1W
T
1 pW1 :“ V1Σ1 P Rmˆrq

for ε “ 0. For ε ą 0 it is solved by

B “ rU1 “
“

u1 . . . uk
‰

and ĂW1 “
“

w1 . . . wk
‰

where
k “ min

jPt1,...,ru
tj : σj`1 ď εu

( for } ¨}F we set k “ minjPt1,...,rutj :
b

σ2
j`1 ` ¨ ¨ ¨ ` σ

2
r ď εu). Also, problem

(IV.3) is solved by ε “ σk`1 for } ¨ }2. This is true since the truncated SVD
rU1
ĂWT

1 yields the best rank-k approximation to A w.r.t. } ¨ }2,} ¨ }F with the error

bound σk,
b

σ2
k`1 ` ¨ ¨ ¨ ` σ

2
r respectively.

Now, recall that rangepU1q “ rangepAq and kerpAq “ rangepV2q and the
columns of U1 and V2 are orthonormal: UT

1 U1 “ Ir, V T
2 V2 “ Im´r. So let

us look at low-rank factorizations A « BC, where B is orthonormal (note:
rangepBq « rangepAq). The idea is now to compute an SVD (or QR-decomposition,
Eigenvalue Decomposition(EVD)) by a 2-step procedure:

Step1: Compute an orthonormal approximate basis for rangepAq, i.e. compute
Q P Rnˆk orthonormal, such that rangepAq « rangepQq which implies
that A « QQTA. (Remark: if Q were the factor of an exact QR factor-
ization of A, i.e. A “ QR, then QTA “ R and we would recover the QR
factorization.)

Step 2: Given Q from Step 1, use it to compute the desired matrix factorization.

Example (SVD - Step 2): Compute B :“ QTA (cheap, since Q has few
columns) which yields directly a low-rank factorization A « QB. Then com-
pute an SVD of B: B “ UBΣBV

T
B (fast, B P Rkˆm) and set U :“ QUB, Σ “

ΣB, V “ VB .

ñ A « UΣV T

Example (EVD - Step 2): Let A “ AT and let Q be as above. For the EVD,
compute B :“ QTAQ and it follows B “ BT , then the eigenvalue decomposi-
tion of B is cheap as the matrix is small: B “ U∆UT, ∆ diagonal,

ñ A « QQTAQQT “ QBQT “ QU∆UTQT “ pQUq∆pQUqT,
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which yields the dominant eigenvalues and -vectors of A. Assume now that
Y “ AΩ and rangepQq “ rangepY q. Hence

BQTΩ “ QTAQQT
loomoon

«A

Ω

ñ BQTΩ « QTAΩ “ QTY.

So the best approximation to B can be obtained by solving the least-square
problem

min
rB
} rBpQTΩq ´QTY }F. (IV.5)

Call the least-square solution to (IV.5) pB and replace B by pB in the EVD.

Remark IV.1: In the eigenvalue decomposition example we show a way to com-
pute the necessary matrix B without touching A again. Such an algorithm is
called a single-pass algorithm, as the data matrix A is only used once (in Step
1). It is also possible to devise single-pass algorithms for nonsymmetric A.

Before now turning to the "randomized" aspect, observe that our fixed preci-
sion/ rank approximation problems can be formulated using orthonomality re-
quirements as follows:

• fixed precision approximation (given ε ą 0)

#

find Q with k “ kpεq orthonormal columuns such that
}A´QQTA} ď ε

(IV.6)

• fixed rank approximation (given 0 ă k ă mintm, nu)

#

find Q with orthonormal columuns such that
}A´QQTA} « minrankpXqďk }A´X}

(IV.7)

So, now how to address Step 1?

This is the key step in RNLA: choose a suitable random Ω P Rmˆk`p (p ě
0 is an oversampling parameter ). Then with Y :“ AΩ, the rangepY q is a
good approximation to the rangepAq. Q can then be obtained from Y using a
standard QR factorization, or modified Gram-Schmidt.
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Algorithm 7 Step 1
Input: A P Rmˆn, target rank k ă mintm, nu, oversampling parameter p.
Output: Q P Rmˆk`p such that QTQ “ Ik`p and rangepQq « rangepAq.

1: Draw random nˆ pk ` pq test matrix Ω.
2: Compute Y :“ AΩ.
3: Set Q :“ orthpY q.

Why does is work?

Assume rankpAq “ k, and let w be a random vector. Then y “ Aw is a sample
from rangepAq. Repeat this k times:

ypjq :“ Awpjq, j “ 1, . . . , k, wpjq randomly chosen.

Very likely, typ1q, . . . , ypkqu Ă rangepAq is linearly independent. Hence, for
Y “ ryp1q, . . . , ypkqs, it holds likely that rangepY q “ rangepAq.

Now assume A is not low rank exactly, but approximately, A “ B ` E, where
rankpBq “ k, }E} is small. We can expect that with p “ 0,

ypjq :“ Awpjq “ Bwpjq ` Ewpjq, j “ 1, . . . , k ` p, (IV.8)

leads to Y “ ryp1q, . . . , ypkqs with rangepY q “ rangepBq « rangepAq as Ewpjq

likely moves ypjq slightly outside the rangepBq. Hence, an enriched space with
p ą 0 has better chance to recover rangepBq.

Note: usually 5 ď p ď 10 suffices! With this, we obtain a prototype algorithm
for Step 1, given in Algorithm 7. The matrix Ω is often a Gaussian, i.e. wij draw
independently from normal distribution. Caution: Y may be ill-conditioned, so
care must be taken when orthonormalizing its columns.

How good is the random SVD (first example and Algorithm 7)?

Theorem IV.2: Let A P Rmˆn. Run Algorithm 7 with k ě 2, p ě 2, and k` p ď
mintm, nu, choose Ω as standard Gaussian test matrix (wij „ N p0, 1q). Then

Ep}A´QQTA}2q ď

„

1`
4
?
k ` p

p´ 1

a

mintm, nu



σk`1, (IV.9)

where σk`1 is the pk`1q-th singular value of A, is the best approximation error.

How likely is this approach to fail?

Theorem IV.3: Under the assumptions of Theorem IV.2 and p ě 4,

P
´

}A´QQTA}2 ď
”

1` 9
a

k ` p
a

mintm, nu
ı

σk`1

¯

ě 1´ 3p´p
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(p “ 5 : p´p “ 3.2 ¨ 10´4, p “ 10 : p´p “ 10´10 ñ choose oversampling
parameter 5 ď p ď 10 justified!).

A posteriori error estimation: The exact error is }pI ´ QQTqA}. Can we get
information by computing }pI ´QQTqAwpjq}, j “ 1, . . . , R?

Theorem IV.4: Let Q be computed with Algorithm 7, Ω standard Gaussian test
matrix, and let wpjq, j “ 1, . . . , l standard Gaussian test vectors. Then

}pI ´QQTqA}2 ď 10

c

2

π
max
j“1,...,l

}pI ´QQTqAwpjq}2 (IV.10)

with probability 1´ 10´l.

So for l “ 10 we got a very reliable error estimate! If the error is too large,
increase p.

Now, as a final step we derive a prototype algorithm (Algorithm 8) for the ran-
domized SVD, where we add a few q “ 1, 2, . . . steps of power iteration to
Step 1 to derive Y more into the direction of the dominant left singular vec-
tors of A( = eigenvectors of AAT “ UΣV TV ΣTUT “ U pΣV T). This requires
p2q ` 2qkmA `Opk2mq flops, where mA “ cost for applying A, AT once to a
vector.

How does it perform?

Theorem IV.5: Let 2 ď k ď 1
2 mintm, nu. Then the result of Algorithm 8

satisfies

Ep}A´ UΣV T}q ď

«

1` 4

c

2 mintm, nu

k ´ 1

ffp2q`1q´1

σk`1

looooooooooooooooooooooomooooooooooooooooooooooon

“:δk

. (IV.11)

Truncating to a rank k factorization yields

Ep}A´ UΣV T}q ď σk`1 ` δk. (IV.12)
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Algorithm 8 Randomized SVD
Input: A P Rnˆm, target number k of singular values, small integer

q (q “ 1, 2).
Output: Rank 2k factorization A « UΣV T, U and V have orthonormal

columns, Σ “ diagprσ1, . . . , rσ2kq, rσj ě 0.
Step 1:

1: Generate a Gaussian test matrix Ω P Rmˆ2k.
2: Form Y “ pAATqqAΩ.
3: Set Q “ orthpY q.

Step 2:
4: Form G :“ QTA.
5: Compute SVD G “ rUΣV T.
6: Set U :“ QrU .
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So far we considered 2D arrays A P Rnˆn (matrices). In numerical methods,
matrix-factorizations are a very important ingredient. For instance, recall the
singular value decomposition (SVD)

A “ UΣV T, U P Rnˆn, Σ “

„

Σ1 0
0 0



P Rnˆn, V P Rnˆn,

with UTU “ I, V TV “ I, Σ1 “ diagpσ1, . . . , σrq , σ1 ě ¨ ¨ ¨ ě σr ą 0,
r “ rankpAq. The SVD can be used to set a low-rank approximation

A « Up:, 1 : kqΣp1 : k, 1 : kqV p:, 1 : kqT, k ď r.

In practice, d-order tensors ( d-dimensional arrays)

A P Rn1ˆ¨¨¨ˆnd , d ě 2

are more and more important. Our goal is to get an idea of SVD-type factoriza-
tions for tensors. Recall the vectorization operator for A P Rnˆm:

vecpAq “

»

—

–

Ap :, 1q
...

Ap :, mq

fi

ffi

fl

P Rmnˆ1.

This operator transforms matrices into vectors (tensors of order 2 to order 1).
The "matricization" or "unfolding" of a d-order tensor A generalizes this con-
cept:

Definition V.1: Let A P Rn1ˆ¨¨¨ˆnd . The k-mode matrix matricization/ unfolding

Apkq P Rnkˆpn1...nk´1nk`1...ndq, k “ 1, . . . , d

has the element an1,...,nd at the position nk, 1`
řd
j“1
j‰k

ˆ

pnj ´ 1q
śj´1

m“1
m‰k

nm

˙

.

Applications:

• A P Rnˆm represents an n ˆ m image, so A P RnˆmˆT represents a
sequence (video) of T images.

• Physical problems in several dimensions:

– multibody problem,

– particle physics,

– quantum physics,

each part has 3 spatial dimensions ` time ` "quantum-numbers" (spin).
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Lets consider definition V.1 for order 3 tensors A P Rn1ˆn2ˆn2 .

Then the 1-mode matricization is

A1 A2 An3
Ap1q “ P Rn1ˆn2n3

the 2-mode matricization is

AT
1 AT

2 AT
n3

Ap2q “ P Rn2ˆn1n3

and the 3-mode matricization is

Ap3q “

»

—

—

—

–

vecpA1q
T

vecpA2q
T

...
vecpAn3q

T

fi

ffi

ffi

ffi

fl

P Rn3ˆn1n2 .

Example: Let

»

–

1 4 7 10
2 5 8 11
3 6 9 12

fi

fl and

»

–

13 16 19 22
14 17 20 23
15 18 21 24

fi

fl be the frontal slices of

A P R3ˆ4ˆ2. Then the matricizations are

Ap1q “

»

–

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

fi

fl,

Ap2q “

»

—

—

–

1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

fi

ffi

ffi

fl

and

Ap3q “

„

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24



.

Definition V.2: The multilinear rank of A P Rn1ˆ¨¨¨ˆnd is the tuple

pr1, . . . , rdq :“ rrank
`

Ap1q
˘

, . . . , rank
`

Apdq
˘

s.

The example has the multilinear rank p2, 2, 2q.

Let M P Rmˆnk , k “ 1, . . . , d and let Bpkq “ MApkq P Rmˆpn1...nk´1nk`1...ndq.
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Bpkq can be folded back into a tensor B P Rn1ˆ¨¨¨ˆnk´1ˆmˆnk`1ˆ¨¨¨ˆnd . This is
called k-mode matrix multiplication:

B “M ˝k Aô Bpkq “MApkq, M P Rmˆnk .

Relation to vectorization:

vecpM ˝1 Aq “ vecpMAp1qq

“ pIn2...nd bMqvecpAp1qq

“ pInd b ¨ ¨ ¨ b In2 bMqvecpAp1qq.

In general it holds

vecpM ˝k Aq “ pIn1...nk´1nk`1...nd bMqvecpApkqq

“ pI bMq
ź

σk

vecpAq,

where σk are the correct permutations.

Towards a higher order SVD

We recall the SVD A “ UΣV T, U P Rn1ˆr, V P Rn2ˆr, Σ P Rrˆr. We obtain

vecpAq “ pV b UqvecpΣq.

The Tucker decomposition of a three dimensional tensor is defined as

A “ U ˝1 V ˝2 W ˝3 C “: pU, V,W q ˝ C

for U P Rn1ˆr1 , V P Rn2ˆr2 , W P Rn3ˆr3 orthogonal and the "core-tensor"
C P Rr1ˆr2ˆr3 , and leads to

vecpAq “ pW b V b UqvecpCq.

f

A
“

U C

W

V

It follows

Ap1q “ UCp1qpW b V qT

Ap2q “ V Cp2qpW b UqT

Ap3q “WCp3qpV b Uq
T.
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We derive the higher order SVD (HOSVD) for the truncation to prescribed
multirank pr1, r2, r3q:

1. Compute the SVDs of the k-matricizations

Apkq “ pUkpΣk
pV T
k , k “ 1, 2, 3.

2. Truncate Uk :“ pUk, Vk :“ pVk, Σ :“ pΣk.

3. Form the core tensor vecpCq “ pU3 b U2 b U1qvecpAq.

We obtain a truncated version of A :“ pU3 b U2 b U1qvecpCq. Note that C P

Rr1ˆr2ˆr3 has no special (e.g.diagonal) structure. The generalization to order-
d tensors is straight forward. This is conceptually simple, but the memory is
intensive for C ( „ rd, r “ maxi“1,...,d ri). There exist different tensor formats
(hierachical Tucker, canonocal polyadic decomposition, tensor trains, . . . ) to
reduce the memory demands.
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