CHAPTER |

Introduction

2 Chapter I. Introduction

In this lecture, we discuss theory, numerics and application of advanced prob-
lems in linear algebra:

(1) matrix equations (example: solve AX + X B = (),
(Il matrix functions: compute f(A) or f(A)b, where A e C"*", be C",
(IV) randomized algorithms.

The main focus is on problems defined by real matrices/vectors. In most chap-
ters, we have to make the distinction between problems defined by

« dense matrices of small /moderate dimensions and

- large, sparse matrices, e.g. A € C"*", n. > 10 or greater, but only O(n)
nonzero entries, often from PDEs.

We first have to review two important standard problems in numerical linear
algebra, namely solving linear systems of equations and eigenvalue problems.

.1 Linear systems of equations

We consider the linear system
Az =D, (1.1)

with A € C™*™ (R™*™), b e C™(R™). The linear system (l.1) admits a unique
solution, if and only if

« there exists an inverse A~!
« det(A) #0
* no eigenvalues/ singular values are equal to zero

I.1. Linear systems of equations 3

Numerical methods for small and dense A ¢ C"**"

Gaussian Elimination (LU-factorization):

We decompose A such that

A NEEN

We obtain, that
(1) & LUz=b = z=U YL 'b).
Hence, we solve (I.1) in two steps:
1. Solve Ly = b via backward substitution.
2. Solve Uz = y via backward substitution.

This procedure is numerically more robust with pivoting PAQ = LU, where
P, Q € C™" are permutation matrices. This method has a complexity of O(n?)
and is, therefore, only feasible for small (moderate) dimensions.

QR-decomposition:

We decompose A into a product of @) and R where @ is an orthogonal matrix
and R is an upper triangular matrix leading to the so-called Gram-Schmidt or
the modified Gram-Schmidt algorithm. Numerically this can be done either with
Givens rotations or with Householder transformations.

Methods for large and sparse A € C"*"

Storing and computing dense LU-factors is infeasible for large dimensions n
(O(n?) memory, O(n?) flops). One possibility are sparse direct solvers, i.e.
find permutation matrices P and @, such that PAQ = LU has sparse LU-
factors (cheap forward/ backward substitution and O(n) memory).

Example: We consider the LU-factorization of the following matrix

[IS

With the help of permutation matrices P and @), we can factorize

oL

4 Chapter I. Introduction

Algorithm 1 Arnoldi method

Input: Ae C"*" beC"

Output: Orthonormal basis @y, of (1.2)
1: Setq1 = H—Z” and Qg := [q1]-
2. forj=1,2,... do
3 Setz = AQj.

4: Setw =z — Qj(Q?z).

5

6

7:

Set dj+1 = m

Set Q11 = [Qj,qj+1]-
end for

Finding such P and @ and still ensuring numerical robustness is difficult and
based e.g. on graph theory.

In MATLAB, sparse-direct solvers are found in the "\"-command: = = A\b or
lu(A)-routine. (Never use inv(A)!)

Iterative methods

Often an approximation z ~ x is sufficient. Hence, we generate a sequence
x1,T9,...,T by an iteration, such that

lim zp =2 = A"'b
k—o0

and each xi, k > 1 is generated efficiently (only O(n) computations). Of
course, we want x, ~ x for k < n.

Idea: Search approximated solution in a low-dimensional subspace Q; < C”,
dim(Qy) = k. Let O, be given as range(Q;,) = Qy, for a matrix Qj € C"**.

A good choice of the subspace is the Krylow-subspace
Qi = Ki(A,b) = span{b, Ab, ..., A¥"1b}. (1.2)

It holds for z € Ky(A,b), that z = p(A)b for a polynomial of degree k£ — 1
p € II;_1. An orthonormal basis of K. (A, b) can be constructed with the Arnoldi
process presented in Algorithm 1.

The Arnoldi process requires matrix-vector products z = Aq. These are cheap
for sparse A and therefore feasible for large dimensions.

We find an approximation z;, € x¢ + Qy, by two common ways:

+ Galerkin-approach:
Impose r = b — Az L range(Qr) < (QLAQk)yx = QM.

We have to solve a k-dimensional system = low costs.

1.2. Eigenvalue problems (EVP) 5

* Minimize the residual:

min b — Azy
zperange(Qr)

in some norm. If 2 is not good enough, we expand Q.

There are many Krylov-subspace methods for linear systems. (Simplification
for A = AH: Arnoldi v~ Lanczos)

In practice: Convergence acceleration by preconditioning:
Ar=b <= P lAz=P 1
for easily invertible P € C™™ and P~! A "nicer" than A (~~» Literature NLA I).

Another very important building block is the numerical solution of eigenvalue
problems.

.2 Eigenvalue problems (EVP)

For a matrix A € C™™ we want to find the eigenvectors 0 # x € C™ and the
eigenvalues A € C such that

Ax = \x.

The set of eigenvalues A(A) = {\1,...,\,} is called the spectrum of A.

Small, dense problems:

Computing the Jordan-Normal-Form (JNF)
A1
XTTAX = J = diag(Js, (M), -, Jo (M), s (Ag) = SR
Aj
to several eigenvalues and eigenvectors is numerically infeasible, unstable
(NLAI).

Theorem 1.1 (Schur): For all A € C"*" exists a unitary matrix ¢ € C™"
(QHQ = I), such that

A *
Q"AQ=R= .
0 An

Schur form of A

6 Chapter I. Introduction

with A; € A(A) in arbitrary order.

The Schur form can be numerically stable computed in O(n3) (NLA 1) by the
Francis-QR-algorithm. It is this basis for dense eigenvalue computations. In
MATLAB we use [Q, R] = schur(A). Additionally, the routine eigs(A) uses the
Schur form. In general, the columns of (Q are no eigenvectors of A, but Q. =
Q(:,1 : k) spans an A-invariant subspace for all k:

AQp = QiRy, foramatrix Ry e C*** with A(Ry) < A(A).

But because of the O(n?®) complexity and O(n?) memory, the Schur form is
infeasible for large and sparse matrices A.

Eigenvalue problems defined by large and sparse matrices A can again be
treaded with the Arnoldi-process and projections on the Krylov-subspace
Kr(A,b) = range(Qp). We obtain the approximated eigenpair
T = Qryr ~ z, p =~ X by using the Galerkin-condition on the residual of
the eigenvalue problem:

i, = Az — pay Lrange(Qr) < Qi AQwyk = LYk,

which means (i, y) are the eigenpairs of the k£ x k-dimensional eigenvalue
problem for QEAQk. This small eigenvalue problem is solvable by the Francis-
QR-method. This is the basis of the eigs(A) routine in MATLAB for computing
a few (« n) eigenpairs of A.

Summary: Solving linear systems and eigenvalue problems is for small or large
and sparse matrices A no problem!

cHAPTER ||

Matrix Equations

8 Chapter Il. Matrix Equations

II.1 Preliminaries

Up to now we know linear systems of equations
Az = b,

where A € R"*™ and b € R™ are given and = € R" has to be found.

In this course we consider more general equations
F(X) =0, (1.1)

where ' : R7*" — RP*$ (C € RP*¢ is given, and X € R?*" has to be found.
Equations of the form (I.1) are called algebraic matrix equations.

1.1 Examples of Algebraic Matrix Equations

1) F(X) = AXB,i.e., (Il.1)is

AXB=C.

2) Sylvester equations:

AX +XB=C,

3) algebraic Lyapunov equations:

a) continuous time:

AX + XAT = -BBT, Xx =XT,

b) discrete time:

AXAT - x = —BBT

Y

4) algebraic Riccati equations:

a) continuous time:

ATX + XA—-XBR'BTX +cTQCc =0, X =XT,

b) discrete time:

ATXA - X — (ATXB)(R+ B"XB) Y(BTX A)
+cTQc =0, x=Xx7T.

II.1. Preliminaries 9

c) non-symmetric

AX + XM — XGX +Q = 0.

Examples 1) — 3) are linear matrix equations, since the map F'is linear. Equa-
tions of the type 4) are called quadratic matrix equations. The goal of this
lecture is to understand the solution theory as well as numerical algorithms for
the above matrix equations. Our focus will be on the equations 2),3a) and 4a)
since these are the equations mainly appearing in the applications.

The term continuous-/discrete-time in 3a,b), 4a,b) refers to applications in con-
text of continuous-time dynamical systems

x(t) = Ax(t), teR
or discrete-time dynamical systems
Tr+1 :Al'k, keN7

respectively. More info in courses on control theory or model order reduction.

There are also variants of the above equations containing X7 or X — these
will not play a prominent role here. Furthermore, there are matrix equations
where X = X (t) is a matrix-valued function and F' contains derivative informa-
tion of X. Such equations are called differential matrix equations, for example
the differential Lyapunov equation

X(t)+ ADTX(t) + X(#)A(t) + Q(t) = 0,

where A, Q € C([to, t;],R™"),and X € C([to, t¢], R™*™) with Q(t) = Q(t)T >
0 and X (t) = X (¢)T forall t € [ty, t¢] and the initial condition X (to) = Xj.

10 Chapter Il. Matrix Equations

1.2 Linear Matrix Equations

In this chapter we discuss the solution theory and the numerical solution of
linear matrix equations as defined precisely below.

Definition II.1 (linear matrix equation): Let A; € CP*%, B; € C™**, and C €

CP*s ¢ =1, ..., k be given. An equation of the form
k
> AXB;=C (1.2)
i=1

is called a linear matrix equation.

I.2.1 Solution Theory

To discuss solvability and uniqueness of solutions of (I1.2) we need the following
concepts.

Definition 1.2 (vectorization operator and Kronecker product): For X =
r11 ... Tim
[21 ... @n] =] : . | eC™™andY e CPx4

Tnl .- Tpm

a) the vectorization operator vec : C"*™ — C™™ is given by

1
vee(X):=| [,
Lm
b) the Kronecker product is given by
1‘11Y 000 .Z'le
XY = : : e Cnpxma,
Tn1Y ... TpmY

Lemma ll.3: For 7 € C**™ O e C™*P, and R € CP*" it holds

vec(TOR) = (R @ T) vec(0O)

I1.2. Linear Matrix Equations 11

(Note that it has to be R7T in the above formula, even if all the matrices are
complex.)

Proof. Exercise. O

By this lemma, and the obvious linearity of vec(-), we see that

k k
Z A XB=C < Z (B ® A;) vec(X) = vec(C),
i1 i1 ~— ~—
—_— X B
A
and we find that (11.2) has a unique solution if and only if the linear system of

equations AX = B has one. Equivalently, A has to be nonsingular.

Theorem Ill.4: The linear matrix equation (11.2) with ps = ¢r has a unique solu-
tion iff all eigenvalues of the matrix

k
A= Z (Bf ® 4;)

o=l

are non-zero.

In the following we will focus on the case k < 2and p = s = ¢ = r, since
Lyapunov equations (k = 2, Ay = A, By = Ay = I,,, B, = AT and Sylvester
equations (k =2, Ay = A, By = B, Ay = I,,, By = I,;,) are important special
cases of interest in applications.

To check the above condition for unique solvability, we do not want to evaluate
the Kronecker products. Therefore, we now derive easily checkable conditions
based on the original matrices.

Lemmalll.5: a) Let W, X, Y, Z be matrices such that the products W X and
Y Z are defined. Then W ®Y)(X®Z) = (WX)® (YZ).

b) Let S, G be nonsingular matrices. Then S ® G is nonsingular, too, and
SRG) =516

c) If Aand B, as well as, C' and D are similar matrices then A® C and B® D
are similar (A similar to B if 3Q nonsingular s.t. A = Q=1 BQ).

d) Let X e C"*™ and Y € C™*™ be given. Then

AX®Y) = | re AX), pe A(Y)}.

12 Chapter Il. Matrix Equations

Proof. Exercise. O

Theorem 11.6 (Theorem of Stephanos): Let A € C"*™ and B € C™*™ with
A(A) ={\1, ..., \u} A(B) = {1, ..., um} be given. For a bivariate polyno-
k

mial p(z,y) = Y, cjz'y’ we define by
3,j=0

k
P(A,B) :=) ci;(A'® BY)

i,j=0
a polynomial of the two matrices. Then the spectrum of p(A, B) is given by

A(p(A,B)) = {p(Ar,ps) [r=1,...,n, s=1, ..., m}.

Proof. Use JNF or Schurforms of A, B + Lemma Il.5. O

Now we are ready to consider our preferred special cases of (11.2).
a) AXB=2C:
A=BT® Ainvertible < A - #0 VYAe A(A)and e A(B)

s A#0andpu#0 YAe A(A)and pe A(B)
< both A and B are nonsingular.

b) continuous-time Sylvester equation AX + XB = C, where A € C"*",
BeCm™m O, X e C"*™;

A=1,0 A+ BT ®I,invertible < X\ +pu#0 VYAeA(A)and e A(B)
< A(A) nA(-B) = &.

c) continuous-time Lyapunov equation AX + X A® = W, where A, X € C*",
W =WwHeCmm:
A=1,0 A+ AR]I, invertible < A(A) n A(—A") = &.
For example, this is the case when A is asymptotically stable.

d) discrete-time Lyapunov equations — exercise.

The following result gives some useful results about the solution structure of
Sylvester equations.

I1.2. Linear Matrix Equations 13

Theorem I1.7: Let A € C"*", B € C™*" with A(A) < C_,A(B) < C_. Then
AX + XB = W has a (unigue) solution

0’6}
X =— JeAtWeBtdt
0

Proof. Exercise. O

From now on

AX + XA* =W, W =W* (11.3)

Definition 11.8 (controllability): Let A € C"*™ and B € C"*™. We say (A, B) is
controllable if rank[B, AB, ... A" 'B] = n.

Lemma I1.9: The above controllability condition is equivalent to

rank[A — A, B] =nforall A\ e C
<~ y*B#0 Vy#0: y*A=y"\ (left. eigenvecs of) A

Proof. We first prove that rank[A — A\I, B] = n V¥ € C is equivalent to Def-
inition 11.8. Assuming that rank|A — \I, B] < n for a A € C then there exists
aw # 0 such that w'[A — A\I, B] = 0 which means that w? (A — \I) = 0
and w? B = 0 and that means that w”[B, AB, ... A" 'B] = 0 which means
(A, B) is not controllable. Assuming (A, B) is not controllable and therefore
rank[B, AB, ... A"~ B] < n we define a matrix M contains a basis of the im-
age of [B, AB, ... A»~' B]. Then there is a matrix M such that T = [M, M] is
invertible and

A=T7AT = AO” 22] (11.4)
B=T"'B= [%1] (11.5)

Let X be an eigenvalue of A, and wys a left eigenvector. Then

w = [~0 }T_lsﬁ().
Wo2

14 Chapter Il. Matrix Equations

It also holds that w? A = Aw! and w’ B = 0 and therefore rank[A —)i, B] not
full. The proof of the equivalence is basically also done within this proof. O

Theorem 11.10: Consider Lyapunov equation (I1.3) with W = W* = —BBT <
0, B e R,

a) For A(A) « C_: (A, B) controllable < 3 unique sol. X = X* > 0.

b) Let (A, B) be controllable and assume there 3 unique sol. X = X* > 0.
Then A(A) c C_.

Proof. a) If the spectrum of A is in the left half plane and W = W* then there
exist a unigue symmetric solution of the Lyapunov equation. What is left to
prove is the equivalence of (A, B) being controllable and the solution being
positive definite. The solution is given by

o0
X = JeAtBBTeA*tdt
0

which is positive if and only if (A, B) are controllable.
b) Take an eigenvalue A € A(A) and a corresponding left eigenvector y. Then
0> —y*BBTy = y*AXy + y* X A%y = (A + Ny* Xy

Since X = X* > 0 we must have that A + A\ = 2Re) < 0 and since \ was
arbitrary that A(A) < C_

O

I1.2. Linear Matrix Equations 15

I1.2.2 Direct Numerical Solution

We have seen that linear matrix equations are equivalent to linear systems.

Why do we not just apply a linear solver? Consider a (real) Lyapunov eq2uation

where we obtain the system matrix A = [, A + AR I, € R™**n° For
computing an LU-factorization of .A and a forward/backwards substitution we
need approximately 2 (n?)® = 2n FLOPS and n* memory. This is only feasible
for small n. If n 50, then this is already prohibitively expensive (even if we
exploit the structure and symmetry).

Therefore, our first goal is to develop a basic algorithm with complexity O(n?)
for moderately sized linear matrix equations.

The Bartels-Stewart Algorithm

The idea of this method is the transformation of the matrix A into Schur form.

The Schur form can be computed in a numerically stable fashion by the QR
algorithm and it is the backbone of many dense eigenvalue algorithms (MAT-
LAB schur).

Consider (11.3) with A(A) n A(—A) = & and let Q7 AQ = T with be the
(complex) Schur form of A.

Premultiplication of (I1.3) by Q¥ and postmultiplication by @ leads to
QTAXQ+Q"XATQ = Q"WQ
< Q"AQQ"XQ+Q"XQQ"ATQ = Q"WQ
;_V__J — —
=:X =IW
e TX +XTH =W (11.6)
We partition this in the form
B [X X [X X[0 [W,
0 Ts| X X; X8 x| |\TH TH] (W oW
where T} € C(=Dx(n=1) 7, ¢ C*~1 Ty e C. Thus we get
T X1 + o X8 + X118 + Xomf! = W,
T1 Xy + To X3 + XoTH = W,
T5X3 + X3T;I = Wg,
X1+ X\ TH =W, — o X — XoTH) (n—1) x (n—1)

= { Ti Xy 4 XoT3 = Wy — T X3, (n—1)x1
(Tg —|—T3)X3 = Wg. 1x1

16 Chapter Il. Matrix Equations

Algorithm 2 Bartels-Stewart algorithm (complex version)

Input: A, W e C™" with W = WH,
Output: X = X solving (I1.3).

while k£ > 1 do
Solve (I.7a) with W3 = W(k + 1,k +1)and T3 = T(k + 1,k + 1) to
obtain X (k + 1,k + 1).

9: Solve (I.7b) with T}y = T(1: k,1: k), To = T(1: k,k + 1), Wo = W(1
k,k+1),and X3 = X(k + 1, k+1) to obtain X (1: k,k + 1).

10: SetW =W(1:k,1:k)—ToXs — XoTH

11: Setk:=k— 1.

12: end while

13: Solve (Il.7c) with Ty = T(1,1) and Wy = W (1,1).

14: Set X := QXQ".

1: Compute T = QHAQ with the QR algorithm.
2: if diag(T) n diag(—T") # & then

3: STOP (no unique solution)

4: end if

5 SetW := QIWQ.

6: Setk:=n—1.

7:

8:

Now we get

W
X3= 2> (I1.7a)
T35+ T3

where T3 + T'3 # 0 since T3 € A(A) ¢ iR. Next we obtain
TiXo + XoT3 = Wo — Ty X3 =: W, (I1.7b)
which is a special Sylvester equation that is equivalent to the linear system
(T31p—1 + T1) Xo = Wa,

and can easily be solved by backward substitution. lts solution always exists
since A(Ty) n {~T3} = . It remains to solve the smaller (n — 1) x (n — 1)
sized 'triangular’ Lyapunov equation

T X, + X TH =W, — X2 - XomH = W, (I.7¢)

which is also solvable since A(T1) N A(=T) = @5 and W, = W{. This leads
to the complex Bartels-Stewart algorithm, see Algorithm 2. As a convention
we use MATLAB notation, i.e., we denote the section of a matrix A € C**"
consisting only of the rows r; to 5 and the columns ¢; to ¢o by A(ry : r9,¢1 :
co). If for example, 71 = 72, then we shortly write A(r1,¢; : c2).

I1.2. Linear Matrix Equations 17

Remark: a) In total this algorithm needs approximately
3203 ~ 25m% + 3nd + 30 + nd
M~ SY—~— Y~ S~——
Schur premult. postmult. while loop

complex floating point operations.

b) The algorithm uses only numerically backward stable parts and unitary
transformations and thus it can be considered backward stable.

c) The method is implemented in the MATLAB routine 1yap and in SLICOT in
SBO3MD (real version only).

d) The version for Sylvester equations works analogously (see exercise).

Major drawback: The algorithm uses complex arithmetic operations even if all
data is real. Luckily, it can be reformulated to use real operations only.

Theorem Il.11 (real Schur form): For every A € R™*™ there exists an orthogo-
nal matrix) € R™*" such that A is transformed to real Schur form, i. e.

Ty ... Tig

QTAQ =T = P I (11.8)
Tk

where fori = 1, ..., k, T;; € R'¥! (corresponding to a real eigenvalue of

AorT; = | % i e R?*? (corresponding to a pair of complex conjugate

eigenvalues «o; + i3; of A).

Proof. See the course on “Numerical Linear Algebra”. O

To this end, we replace the Schur form by the real Schur form (11.8). Then T3
may be a 2 x 2 block, i.e., Ts = [¢! {2 |. We obtain

t1 to||w1 X2 r1 x| |t1 t3 wp Wa
+ = :
t3 t4 T2 I3 T2 I3 tQ t4 w2 W3
This is equivalent to

w1 = t1x1 + toxg + t1x1 + toxoe = 2(t1$'1 + t2$2),
wo = t1x2 + toxs + t3x1 + t4x0 = t3x1 + (tl + t4)x2 + toxs,
wg = t3we + tyxs + tgxe + tyxs = 2(tsro + taxs).

18 Chapter Il. Matrix Equations

We can write this as a linear system of equations

t1 to 0

I %
ts t1+1ty to T9 w2
0 t3 (7 T3 %

Additionally, one can exploit the fact that 75 corresponds to a pair of complex
conjugate eigenvalues A\ 2 = a £iband 73 = [_ab Z which leads to

a b 0] |z o
-b 2a b T2 = | Wy
0 —-b all|=xs 5

Now (ll.7b) becomes

T Xs + X2T3T = WQ = V~V2 —T5 X3 € R™2%2,

(1.9)
Consider the partitions corresponding to the quasi-triangular structure of T3
x1 Wy
X2 : s W2 =)
Tp—1 Wk—1

In general we have z;, w; € R"*" where n;, ny, € {1,2}andi =1,..., k—1.
We now compute X, block-wise by progressing upwards from z;_1 to x1. It
holds

Tjjwy + x; Ty = bj — Z
h=j+1

h.l‘h=u~1j, j=k5—1,k‘—2,...,1.

For the solution of this Sylvester equation four cases have to be considered

a) n; = n; = 1: We obtain a scalar equation such that z; = w;/(T}; + T5).

b) n; = 2, ni, = 1: We obtain a linear system in R? with unique solution given
by

(Tj; + Tsla)x; = w;.

c) n; = 1, n; = 2: We obtain a linear system in R? with unique solution given
by

(Tj;Io + Ts)] =1 .

d) n; = 2, ny = 2: We obtain a linear system in R? with unique solution given
by

(12 ®Tj;) + (T3 ® Iz)) vec(w;) = vec(w;) -

I1.2. Linear Matrix Equations 19

Hence, we get X> and can set up a Lyap. eqn. for X; defined by 77. Repeat
whole process until 73 e Ror 7T} € R2*%2_ Then back-transform the solution.

Remark 11.12: The Sylvester equation (I1.9) can be solved alternatively by solv-
ing a linear system of the form

(T12 + oTh + ﬁ[n_g)Xg = WQ,

where Xy = [s,t], Wa = [y, 2] € R""2*2 and o, 3 € R (see exercise).

Hammarling’s Method

Now we consider (I1.3) with W = —BBT. By Theorem I1.10 we know that
X = XT > 0, provided that A(A) = C~ and the pair (A4, B) is controllable.
Sometimes it is desirable to only compute a factor U of the solution, i.e., X =
UUH with some matrix U. Later we will see that many further algorithms such
as projection methods for large scale matrix equations proceed with factors
rather than Gramians themselves.

Assume that we have already computed and applied the Schur decomposition
of A = Q¥ T(Q, analogously to (I1.6). So our starting point is
TX + XT" = —_BB" with X =Q"XQ, B=Q"B. (1.10)

Since X > 0, we also have X > 0 by Sylvester’s law of inertia. Our goal is to
compute upper triangular Cholesky factors U of X = UU*.

Partition

U= [i” = [%1 Z], Uecr =l yec ! 0<reR.

Hammarlings method computes (similar to B.S.) first 7 (scalar equation), then
u (LS of size n — 1), and finally U; as Cholesky factor oran — 1 x n — 1 Lyap.
equation defined by 7T;. As in B.S., repeat this until 77 € C, afterwards back-
transform U — QU. Complexity, stability, real version analog to BS. Details
here omitted.

Remark: lterative methods for small, dense Matrix Equations: There are sev-
eral, iterative methods computing sequences X, k£ > 0 converging to the true
solution, i.e., klim X = X. For instance:

—00

+ Matrix sign function iteration

+ Alternating directions implicit (ADI) iteration -~~~ later for large problems.

20 Chapter Il. Matrix Equations

I.2.3 Iterative Solutions of Large and Sparse Matrix Equations

Now we consider

AX + XAT = —BBT, (I.11)

where A € R™*™ and n is ’large’, but A is sparse, i.e., only a few entries in A
are non-zero. Therefore, multiplication with A can be performed in O(n) rather
than O(n?) FLOPS. Also solves with A or A + pI can be performed efficiently.

However, X € R™*" is usually dense and thus X cannot be stored for large n
since we would need O(n?) memory.

Thus the question arises whether it is possible to store the solution X more
efficiently.

The Low-Rank Phenomenon

In practice we often have B € R™*™, where m « n, i.e., the right-hand side
BBT has a low rank. Recall that if (A, B) is controllable then X = X7 > 0
and rank(X) = n.

It is a very common observation in practice that the eigenvalues of X solving
(11.11) decay very rapidly towards zero, and fall early below the machine preci-
sion.

This gives the concept of the numerical rank of X:
rank(X,7) = argminjzl’.__Jank(X){aj(X) >7}, €.0.,T = emacho1(X).
Can we also theoretically explain this eigenvalue decay?

Theorem I1.13: Let A be diagonalizable, i.e., there exists an invertible matrix
V e C™" such that A = VAV L. Then the eigenvalues of X solving (II.11)
with B e C™"*"™ satisfy

Aem+1(X) 2 (1, —12 2
2emtl) < i v oo

for any choice of shift parameters p; used to construct

k

My, = | J(A—=pel)(A+pp) ™!
=1

(in particular, the optimal ones).

I1.2. Linear Matrix Equations 21

In the Theorem above the spectral radius p of a matrix is used:

p(4) = max [A(A).

1<isn
Remark I11.14: « If the eigenvalues of A cluster in the complex plane, only a
few py, in the clusters suffice to get a small p(M}) and thus A;(X) decay

fast.

+ If Ais normal, then V], |V—*|, = 1 and the bound gives a good expla-
nation for the decay. The nonnormal case is much harder to understand.

» This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of \;(X), then X can be well approxi-
mated as X = X7 ~ ZZH, where Z € C™*" with r « n is a low-rank solution
factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.

22 Chapter Il. Matrix Equations

Projection Methods

Now we consider projection-based methods for the solution of large and sparse
Lyapunov equations

The main idea consists of representing the solution X by an approximation
extracted from a low-dimensional subspace Qp = im Qi with Q{Qk = Im,
e, X ~ Xj = QrY;QF for some Y, € R™**™k Impose a Galerkin condition

R(X}) == AX;, + X, AT + BBT 1z,
where
2= {QZQL e ™" | QL Qk = Lonp, im @y = Qp, Z € R}

and orthogonality is with respect to the trace inner product. Equivalently, Y},
solves the small-scale Lyapunov equation

HYy, + YiHy, + Qi BBTQ), =0, Hy := Q) AQy, (11.12)
which can be solved by the Bartels-Stewart or Hammerling’s method.

In case that the residual norm ||R(X})| is not small enough, we increase the
dimension of Qj by a clever expansion (orthogonally expand @), otherwise
we prolongate to obtain X = QkYka (never formed explicitly).

What are good choices for Q.7
a) Standard block Krylov subspaces
Qi = Ki(A, B) := span{B, AB, ..., A*"'B} :

A matrix @), with orthonormal columns spanning Q. can be generated by a
block Arnoldi process, i. e. in the kth iteration we have @, = [Vi ... V4]
fulfilling (assuming there is no breakdown in the process)

AQy = QrHy, + Vi1 Hy 1 1B}

where B _
Hy Hiy ... e Hyy,
Hy1 Hao :
Hy=1 0 Hs Hs
0 e 0 Hk,k—l Hk:k:_

is a block upper Hessenberg matrix and E}, is a matrix of the last m columns
of I, and

Hi = Qf AQy.
The residual norm computation for this method is cheap as shown by the
following theorem.

I1.2. Linear Matrix Equations 23

Theorem I1.15: Suppose that k£ steps of the block Arnoldi process have
been taken. Assume that A(Hy) n A(—Hy) = . Then the following state-
ments are satisfied:

a) It holds QY R(QrY QE)Q) = 0if and only if Y = Y}, where Y}, solves
the Lyapunov equation (11.12).

b) The residual norm is given by

”R(QkYng)HF = \FQHHkJrLkEngnr

Proof. Exercise. O

Unfortunately, this method often converges only slowly. Therefore, one often
chooses modified Krylov subspaces as follows.

Extended block Krylov subspaces
EG(A,B) := K4(A,B) u ICq(A_l,A_lB) :

The resulting method is also known as EKSM (extended Krylov subspace
method) or KPIK (Krylov plus inverted Krylov). We obtain a similar construc-
tion formula as for the block Arnoldi method above and also the residual
norm formula is similar. However, the approximation quality is often signif-
icantly better than with /C;(A, B) only. On the other hand, the subspace
dimension grows by 2m in each iteration step (until n is reached).

Rational Krylov subspaces

RK,(A, B, S) (1.13)
:=span{(s11, — A)"'B, (s2I, — A)7'B, ..., (sqI, — A)"' B},
S ={s1,..., 8,y =C*, s; #sj,i #j: (shifts)

This choice often gives an even better approximation quality compared to
EK4(A, B), provided that good shifts S are known. Generating the basis
requires solving LS (s;I — A)v = ¢;, but this is usually efficiently possible
(cf. Intro).

The shifts s; are crucial for a fast convergence, but finding good ones is
difficult. For one possible shift selection approach, let m = 1. One can
show

Z*)\j
Z+ 85

k
| Rl ~ max |gr(2)] with y(2) = | | , Aj € A(H).
j=1

24 Chapter Il. Matrix Equations

This leads to the following procedure for getting the next shift

Sk+1 = argmax_cop |Vi(2)],
where 0D is a discrete set of point taken from the convex hull of A(H})
(0D < conv(A(Hy))).

For all choices of subspace a)-c¢): Is the reduced Lyapunov equation (I1.12)
always uniquely solvable?

For general matrices A the answer is no. However, for strictly dissipative matri-
ces, i.e., matrices A with A + AT < 0 we have the following result.

Theorem I1.16: Let A € R™*™ be strictly dissipative and Q;, € R™ ™% with
Q{Qk = Ixm. Then A(Hy) < C and the reduced Lyapunov equation (I1.12)
is always uniquely solvable.

Proof. Since A + AT is symmetric and negative definite, it holds z (A +
AT)z < 0 for all z € C". Then we have

H(Hy, + HE)2 = 27 (QFAQr + QT ATQy) 2
— A+ AT)y <0, y:= Qpz, Vze Ch™
= H; +Hg <0

Now let Hy,& = A& for & € C¥™\{0}. Then we have

1% — 2Re ()\) 3 <0

>

1 (Hy, + HY) & = i3 +

Thus A(Hy) < C~ and the reduced Lyapunov equation (I1.12) is uniquely solv-
able. O

I1.2. Linear Matrix Equations 25

Low-rank ADI

Consider the discrete-time Lyapunov equations
X =AXAT +wW, AeR™™ W =WT eR™™, (11.14)

The existence of a unique solution is ensured if [A\| < 1 for all A € A(A) (see
exercise). This motivates the basic iteration

X =AX, AT+ W, k=1, XyeRY™™, (1.15)

Let A be diagonalizable, i.e., there exists a nonsingular matrix Ve C"*™ such
that A = VAV L. Let p(A) := maxycp(a)|A| denote the spectral radius of A.
Since

| X5 — X2 = [A(Xk—1 — X)AT |2 = ... = | A¥(Xo — X)(AT)F|)2
< |AF31X0 — X2 < VI3V 30(A) % X0 — X2, (I116)

this iteration converges because p(A) < 1 (fixed point argumentation).

For continuous-time Lyapunov equations, recall the result from the exercise:
Lemma II.17: The continuous-times Lyapunov equation

AX + XAT =W, A(A)cC™
is equivalent to the discrete-time Lyapunov equation

X =C(p)XC(p)" + W(p), C(p):=(A—PpL)(A+pL)"",

W(p) := — 2Re(p) (A + pI,) "W (A + pI,) ¥ (I1.17)

forpe C.

Proof. Exercise. O

We call C(p) a Cayley transformations of A which is the rational function

Pp(z) = itp

applied to A. For z,p € C_ we have |¢,(z)| < 1. It can be easily shown that
(special case of spectral mapping theorem)

A(C(p)) = {op(A), A€ A(A)}
and therefore p(C(p)) < 1. Applying (I1.15) to (I1.17) gives the Smith iteration
X = C(p) X1 C(p)T +W(p), k=1, XoeR™™. (II.18)

26 Chapter Il. Matrix Equations

Similarly as in (11.16), we have
| Xk = X2 < [VIBIVB(C0) [Xo = X]|o-

This means that we obtain fast convergence by choosing p such that p(C(p)) <
1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (11.18) in every step, we obtain the ADI iteration for
Lyapunov equations

Xi =Cpi) Xe1Clpi)" + Wipr), k=1, XoeR™", peC . (Il.19)

Remark: The name alternating directions implicit comes from a different (his-
torical) derivation of ADI for linear systems. To get the main idea for Lyapunov
equations, consider the splitting of the Lyapunov operator

L(X)=AX + XAT = £1(X) + L2(X), L1(X)=AX, L3(X) = X AT,

Obviously, £;(-) and L2(-) are commuting linear operators. It is possible to
formulate an iteration working alternately on £, (-) and L(+), carrying out “half”-
iteration steps for each operator:

(A+piln)X;_1 = —Xi 1 (AT = piln) + W,
(At piln) X = =Xy (AT —pill) + W.

1
2

Rewriting this into a single step leads to (11.19).

We address two issues of the ADI iteration:

1. ADI requires, similar to the rational Krylov projection method, shift pa-
rameters that are crucial for a fast convergence. How to choose the shift
parameters p;, ¢ = 17

2. The iteration (11.19) is in its given form not feasible for large Lyapunov
equations.

The ADI Shift Parameter Problem One can show, similarly to (11.16), that

Xk — X2 < VI3 V5 p(Mr)?[X0 — X |2, My —Hcpz (11.20)
=1

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations My, are

= {3y [rean

I1.2. Linear Matrix Equations 27

Good shifts pf, ..., pj should make p(M) < 1 as small as possible. This
motivates the ADI shift parameter problem

[pT,...,p] = argmin, cc- ma (I.21)

X
AeA(A)

1_[A— Di
A+ i
In general, this is very hard to solve. For instance, in general, p(C(p)) is not

differentiable and the problem is very expensive, if A is a large matrix. However,
there are some procedures that work well in practice:

« Wachspress shifts: Embed A(A) in an elliptic function region that de-
pends on the parameters

max Re(\), min Re(\), arctan max
AeA(A) AeA(A) AeA(A)

(or approximations thereof). Then, (I1.21) can be solved by employing an
elliptic integral.

« Heuristic Penzl shifts: If A is a large and sparse matrix, A(A) is re-
placed by a small number of approximate eigenvalues (e.g., Ritz values).
Then (11.21) is solved heuristically.

+ Self-generating shifts: If A is large and sparse, these shifts are based
on projections of A with the data obtained by previous iterations. These
shifts also make use of the right-hand side W.

The Low-Rank ADI For a low-rank version of ADI computing low-rank solu-
tion factors, consider one step of the dense iteration (I1.19) and insert X; =
AVALE
Xj = C(pj)X;-1C(p))" + W (p;)
= (A—p;jIn)(A+pjln)” 'Z;- IZHl(A +piln)” H(A—T?jfn)H
—2Re(p;) (A+pjln) "' BBT (A + p;L,)~".

= X;=7Z;Z', Zj=[/-2Re(p;)(A+p;I,) B (A—p;L)(A+pil,) " Z;_1].
With Zy = 0 we find a low rank variant the ADI iteration (I1.19) forming Z

successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Z;).

However, there is a remedy to this problem. Obviously,

S; = (A + piln)_l and T] = (A — ﬁjfn)

28 Chapter Il. Matrix Equations

commute for all ¢, 5 with each other and themselves (proof it yourself).

Now consider Z; being the iterate after iteration step j
Zj = [OéijB (Tij)aj,lSj,lB e (T}SJ) e (TZSQ)O[lSlB:I

with a; = 4/—2Re(p;). The order of application of the shifts is not important,
and we reverse their application to obtain the following alternative iterate

[OqSlB CKQ Sl)SQB '(Tlsl)---(ﬂ-_lsj_l)S»B]
[OqSlB 042 SQ)SlB (j— 15)(j— QSJ 1) (Tlsz)SlB]
= [a1V1 asVy .. ozj‘/}] ,

Vi=51B, Vi=T,15Vi1, i=1,...,].

We have X; = Z;Z!, but in this formulation only the new columns are pro-
cessed. Even more structure is revealed by the Lyapunov residual.

Theorem I1.18: The residual at step j of (11.19), started with Xy = 0, is of rank
at most m and given by

R; =AZ;Z{' + Z;Z] AT + BBT = W;W[,
Wj ZMjB = C(pj)Wj_l = Wj_l — 2Re(pj) Vj, W() =B

where M, := 7: C(p;). Moreover, it holds V; = (A + p;IL,) ' W,_1.
J 1=1 J J J

Proof. We have

R; = AX; + X;AT + BBT = A(X; — X) + (X; — X)AT (oy (I1.11))
= AM;(Xo — X)M[" + M;(Xo — X)M[' AT
= —M;AXM" — M; X AT M
= —M;(AX + XAT)M; = M; BB M;.

Moreover, it holds
Vi=Tj-15Vj1 = Tj-15;Tj-25j-1Vji2 = ... =

i
=5 (H Tk5k> B=58;M; 1B = (A+p;jl,)”'W;_y, (11.22)
k=1

and
Wj = M;B = S;T;W;j_1 = Wj_1 — 2Re(p;) S;Wj—1 = Wj—1 — 2Re(p;) V.

O

I1.2. Linear Matrix Equations 29

Algorithm 3 Low-rank ADI (LR-ADI) iteration for Lyapunov equations

Input: A, B from (Il.11), shifts P = {p1,..., Pmaxiter} < C~, residual toler-
ance tol.
Output: Zj such that X = Z,Z}* (approx.) solves (II.11).
1: Initialize j = 1, Wy := B, Zy := [].
2: while HWj—lHQ > tol do
Set V} = (A + pjfn)_le',l.
Set Wj = Wj_l — 2Re(pj) V}

3
4.
5. SetZ;:=[Z;1 +/—Re(p)V;].
.
7:

Setj:=j+1.
end while

Thank to the above theorem, the norm of the Lyapunov residual norm can be
cheaply computed via | Rz = [W;W /7|y = |W; 3. All this leads to Algorithm
3. Again, the major work is solving the LS (A + p;1,,)V; = W;_1 in each step,
which is efficiently possible for large,sparse A (cf. Introduction).

Algorithm 3 produces complex low-rank factors, if some of the shifts are com-
plex, which might be required for problems with nonsymmetric A. Ensuring that
Zj; € R™™ and limiting the number of complex operations can be achieved by
assuming that for a complex shift p; we have p; 1 = p; (see handout)

30 Chapter Il. Matrix Equations

1.3 Algebraic Riccati Equations

In this section we concentrate on the continuous time algebraic Riccati equa-
tion (ARE) briefly introduced in Chapter Il.1 as one important representative of
nonlinear matrix equations:

CTOC + ATX + XA— XBR'BTX =0, Xx=x".

Here, we simplify the representation to
F+ATX +XA-XGX =0, G=0, X=XT, (11.23)

where A, F = FT, G = GT e R™*",

I1.3.1 Hamiltonian Matrices and the ARE

Define the matrix

4 G

A= F —AT |

c RQTLX??’L.

If X solves the ARE, then we have

A -G|[L, 0] [I. 0][A-GX ~G
-F -AT||X I,] 0 —AT + XG|’

which means that

S

I _ | n

3= []u-eo

which means that span {[1z |} is an H-invariant subspace and A(4 — GX) <
A(H).

Assume on the other hand, that

ulf _|U nxn
H[V}—{V}M for U, V, M eR"™",

in particular, A(M) < A(H). Then span {[{]} is an H-invariant subspace.
Now assume that U is invertible. Then we find

ulao ~1
AU -GV =UM < U AU - U "GV = M.
Moreover, we have

—FU - ATV = VM =VU AU - VU 'GV.

I1.3. Algebraic Riccati Equations 31

A right-multiplication by U~! then yields
~-F-ATvul=vutlA-vulcvu.
With X := VU~ this finally results in
0=F+ATX + XA - XGX.

If we can ensure that U is invertible, then computing an invariant subspace for
H provides a solution for the ARE. However, recall that in contrast to linear
matrix equations, solutions are (except in some special cases) not unique. In
practice one is interested in a stabilizing solution X, := VU, i.e., A(A —
GX,) cC .

Remark: Why a stabilizing solution? Consider the linear quadratic regulator
problem:

win 7 (u(t)) = 5 [Ju@)]? + o(t) et
0

subjectto @(t) = Ax(t) + Bu(t), z(to) = zo € R™.

for given A € R™*™ possibly unstable, B € R"*™. Such problems are an im-
portant topic for control theory and widely used in practice to stabilize technical
systems.

One can show that, under certain conditions, a solution of this optimal control
problem is given by u.(t) = —BBT X,z (t), where X, is the stabilizing solution
of an ARE similar to (I1.23).

So the question arises, which choice of the invariant subspace results in a
symmetric and stabilizing solution. For this we analyze the matrix H in more
detail, which turns out to be a Hamiltonian matrix.

Definition 11.19 (Hamiltonian matrix): Define

o 0 In 2nx2n
J = |:_In O] e R . (11.24)

A matrix H € R2"*2" ig called Hamiltonian if
(HN)T = HJ.

We denote the set of all real Hamiltonian 2n x 2n matrices by H,,.

32 Chapter Il. Matrix Equations

0.4 T T
_xxXx X X xX
02 X % x X |
A X% 2 A
5
é 0
02l 28 e ™ v
02 —)\xxxxxx XXXXXXA
—-0.4 . :
—0.1 0 0.1
Re(z)

Figure 11.1: Eigenvalues of a real Hamiltonian matrix

Proposition 11.20: The following statements are equivalent:

a) H is Hamiltonian.

b) H = JS for some matrix S = ST e R??*2",

c) ltholds (JH)T = JH.
)

d) H has the block structure

Hyi Hiyo]
H = 11.25
{Hm —H} ()

for Hy; € R™", Hyp = H, € R"™" and Hy = Hl e R™™.

Proof. Exercise. O

Proposition 11.21 (Hamiltonian spectrum): Let H € H,, and py the character-
istic polynomial of H. Then the following statements are satisfied:

a) Itholds pg(A\) = pg(—A) forall A e C.
b) If pgr(A) =0, then py(—\) = pH(—X) = pH(X) =0forxeC.

Proof. Exercise. O

Proposition 11.21 states that the spectrum of every real Hamiltonian matrix is
symmetric with respect to the real and imaginary axis, see also Figure Il.1.

I1.3. Algebraic Riccati Equations 33

1.3.2 Characterization of Stabilizing Solutions

Recall that we have started at

4 - [g) sonean

where U is assumed to be invertible. From the first row we see
AU -GV =UM.

Assuming that U is invertible and a multiplication with U ! from the right gives
A—GX =UMU!, where X := VUL, Thus, we have A(A—GX) = A(M).
In particular, A — GX is asymptotically stable if and only if A(AM) < C™. This
means that span {[|} is the H-invariant subspace corresponding to A(H) n

First we show that stabilizing solutions (in case they exist) are unique.

Lemma I1.22: The ARE (11.23) has at most one stabilizing solution.

Proof. If X, is a stabilizing solution of (11.23) then X, = VU !, where

o [} -]

is the invariant subspace of H associated with its eigenvalues in C™. If there
exists a second stabilizing solution X, then

o [£]) -]

implying that X, = X,. O

We still don’t know when a stabilizing solution exists. For this recall a weaker
concept of controllability (Def. 11.8) is useful.

Definition 11.23: We call (A, B) stabilizable if rank [Al, — A B] =n VX e
Ct:={\eC:Re(\) =0}

The dual concept is detectability: (A, C) detectable if (AT, CT) stabilizable.

The following theorem gives an equivalent characterization for the existence of
stabilizing solutions.

34 Chapter Il. Matrix Equations

Theorem 11.24: The ARE (I1.23) has a stabilizing solution X, if and only if
(A, Q) is stabilizable and the matrix H does not have imaginary eigenvalues.

It remains to check under which conditions there are no eigenvalues of H on
the imaginary axis. A sufficient condition is the following.

Theorem I1.25: Let (A, G) be stabilizable and (A, F') be detectable with F, G >
0. Then the Hamiltonian matrix H does not have imaginary eigenvalues.

Combining the above findings we can conclude the following theorem.

Theorem 11.26: Consider the ARE (11.23) with F' > 0. Let (A4, G) be stabilizable
and (A, F) be detectable. Further let span {[{/]} with U, V € R™*" be an
H-invariant subspace corresponding to the eigenvalues of H in the open left
half-plane. Then X, = XI' = VU ! is the unique stabilizing solution of (I1.23).

We analyze the structure of the stabilizing solution in more detail. First we show
that for AREs with F' > 0 the stabilizing solution is positive semi-definite.

Proposition 11.27: If F* > 0, then the stabilizing solution X, of the ARE (11.23)
(if it exists) is positive semi-definite. Furthermore, if (A7, F) is controllable,
then X, > 0.

Proof. If X is any symmetric solution of the ARE, we obtain
(A-GX)'X + X(A-GX)=-XGX - F.
With A := A — GX and F':= —~XGX — F it holds
ATX + XA=F.

If X = X, is stabilizing, then A(A) c C~. Since F > 0, we have F' < 0 and
thus X, = 0.

If (AT, F) is controllable, then so is(A, F) : If Av = Av and F'v = 0 for v # 0,
then we get vHEFv = 0 and therefore, GX,v = 0 and Fz = 0. The former
implies Av = \v. This yields v = 0, since (AT, F) is controllable. This implies
X4 > 0 by Theorem Il.10a). O

I1.3. Algebraic Riccati Equations 35

Algorithm 4 Schur vector method for solving the ARE

Input: H = [_AF __AGT] corresponding to (11.23).

Output: the stabilizing solution X, of (11.23).
1: Apply the standard QR iteration to H to compute a Schur decomposition.
2: Sort the eigenvalues according to (11.26) via orthogonal similarity transfor-
mations.
3: Solve the n linear systems X.Q11 = Q21.

11.3.3 Direct Numerical Solution Methods

Now we discuss direct numerical solution algorithms for the ARE (11.23). We
assume that all assumptions of Theorem [1.26 are satisfied, such that a unique
stabilizing and positive semi-definite solution X, exists. We are interested in
computing this solution.

The Schur Vector Method

From Theorem [1.26 we know that the Hamiltonian matrix H = [_AF _’fT] has

exactly n eigenvalues in C~ and exactly n eigenvalues in C+.

The simplest idea consists of using the real Schur decomposition to compute
the H-invariant subspace via

T Tm] =T (11.26)

T _
Q HQ - |: 0 T22
where T11, T5, are in real Schur form and A(71;) < C~. By partitioning

| Qu Q2
©= {Qm Qm]

as T in (11.26), we find that span { [g;]} is the desired subspace. The com-
putation of the stabilizing solution X, is summarized in Algorithm 4.

This method is very simple to implement and all steps numerically backward
stable. On the other hand, the Hamiltonian structure not exploited. This means
that the double symmetry of the Hamiltonian spectrum may be lost in T" due to
round-off errors. In particular, the eigenvalues close to the imaginary axis may
move to the wrong half-plane. In this case the computation of X, may break
down. Therefore, we are interested in algorithms, that exploit and preserve the
Hamiltonian structure during the computation.

36 Chapter Il. Matrix Equations

Hamiltonian Schur Methods

Now we discuss structure-preserving methods for the Hamiltonian eigenvalue
problem. For this we need to define the class of structure-preserving transfor-
mations for which we need symplectic matrices.

Definition 11.28 (Symplectic matrix): A matrix S € R?"*?" is called symplectic
if
STJS = J,

where J is as in (11.24).

It can be shown that symplectic similarity transformations preserve the Hamil-
tonian structure. This is stated in the next lemma.

Lemma I1.29: If H € R?*"**" is Hamiltonian and S € R*"**" is symplectic, then
H := S~1HS e R?"*2" js Hamiltonian.

Proof. Ex. O

In order to have transformations that do not increase the condition number of
the problem we aim at symplectic similarity transformations that are addition-
ally orthogonal. Orthogonal symplectic matrices have a certain block structure
given in the next lemma.

Lemma I1.30: Every orthogonal symplectic matrix U € R?"*2" is given as

_ Ul U2 nxn
U= |:—U2 U1:| for U1, Us e R .

Proof. Exercise.]

Using orthogonal symplectic transformations we can now formulate the follow-
ing result which gives us a Hamiltonian Schur form.

Theorem 11.31 (Hamiltonian Schur form): Let H € R?"*?" be a Hamiltonian
matrix with A(H) n iR = . Then there exist an orthogonal symplectic U €
R27%27 and a Hamiltonian matrix 7' € R2"*2" such that
v 1>]

0 17 (1.27)

UTHU—T—[

where Ty is in real Schur form and T, = T4 € R™*™.

I1.3. Algebraic Riccati Equations 37

The goal now is to devise an algorithm for computing (11.27). This is not easy!
For preserving Ham. structure by unitary symplectic trafos, all major steps
in the standard QR-Algorithm for the normal Schur form have to be modified
accordingly (Hessenberg-reductions, QR-factorization, ...). Only in the recent
years this was achieved completely «~ literature.

11.3.4 Ilterative Solution of the ARE — The Newton-Kleinman ltera-
tion

Now we consider the ARE
R(X)=F+ATX + XA - XGX =0. (11.28)

Assume that (A, G) is stabilizable, (A, F') is detectable, and F, G > 0 such
that there exists a unique stabilizing solution X, of the ARE. We now consider
(11.28) as a nonlinear system of equations and apply Newton’s method. For this,
we need to evaluate the (Fréchet) derivative of R(X') with respect to X.

Definition 11.32 (Fréchet differentiability, Fréchet derivative): Let (X, | - ||x+) and
(V,| - |y) be two normed linear spaces and let i/ < X’ be an open subset. A
linear operator F : U —) is called Fréchet differentiable at X € U if there
exists a bounded linear operator 7/(X) : X —) such that

1
lim
IN|x—0 | N|x

|7 + V) — F(X) — (F X)), = 0.

The operator F'(X) is called Fréchet derivative of F at X. The map ' : U —
L(X,Y) with X — F'(X) is called Fréchet derivative of F on U.

Let us see whether R(-) is Fréchet differentiable and (if yes) determine its
Fréchet derivative. If the Fréchet derivative exists it is given by

(R(X))(N) = Jim = (R(X + hN) ~ R(X)

= }lbin%)% (F + AT(X + hN) + (X + hN)A
—(X + hN)G(X + hN) — (F + ATX + XA - XGX))
= lim %(hATN +hNA—hXGN — hNGX — h*NGN)

—0

= lim (ATN + NA— XGN — NGX — hNGN)

=ATN+ NA—- XGN — NGX
= (A-GX)'N + N(A - GX).

38 Chapter Il. Matrix Equations

Algorithm 5 Newton’s method for the algebraic Riccati equation
Input: A, F, G asin (11.28) and initial value X, such that A(A — GXy) c C™.
Output: Stabilizing solution X, solving (11.28).
1:forj=1,2...,do
2 Set A]' ZZA*GXJ‘,L
3: Solve A?Nj_l + Nj_lAj = —R(Xj_l) for Nj—l-
4
5:

Seth = j71+Nj,1.
end for

Algorithm 6 Newton-Kleinman iteration for the algebraic Riccati equation
Input: A, F, G as in (11.28) and initial value X such that A(A — GXy) < C™.
Output: Stabilizing solution X solving (I1.28).

1:forj=1,2 ... do

2 Set Aj = A - GXj_l and Fj =—F— Xj_lGXj_l.

3 Solve AT X; + X;A; = —Fj.

4: end for

In other words, the Fréchet derivative of a Riccati operator is a Lyapunov oper-
ator. Now the Newton iteration is given by

(R/(Xj—l))(Nj—l) = —'R,(Xj_l), Xj = Xj_l + Nj_l, j=12, ...
and the iteration is summarized in Algorithm 5. This formulation of the algorithm

has the disadvantage that R(X;_1) is evaluated in every iteration. Therefore,
let us revisit the computation of the update N,_;. We know that

(A= GX;_1)"Nj_1 + Nj_1(A — GX;_1)
=—F— ATXj_l — Xj_lA + Xj—lGXj—1~ (11.29)

Plugging in N;_; = X; — X1 then gives

(A= GX;-)T (X — Xj1) + (X — Xj-1) (A~ GXja)
=—F— ATXj_l — X]‘_1A + Xj_lGXj_l.

Some manipulations and rearrangements of the terms finally lead to
(A-GX;-1)"X; + X;(A-GX;_1) = —F — X;_1GXj_1. (11.30)
This leads to Kleinman’s formulation of the Newton iteration which is given in Al-

gorithm 6. The question arises whether Algorithm 6 and Algorithm 5 converges
to the right solution.

I1.3. Algebraic Riccati Equations 39

Theorem 11.33: Consider the ARE (11.28) with stabilizable (A, G), detectable
(A, F), and F, G > 0. Let X, be its unique stabilizing solution. Let further
Xo € R™ "™ be stabilizing, i.e., A(A — GXy) < C~. Then the iterates X},
7 =1, 2, ... fulfill the following statements:

a) The matrix X is stabilizing.
b) ltholds X, < - < X;11 < X; < - < Xj.
c) It holds limj_,oo Xj = X,.

)

d) The convergence is globally quadratic, i.e., there exists a constant v > 0
such that
|Xu = Xl < 71X = X5al?, =12, ...

Proof. a) Let X, be the stabilizing solution of the ARE (I1.28) which exists and
is unique due to the assumptions. Now consider (11.30) and the Riccati
equation of the solution [F + AT X, + X, A — X,GX, = 0]

AT 1((X5) = Xa) + ((X5) = Xa) A
= —(Xjm1 — Xu)G(Xj-1 — Xy). (11.31)
Assume that X;_,; is stabilizing, i.e. A(4;_1 = A—-GX;_;) < C_ With

G = 0 it follows
(X;) — X4 =0 (11.32)
from Lemma 11.10 a). Now
(I31) = [Njo1G((X;) — Xy) + ((Xj) — X)) GNj1]
= (A=GX)N((X) = Xa) + (X)) — X)(A-GXp) oy
= —((Xy) = X:)G((X;) — Xs) = Njo1GNjy = W.

The matrix W is negative semi-definite. Assume that A — GX; has an
eigenvalue A € C* with an associated eigenvector v # 0. Then it holds

(A—GXjv=2>, v*(A-GX;)* =N (11.34)

v*(11.83)v = 2Re(\) v ((X;) — Xu)v = 0T Wo.
The left-hand side is non-negative, since Re(\) > 0 and (X;) — X, > 0. On
the other hand, the right-hand side gives v/ Wv < 0. Therefore, v Wv = 0

and moreover,
v (X;) — X4)G(X; — Xy)v = 0.

Since G > 0, it holds G(X; — X,)v = 0, i.e., we have

GXj’U = GX*U.

40 Chapter Il. Matrix Equations

Thus, together with (11.34) we obtain
A= (A—-GX;)v=(A—-GX,)v,

i.e., Ais an eigenvalue of A — GX, and thus a contradiction to the asymp-
totic stability of A — GX,.

b) From (11.32) we directly have that X, < X for j > 1. On the other hand, by
(11.30) and fixed j = 1 we have

(A — GXj_l)TXj + X](A — GXj_l) =—-F- Xj—].GXj—la (”35)
(A-GX)) " Xj41 + Xj41(A—- GX;) = —F — X;GX;. (11.36)

By subtracting (11.35) from (11.36) and some manipulations we obtain

(A= GX)T(Xj1 = Xj) + (Xj1 — X;)(A - GX;)
= *XjGXj + XjflGXjfl + NjflGXj + XjGNj,1 = NjflGNjfl.

Since A — G X is asymptotically stable and G > 0, it holds X1 — X; <0
by Lemma 1.7 a). Therefore, it holds X1 < X forall j > 1.

c) From b) we know that {X;}72, is a monotonically decreasing and bounded
sequence. Therefore, the limit X := lim;_., X; exists. Since A — GX;
is asymptotically stable for all j > 1 and the eigenvalues of a matrix are
continuous with respect to the matrix entries, it holds A(A — GX) < C-.
By taking the limit in (11.30), we see that X solves the ARE (1.28). Thus

[g’;] spans an invariant subspace corresponding to the eigenvalues in C—

- A -G
of the matrix H = [_F AT

imaginary eigenvalues we obtain A(A — GX) c C~. Therefore, X is a
stabilizing solution of the ABE. Since by Lemma 1.22, the stabilizing solution
is unique, we have X, = X.

]. Since by Theorem I[1.25, H does not have

d) From (11.31) we obtain
(RI(Xj-)) (X — Xy) = —(Xjm1 — X)) G(Xj1 — X,

Note that (R'(X;_1))(-) is invertible since A — GX;_; is asymptotically sta-
ble. This gives

126 = 2] < [(R(G-0)) T IG]H X = X5,

where ||| denotes any consistent norms. Since {X;}7°, converges, the
limit lim; ., R'(X;) = R/(X«) exists. Since A — GX, is asymptotically
stable, also the limit lim;_,« (R’ (X;)) ! = (R'(X.)) ! exists. Denote §; :=
|(R'(X;))~ "] and 8, := lim; .o, §;. Since the sequence {3;}7°, converges,
it has a supremum, denoted by 5. Therefore, we get

1 X — X5 < v Xe — X, G=1,2,...

I1.3. Algebraic Riccati Equations 41

with v := 4 |G| and we have quadratic convergence. The statement for
arbitrary matrix norms follows by equivalence of matrix norms.

Remark I1.34: a) Computing X by the Schur vector method costs as much as
6 — 7 iterations of Algorithm 6. Often, Algorithm 6 requires more iterations.
However, it is often very useful in refining solutions obtained by other meth-
ods.

b) If A is not asymptotically stable (otherwise Xy = 0 is stabilizing), then the
computation of a stabilizing Xy usually costs as much as another iteration
step since this requires the solution of one additional Lyapunov equation
(Homework 3, Problem 2).

c) The convergence theory also holds for X; := X, 1 + tN;_; where t €
[0,2]. There exist line search strategies to optimize the step length after
computation of the direction N;_; in Algorithm 5. That is, we use a step
length

t = argmin (g 9] [R(X;—1 + 7Nj—1)[F.

The computation of ¢ is usually much cheaper than the actual Newton step
which can drastically accelerate the iteration.

1.3.5 Solving large-scale AREs

We now consider large-scale AREs
R(X)=CTC+ATX + XA-XBBTX =0, X=XT,

where A € R™ " is large and sparse, B € R™*™, C' € RP*™, and m, p «
n. We again assume that the assumptions of Theorem 11.26 hold, i.e., (A, B)
stabilizable and (A, C) detectable. The constant and the quadratic term are
of low rank, a setting often arising in optimal control problems. Similar to the
linear (Lyapunov) case, this motivates to numerically compute an approximate
solution of low-rank X, ~ ZDZT, Z e R"*", D = DT e R™" with r < n.

42 Chapter Il. Matrix Equations

The Low-Rank Newton-Kleinman Method

Inserting the low-rank matrices G = BB”, F = C”C into the NK iteration
scheme (11.30) gives

(A—BBTX,; 1) X; + X;(A— BBTX;_)

— —CTC - X;BB"X; = —[CT X;,B][CT X;,B]" (137)
—
eRnX(ptm)

Thus the right-hand side of the Lyapunov egn. is of low rank and we can apply
any of the low-rank methods from Section 11.2.3 (projection methods, low-rank
ADI) to obtain a low-rank approx. of X;_;. This results in the low-rank Newton-
Kleinman method for AREs. One problem remains for extended, rational Krylov
and the LR-ADI method: even if A is sparse and B is thin, the closed loop
matrix

A;j:=A—-BBTX; 4 (1.38)
at Newton step j is usually dense v~ never explicitly form (11.38).

There are several ways to solve linear systems with the system matrix A; +p; I,
efficiently in the low-rank ADI method or rational Krylov subspace methods:

a) Application of an iterative solver: This option only requires multiplica-
tions with A;. Since K; := X, 1B and B have only a few columns and
rows, respectively, these can be carried out efficiently. On the other hand,
the convergence of iterative solvers is often slow, as long as no good pre-
conditioner is available.

b) Application of the Sherman-Morrison-Woodbury identity: It holds for
Sj = A+ ijn
(A+pil, — BKF) ' =57+ S71B(I,, — K87 B) ' KIS,
Then a linear system solve with S; := A; + p;I,, only requires two sparse
solves with S; and one small dense solve with the matrix I,,, — K]-TSjB.

Projection Approaches

In complete analogy to the Lyapunov case, we can use the Galerkin projection
approach directly onto the large ARE: build subspace ¢/ w.rt. AT, CT, e.g.,
range(Qr) = EK(AT,CT) or range(Qr) = RK(AT,CT, s) and solve small,
projected ARE

HyYy + Y HY = ViQEBBT Q) + QuCTCQy =0, Hj = QF(ATQy)

for stabilizing Y, € R¥** in each step (e.g., by (Hamiltonian) Schur vector
method). Approximate stab. solution is X, ~ QkYka.

cHAPTER |1

Matrix Functions

43

44 Chapter Ill. Matrix Functions

1.1 Introduction

By "Matrix Functions" we mean the following: take a scalar function f and
A e C™™ and specify f(A) € C™*™ such that a useful generalization of f(z),
z € Cis obtained.

Other meanings of f(A) which are not part of this lecture are:
- element-wise operations, i.e. f(A) = [f(ai;)]}';=1,
« scalar valued functions: f : C"*"™ — C, i.e. trace, det, k(4), ...,

« mappings f : C"*" — C™*™ with m # n, which do not come from a
scalar function, e.g. AT, A" adj(A), A(1:m, 1:m), ...,

- function mappings f : C — C"*", eg. transfer function
f(S) = C(SI - A)ilB, W|th C e (Cnxm’ A IS Can’ B c CnXm-

Let f(t) be a scalar polynomial or rational function. We substitute A for ¢ to
define f(A), replacing t—! by A=%, 1 by I,,.

Example: We consider the following two examples:
< f) =Xt = f(A) = XA

- ft) = = f(A) = [- AT+ 45 = (I + AT - 47

This easily generalizes to functions, having a convergent power series:
m .
HOEDIIS
i=0

For example, we can write a representation of the logarithm log(1 + ¢)

2ot
logl4+t)=t— —+————+..., |t 1
og(1 +1) sty gt <l
A2 A3 At

Next, we want to define f(A) for general f. Moreover, some focus is given
to multivalued functions like v/, log(t), where we want to classify all possible

f(A).

Il.2. Definitions of f(A) 45

1.2 Definitions of f(A)

lll.2.1 Using the Jordan Canonical Form

We recall the Jordan normal form of an arbitrary matrix A € C**™:

Z7YAZ = J = diag(Jy,...,), (11.1)
Jp = diag(Jg, ..., JE*), (11.2)
DY |
JIZ: '_' '-' E(Cm}bcxmil’
L
Ak
with Z nonsingular and Y3;_; > %, mi = n and Aq,...,), are the distinct

eigenvalues of A. The index of)\, is the dimension of the largest Jordan block
in which \;, appears and denoted by n; = max; m}C

Definition Ill.1: A function f is said to be defined on {\;,n;};_; if the values
FON), 5=0,...,n;—1, i=1,....,s
exist, where fU) denotes the jth derivative. We call all this evaluations the

values of f at {\;,n;}7_;.

Definition IlIl.2 (Matrix functions via Jordan normal form): Let f be defined on
{\i,ni};_q, where)\; in the spectrum of A € C™*" and n; the index of \;, and
A = ZJZ ! its Jordan normal form (l11.1). Then

f(A):=Zf())Z™" = Zdiag(f(Jp)Z ", (111.3)
FOw) %) ... %
FUR) = : e Cmk XMk, (111.4)
' ()
F(Ak)

Remark lIl.3: 1. Since every square matrixA has a Jordan form, f(A) is
defined as long as the function evaluations of f and its derivatives are
defined at the eigenvalues. In particular is f(A) always defined for a
function f that is smooth on all of C.

2. If A is diagonalizable it follows:

46 Chapter Ill. Matrix Functions

* f(A) = Zdiag(f(M))Z 7,
+ Aand f(A) have the same eigenvectors.

3. In case of multivalued functions such as v/, log(t), we have to pick a
branch. But more on that later.

1

Example: We consider the Jordan normal form J = [(2) 1] and the matrix
2
function f(X) = X3. Applying the Definition 1.2 leads to

|

| —
Il

| —

O ool

el N[Y)

ll.2.2 Polynomial Interpolation

Recall: The minimal polynomial of A € C"*™ is the unique monic polynomial v
of lowest degree such that ¢/(A) = 0. It results from the Jordan normal form
that

P(t) = I_y (8 — A)™
and ¢ divides any polynomial p for which p(A) = 0 holds.

Theorem lll.4: Let p and ¢ be two polynomials of A € C"*™. It holds
p(A) = ¢q(A) if and only if p and ¢ take the same values on {\;, n;};_, where
A; in the spectrum of A € C™"*™ and n; the index of \;. (Here we do not use the
definition 111.2 but the polynomial in the matrix as A™ is a defined quanitity for
matrices.)

Proof. Exercise O

Definition Ill.5 (Matrix functions via Hermite interpolation): Let f be defined
on {\;,n;}_; where)\; in the spectrum of A € C"*™ and n; the index of \;
and 1 be the minimal polynomial of A. Then f(A) := p(A), where deg(p) <
deg(y)) = >;7_, n; and p satisfies the Hermite interpolation condition

PPN =F90N), j=0,...,n;—1, i=1,...,s. (111.5)

p is unique and called Hermite interpolation polynomial.

Il.2. Definitions of f(A) 47

Example: We consider the matrix A = [f ;} and the function f(t) = vt
(principal branch ¢'/2 of square root function), A(A)

= {1,4}, s = 2,
n1 = ng = 1. The interpolation has to satisfy p(1) = f(1) = 1, p(4) =
f4) =2

— plt) =)L + SO = §t+2)
~) =) = Javen = |1 7]

and obviously f(A)? = A.

Attention: We do not have to use the same branch of square root for each
eigenvalue:

F) =1, f4) = =2 = p(t)=2—¢ and f(A) = [_01 :ﬂ

The following properties result immediately from the Definition I11.5:
* f(A) = p(A) with polynomial depending on A,
* f(A)A=Af(A),
« f(AT) = f(A)T.
Since 1 (t) divides the characteristic polynomial ¢(¢) = det(¢tI — A) it follows
* g(A) = 0 (Cayley-Hamilton),

+ any power series collapses to polynomial in A:
0 n—1
Dl apAl = d(A) A%,
k=0 k=0

dj, dependent on A.

ll.2.3 Cauchy integral definition
Excursus: Useful concepts from complex analysis

Afunction f : D — C, D < Cis called analytic in an open set U, if it is complex
differentiable for all zg € U, i.e.

Fon) - tim L) = I0)

220 Z— 20

48 Chapter Ill. Matrix Functions

exists. An other name for this property is holomorphic. Analytic functions can
be expressed as convergent power series.

The following properties hold for analytic functions:

* It holds <§7 f(z)dz = 0, where ~ is a closed curve in U (Cauchy integral
theorem).

» Cauchy integral formula: We consider f : U — C analytic,
D ={z:|z— 2| < r} < U, ~circle around ¢D. For all a in the
interior of D it holds

fla) = —— [L&) g, (111.6)

21 v Z—a

The equation (I1.6) follows from elementary integral calculus and limit
considerations.

« A function f that is holomorphic on a disc is completely determined by its
values on the boundary of the disc.

This inspires the following definition of a matrix function for analytic functions f.

Definition 1ll.6 (Matrix functions via Cauchy integral): For a matrix A € C™"*"
we define the matrix function

1

~ 2mi

f(A): L f(2)(zI — A)~ldz, (1.7)

where f analytic on and inside the closed contour I' that encloses A(A).

ll.2.4 Equivalence of definitions

Theorem III.7: Definition IIl.2 and I11.5 are equivalent. If f is analytic then also
Definition 111.6 is equivalent to Definition II.2 and I11.5.

Proof (part). Definition Ill.5 < f(A) = p(A) for a Hermite interpolation polyno-
mial that satisfies the condition I1.5.

Assume A has a Jordan normal form (l11.1).

= f(A) =p(A) =p(ZTZ7") = Zp(J)Z™" = Zdiag(p(Jx))Z™"
= exersice = (lll.4)

Il.2. Definitions of f(A) 49

ll.2.5 Non-primary matrix functions

The three equivalent definitions lead to "primary matrix functions”, which is
what we are mostly interested. However there is something called non-primary
matrix functions. Consider the nonlinear matrix equation

X2=-A

and the solutions X of this equation. If this where a scalar equation the solutions
of this equation for X is given by the square root of A.

But for some matrices A , some solutions of X2 = A are not obtained as
primary matrix functions (i.e. in the sense of Definition 111.2, [Il.5 and II.6 with

f(z) = £4/x). We consider A = {(1) (1)] and we want to solve X% = A. We
take f(t) = 4/t as in Definition I1.5 with p(1) = 1/1 = +1. It follows p(1) = 1
or p(1) = —1. Both I and —1I are square roots of . Definition |.2 leads to the

same results.

If we ignore the demand that the same branches of +/t are used for different

0 1 0
1| and |, | as extra

square roots (the double eigenvalue 1 was sent to different square roots).

Jordan blocks associated to A = 1, we find [01

Are there more?

Yes! Itholds A = I = ZIZ~ forall nonsingular Z. It follows that Z {(1] 01} Z-1

and Z [_01 g] Z~! give an infinite number of square roots. This includes the
matrices {Z?jz _Sigfe] (Housholder reflectors).

All these are examples of non-primary matrix functions. They occur when f
is multivalued, A is derogatory (a distinct evaluation occurs in more than one
Jordan block), and when equal eigenvalues in different branches are mapped
to different branches of f in Definition 1ll.2. Nonprimary matrix functions are
not expressible as polynomials of A. Nor all nonprimary matrix functions come

0 0 0 1.
0 0 =X =, 0 is square root of f.

Luckily, virtually all algorithms and applications need primary matrix functions.

from Jordan normal forms: A =

50 Chapter Ill. Matrix Functions

lll.3 Applications

Differential equations

The differential equation
x(t) = Az(t), zo = x(0)
with A € R™*", z(t) € R™ has the solution z(t) = etx.

The general differential equation
i(t) = Az(t) + f(t,z), o = 2(0)

has the solution z(t) = e*taq + {4~ f(7,z)dr. For the case of second
order time derivatives

Z(t) + Az(t) =0, x(0) =xo, 2(0) = o

we obtain the solution z(t) = cos(v/At)zg + (v/A)~'sin(v/At)io. We can
define v/A by the matrix function coming from each of the two branches. We
can also use different branches on different eigenvalues or we can pick an
arbitrary matrix satisfying that its square is equal to A. The solution z(t) is
independent of that. \~»Exercise

We can also rewrite the differential equation as
dlz(@)| | 0 [I||x(t)
dt |z(t)| |-A of|z@)|

Matrix equations in control theory

We consider the dynamical system
z(t) = Az(t) + Bu(t), (11.8a)
y(t) = Cx(t) (11.8b)

with A € R"*", A(A) € C~. We know Lyapunov equations are important for
working with (111.8). The Lyapunov equation

AX + XAT = BT

has the solution

es}
X = J AtBBT AT tdt
0

o0
J (iwI — A)"*BBT (iwl — A)"Tdw.

0

11.3. Applications

51

O—®
N
B

Figure Ill.1: Undirected network graph

Exponential integrators

Define the phi-function ¢ (z) recursive via

b(z) = PRV IRy e

z

It holds that

i(t) = Az(t) + b, 2(0) =29 = x(t) = ¢o(At)zo + te (tA)b
i = z(t) = ¢o(At)zg + t2P(tA)c

what extends to general polynomial inhomogenities

(t) = Az(t) + p(t).

Note: exp [gl 8] = [e: ¢>1(1A)b]

Complex networks

Let A € R™"™ be the adjacency matrix of the undirected network graph pre-

0 010

- 00 11
sented in Figure 111.3, A = 110 1]

01 1 0

52 Chapter Ill. Matrix Functions

Important network measures are
« Centrality (e#);; (how important is note i)
« Commutativity (eA)ij (how well is information from note i to j).

Other measures involve cosh(A),

Statistics

We want to sample a multivariate normal distribution Y ~ N(u,C), p € R™
(mean), C = CT = LL™ > 0 (covariance matrix). Let X ~ N(0,I) which is
easy to simulate ,

Y =p+LX ~N(uC) if C=LLT.
But
Y = pu+CY2X ~ N(u, C)

preferred because computing C'/2X is easier, especially if n is very large.

The next sections will discuss the numerical algebra for f(A). We have to
distinguish two problems:

1. A e C™*" is small moderately sized and computing matrix-factorizations
(e.g. Schur form) is possible.

2. A e C™ " large, sparse (Schur form not possible), but matrix vector linear
system solves with A possible and only f(A)b for b € C™ desired.

I11.4. Methods for computing f(A) 53

.4 Methods for computing f(A)
We start with approaches for general f and A.

ll.4.1 Taylor series

If f has a Taylor expansion
0
f(z) = ar(z—a)*
k=0
with convergence radius r, it can be used as basic tool for f(A):
a0
FA) = dlar(A—al)?, it [\—al <r YAieAA). (111.9)
k=0

In practice, we truncate the sum after m terms. Important Taylor series are:

A 2 A3
(§] =I+A+?+§+,

A2 At AS
COS(A):I_§+Z_H+""
A3 A
A2 A3
log(I—l—A)zA—i—i-?—..., p(A) > 1.

lll.4.2 Rational and Padé approximations

The Taylor series (l11.9) provides a polynomial approximation of f, f ~ p with
deg(p) = m.

A generalization is given by

F(2) ~ rim(2) = Z:mgz (11.10)

with numerator and denominator polynomials pg.., qr Of degree k and m,
respectively. We hope to achieve a better approximation of f with lower degrees
k, m compared to (I11.9). We call (Ill.10) a [k/m] Padé approximant of f if
QGem(0) = 1 and f(2) — rpm(2) = O(zF™+1). For many important functions
(exp(z), log(z),...), Padé approximents are explicitly known (book on (rational)
approximation theory). The evaluation of r,,(A) for an example can be done
via:

54 Chapter Ill. Matrix Functions

e Trm(A) = G (A) pem (A) and prm(A), qem(A) evaluated appropriate
(Horner scheme,...),

« continued fraction form 7, (2) = by + ™

* partial function expansion.

11.4.3 Methods based on matrix functions

Easy start: Let A be diagonalizable A = XDX ! D = diag()\;) such that
F(A) = XF(D)X™" = Xdiag(f(A:) X"
From the point of numerical stability, this computation is not recommended be-

cause of the error application by x(X) = | X || X! > 1.

Better: Use a unitary factorization, e.g. our beloved Schur form (Theorem [.1)

A=QRQM, Q"Q =1, R= i], such that

F(A) = Qf(R)Q™.

If A; # A; forall i, j € A(A), we can compute first the diagonal of F' = f(R)
and then the strict upper triangular part. This is problematic if A; = A; or
)‘i X)‘j-
Better: reorder and partition the Schurform
R11 e qu q
R= .t |, ReC™ ™ Y ni=n (.11)
qu =1
with A(R;;) n A(Rj;) = B foralli # je{l,...,q} and |\; — A\p| < 6, A\ €
A(Rj;). The spectra A(R;;) are well separated from A(R;;), j € {1,...,q}\{3}.
Partition F' := f(R) in the same way
F11 N qu
F = :
qu
At first we compute the "atomic block" Fj; = f(Ri), ¢ = 1,...,q. The eigen-
values of R;; are supposed to be close to each other. Let T' € C"™™ be one of

the diagonal blocks of R in (lll.11). We write T' = oI + M, o = L 37 A =
trace(1")/m (= mean of the eigenvalues). It holds

@ 10 (o
flo+z)=)] o) k,() ¢ (11.12)
k=0 ’

I11.4. Methods for computing f(A) 55

and therefore with Section Il1.4.1

@ f<k>
P

If T has only one eigenvalue o, M is a strictly upper triangular matrix and
hence, M™ = 0, where n is the dimension of the matrix. Otherwise we truncate
(111.12), e.g. when the difference of suczessive terms is small.

Sketch of algorithm:
1: Set o = trace(T)/m, M =T — o1, ¢ = machine precision.
2: Set Fy = f(o)I, P =M.
3:fors=1,2...,do
4. SetF,=F,_1 + f()(o)P (Taylor series).

5: SetP =PM/(s+1) (power of M).
6: if|Fs — Fs_1|lp < €| Fs|lr then
7 STOP
8: endif
9: end for
Assume we now have the "atomic blocks" F;; = f(Ry), @ = 1,...,q, but still

require the strictly upper triangular block of F'. We know F'R = RF' because
F = f(R). We compute the "atomic blocks" F;; = f(R;;) by Taylor, Padé
explicit formula

Fipo... qu Ry1 ... qu Ry1 ... qu Fipo... qu
Foq Rgq Rgq Foq
We want to find Fis:
Fi1Ry2 + FioRoo = Ri1F19 — Ri2F5
< Ri1F12 — FiaRoo = F11R12 — RaaFo

which is a Sylvester equation for Fis. In general

j—1
R;iFy; — Fi;Rj; = FyuRij — RijFj; + Z (FirRij — RirFj) (1n.13)
k=i+1

(Sylvester equation for F;;) is uniquely solvable because (lIl.11) and Section
I1.2, e.g. by Sylvester variant of Bartels-Steward method 11.2.2.

After computing F', we undo the unitary transformation Q: f(A) = QFQ".
This method is called Schur-Parlett-Algorithm (Handout).

We now proceed towards methods for special f, especially f = e

56 Chapter Ill. Matrix Functions

lI.4.4 Scaling and squaring for ¢!

The exponential of A € C™" is omnipresent in applied mathematics. There is a

zoo of approaches for computing f(A) = e”.

We will only discuss one of the best methods for 4, the scaling and squaring
method which is considered as state of art. We will use the property:

ANV
eAz(e?) , veN.

The idea is, to choose v = 2° such that /¥ can be reliably computed. By
enforcing |A|/v < 1. The expression e4/¥ can be computed by Taylor or Padé
approximations. Here we use the diagonal Padé approximation ([m/m] Padé)

_ Pn(?)
Tm(2) ()

for e, where 7,,(z) — f(z) = O(2?*1) and ¢,,,(0) = 1. That is scaling and
squaring which can be roughly summarized as

o~ (e(2)

and with r,,,(z) ~ e* for |z| < 1 or |z| ~ 1.

For e“ such [m/m] Padé approximations are known explicitly

2m — j)im! . < (2m —)m!(—2)!
= m(z) = ——. (lll.14
; m — j)lj! () = 2, (2m)(m — j)!5! (114)
Scaling and Squaring in 3 Steps:
1. Find s such that | A/2%|| ~ 1 and replace A «— A/2%.
2. Evaluate [m/m] Padé approximation: r,,(A) = py,(A)gm(A)™ .
3. Set X = (1,(A)¥ ~ e

How to choose the scaling order s € N and Padé order m € N?

In early developments m was fixed and s chosen so that | A/2°| < 1 or < 0.5.
Current versions of scaling and squaring select s, m adaptively on the basis of
|A|. The core idea is that if e 4e? = I we have e 4r,,,(A) = I + G. If we
assume |G| < 1 we obtain

G]
|H| = [log(I + G)| 2“ P _ g1 - @)

I11.4. Methods for computing f(A) 57

and consequently 7,,,(A) = e‘tefl = eATH (A and H commute). If we replace

Aby A/25 we get
AN
Tm <25> — AP B = 92°H with |E|| < —2°log(1 — |G|).
The matrices H and G so depend on s here and the above proves the following
theorem.

Theorem IIl.8: Let e =2 47, (275 A) = I + G with |G| < 1. It holds

|E]l _ —log(1 = |G

(2 A) = ATE <
rm(Z7A)T = e and S o]

We need to bound ||G|. Let wy,(2) = e #rp(2)—1 = 3.2, ., ¢;a* (from Padé
approximation). We define © := ||27° A|| and obtain

0

|G = lwn@*A)| <), |el® =: f(O).
1=2m+1
With Theorem 111.8 we obtain % < —W. Lets define 8 := —log(1 —

f(©)), the ¢; is known explicitly. We use symbolic math to find the largest ©,,
for each m such that < e = 2753,

Often m = 13 and © = 5.4 are chosen for double precision. With ©,, =

|275A| = 275 A| we find s = [log, | A| /O] and set A « 4.

Now s, m are chosen , we need to evaluate 7, (A) = P (A)gm(A) 71, gn(4) =
pm(—A). We observe for even degrees m = 2d:

2d
Pm(A) = paa(A) =). Bz = Bol + BrA + -+ + BrgA™
k=0
= B2a A"+ - 4+ Bo A + Bol + BrA+ - 4 Fog 1 AZ!

R g
even powers odd powers

- @2dA2d 4t 52143 +Bol + A(BLI + -+ + 52d—1A2d_2)

=:U =V

=U+V.

what requires d + 1 matrix multiplications for A2, A%,. .., A%¢. We have exactly
the same costs for odd degrees 2d + 1, so we always use odd degrees.

Likewise it holds ¢(A) = U — V because ¢(A) = p(—A) and therefore
rm(A)=U-V) " (U+V)=X
Last step is then X",

58 Chapter Ill. Matrix Functions

l1.4.5 Inverse Scaling and Squaring for log(A)

We consider a matrix A € C™" with A(A) n R_ = . We know log(z) +
log(y) = log(zy) for z, y € R, and log(z) = klog(z'/%). Hence, it holds
log(z) = 2°log(2"/%") and for |z| small log(1 + z) can be approximated well by
a Padé approximation. We use the property

1
25

log(A) = 2°log(A>) = 2°log(I + A% — I).

Again, we want to use a Padé approximation for log(1+ z), so AY?" is required.
Since we need successively square roots of A, transforming it first to Schur

form is beneficial
Q"AQ =R = ﬂ :

The Schur-Parlett algorithm can be specially modified to compute RY/2. As-
suming we have computed the successive square roots Z = RY2°. We use
Padé of log(1 + z) ~ r,,(2) given in partial form

- 3 e .15
T (2) ;H@Z (I11.15)

where «; and 3, are given explicitly. We have to evaluate r,,(R'/?* —) in an
appropriate way directly via (111.15)

X=rp(Z-1)=rpn(Y) =T+ YY) a1V +....

The degrees s and m can be chosen adaptively since for Y e C™" with |Y| < 1
it holds

[rm(Y) —log(I + V)| < [rm(=[Y]) —log(1 = [Y])]. (lll.16)
We wand to find the smallest m such that the right-hand side is below a desired
tolerance e > 0. The number s of square roots can be chosen until |Z —I| < 1.

Only take extra square roots (costly) if this decreases the Padé degree m by
more than 1 in (l11.16).

Afterwards, we scale and back transform
log(A) ~ F = 2°QXQ".

See handout.

I11.5. Methods for f(A)b 59

1.4.6 Methods for matrix square roots
We consider A € C™™ with A(A) n R_ = . We want X = +/A such that
X? = A. We already mentioned the Schur-Parlett variant.

Another popular approach is based on the Newtons method for X2 — A:

With F(X) = X? — A we have to solve the following matrix equation in every
step to get the increment

F(X)E = F(X)

where we use the Fréchet derivative. This leads to Newtons-method for X2 =
A:

1. Choose Xj.
2. Solve B X + Xp B = A — X% for Ey.
3. Set X1 = Xi + Ey.

Solving the Sylvester-equation in Step 2 is expensive compared to the Schur-
Parlett method.

Theorem II1.9: If X commutes with A then Newtons method for X2 = A can
be reformulated to

X1 == (X + AXY). (11.17)

| =

Moreover, (111.17) is related to the sign-iteration
1 _ 1
Sk+1:§(5k+sk1)7 So = A"2Xp

by X;, = A/2S,.

.5 Methods for f(A)b

Now let A € C™"™ be large and sparse, b € C™ and f defined on A(A). Because
of the large size of A, methods working with O(n?) operations are infeasible.
But in practice often only the action of f(A) to b is desired:

y = f(A)beCm

In this section we consider a method that does not work directly with f(A).
We recall Definition I11.5: f(A) = p(A) where p is the Hermite interpolation

60 Chapter Ill. Matrix Functions

polynomial determined by values of f on A(A) such that the degree of p is the
degree of the minimal polynomial of A. The minimal polynomial of A is the
unique monic polynomial ¢4 of lowest degree such that ¢4 (A) = 0:

pat) = [[t =) o<l <my

i=1

where s is the number of distinct eigenvalues and n; the size of the largest
Jordan block.

Theorem IIl.10: Let f be defined on {\;,/;} and ¢4 the minimal polynomial of
A. It holds f(A)b = q(A)b for the unique Hermite interpolation polynomial ¢
with degree

S
deg(q) < > 1i = degthay
=1
that satisfies the interpolation condition

dPN) = fON), §=0,....Li—1,i=1,...,s

Recall the Krylov subspace
Ki(A,b) = span{b,bA, ..., A¥"1b} = span{q(A)b, ;deg(q) < k — 1}.

With Theorem I11.10 we get f(A)b € IC4(A,b), d = deg(a).

Krylov subspace method

We generate Q; € C™* with orthonormal columns such that range(Qy) =
K (A, b) via an Arnoldi process (recall Section 11.2.3)

AQy = QpHy + hiy1kqhr16r, QrAQy = [\ﬂ ‘

We always set ¢; = b/||b|. We look for f(A)b ~ y € Kix(A,b). The Arnoldi
approximation is given by

fr = Qrf(Hp)QMb. (111.18)

f can be effectively computed on Hj, € C** by any of the methods discussed
before. f, is exact when (clearly) k = n or k = deg(va).

I11.5. Methods for f(A)b 61

Theorem lll.11: Let @, H; be given from the Arnoldi process w.r.t A and b.
Then

fr = Quf(Hr)Qpb = Pre—1(A)b

where py_1 is the unique polynomial of degree < k£ — 1 that interpolates f on
A(Hy).

This procedure works well if f is in some sense well approximable by polyno-
mials. In practice, this converges often slow (many Arnoldi steps) for several
f(A). We essentially get a polynomial approximation.

When to stop the Arnoldi process?

+ Relative change W <e€

« Special for eb: |leb — fil2 ~ [bl2hkr1k

efellre;| < e

Extension: rational Krylov subspaces (of Section 11.2.3)

We consider

range(Qk) = RICk(Aa b, S)
k
= span{(sll — A)7b, (511 — A)"Y(sol — A7, ,H(sil - A)*lb}
i=1

with s; € C. Let T}, = EAQ;C # [Q} We generate @i, by rational Arnoldi-

process

F(A) ~ fEA = Quf(T) Qi

Theorem Ill.12: It holds
FE = i (A,

where the rational function r interpolates f at A(7%).

Often roots of ri(A) = A(Ty), poles {s1,...,sr} make faster convergence
compared to normal Arnoldi approximation. The selection of the poles {s1, ..., sk},
however, is not trivial (cf. comments in Section 11.3.5) and is typically connected

to rational approximation of f. For the special case sz; = 0, s2;41 = 00 we use
the extended Krylov subspace

EKL(A,b) = K(A,b) U Ki(A™L, A7 1h).

62 Chapter Ill. Matrix Functions

It can be shown that this works well for the "Markov" function

f(2) = LO dy(z)

Y
.

where v is a measure such that the integral converges for z € C\(—a0, 0], for

example
(01 de
fz) =272 = f_oo z—x Iy/—x

cHAPTER |V

Randomized Numerical Linear Algebra

63

64 Chapter IV. Randomized Numerical Linear Algebra

Goal: fast and accurate approximation of matrix factorizations and "important”
subspaces, when traditional approaches are no longer feasible or become com-
putationally too demanding (CPU time, memory).

Motivation often comes from big data/ data mining applications:

» enormous amount of data and consequently, large matrices which may
not fit into fast memory,

+ dense data/ unstructured sparsity (contrast to discretization matrices with
structured sparsity)

» NLA algorithms often aim at best possible accuracy ~ machine precision.
This is unnecessary if data are uncertain/ highly inaccurate!

Randomized algorithms do not manipulate the large data matrices. They usu-
ally require matrix-matrix or matrix-vector multiplications, similar to Krylov-subspace
methods, but come with the claim of being more robust and better parallelizable.

RNLA exploits that matrices are often of low numerical rank: Let A € R"*™,
then A~ BC, B e R™k C e RF*™ L « m,n. In other words,

A=BC+E, |E|<e (IV.1)

for a small e. This leads to two computational problems:

1. The fixed precision low-rank approximation problem:
Find B, C' of minimal rank, such that

|A—BC| <e. (IV.2)

Hence, k = k(¢), i.e. the rank k& depends of e.
2. The fixed rank (low-rank) approximation problem:
min |A— BC| =:e. (IV.3)
BeRnXk
CEkam
Hence, € = ¢(k), i.e. the precision ¢ is dependent on the rank k.

Recall: if | - || = | - |2, | - |r, the SVD yields solutions to both problems: for
given A € R™*™ et its SVD be given by

01

T
A=UxvT =[U Us] or {VlT] , (IV.4)

65

where 01 > --- > 0, > 0 and ¥; := diag(oy,...,0,). The problem (IV.2) is
(for | - ||2) solved by

A=U VP =Wl (W) = % e R™*7)
for e = 0. For e > 0 it is solved by
Bzﬁl = [ul uk] and Wl = [w1 wk]
where

k= min {j:oj41 <¢}
jE{l,...,’f‘}

(for H . HF weset k£ = minj€{17.__7r} {_] : \/U?+1 4+ 4 0—% < 6}) AISO, prob|em
(IV.3) is solved by ¢ = oy for | - |2. This is true since the truncated SVD
U1 W yields the best rank-k approximation to A w.r.t. || - ||2,] - | with the error

|21

bound oy, \/a,%ﬂ + - -+ + o2 respectively.

Now, recall that range(U;) = range(A) and ker(A) = range(V2) and the
columns of U; and V4 are orthonormal: ULU; = I, Vit Va = I,,,_,. So let

us look at low-rank factorizations A ~ BC', where B is orthonormal (note:
range(B) ~ range(A)). The idea is now to compute an SVD (or QR-decomposition,
Eigenvalue Decomposition(EVD)) by a 2-step procedure:

Step1: Compute an orthonormal approximate basis for range(A), i.e. compute
Q € R™** orthonormal, such that range(A) ~ range(Q) which implies
that A ~ QQTA. (Remark: if Q were the factor of an exact QR factor-
ization of 4, i.e. A = QR, then QT A = R and we would recover the QR
factorization.)

Step 2: Given @ from Step 1, use it to compute the desired matrix factorization.
Example (SVD - Step 2): Compute B := QTA (cheap, since Q has few
columns) which vyields directly a low-rank factorization A ~ QB. Then com-

pute an SVD of B: B = UgXgVa (fast, B € R**™) and set U := QUp, X =
Sp, V = Va.

= A~UXVT

Example (EVD - Step 2): Let A = AT and let Q be as above. For the EVD,
compute B := QT AQ and it follows B = BT, then the eigenvalue decomposi-
tion of B is cheap as the matrix is small: B = UAUT, A diagonal,

= A~ QQTAQQ" = QBQ" = QUAUTQ" = (QU)AQU)T,

66 Chapter IV. Randomized Numerical Linear Algebra

which yields the dominant eigenvalues and -vectors of A. Assume now that
Y = AQ and range(Q) = range(Y). Hence

BT = QT AQQT 0
—
~A
= BQTQ ~ Q740 = QY.

So the best approximation to B can be obtained by solving the least-square
problem N
min | B(QTQ) — Q7Y . (IV.5)
B

Call the least-square solution to (IV.5) B and replace B by B in the EVD.

Remark IV.1: In the eigenvalue decomposition example we show a way to com-
pute the necessary matrix B without touching A again. Such an algorithm is
called a single-pass algorithm, as the data matrix A is only used once (in Step
1). It is also possible to devise single-pass algorithms for nonsymmetric A.

Before now turning to the "randomized" aspect, observe that our fixed preci-
sion/ rank approximation problems can be formulated using orthonomality re-
quirements as follows:

» fixed precision approximation (given € > 0)

find @ with & = k(e) orthonormal columuns such that (IV6)
[A-QQTA| <e '
« fixed rank approximation (given 0 < k& < min{m, n})
find @ with orthonormal columuns such that (IV.7)
|A = QQTA| ~ minax)<k |4 - X]| '

So, now how to address Step 1?

This is the key step in RNLA: choose a suitable random Q € R™**+P (p >
0 is an oversampling parameter). Then with Y := A(), the range(Y') is a
good approximation to the range(A). @ can then be obtained from Y using a
standard QR factorization, or modified Gram-Schmidt.

67

Algorithm 7 Step 1
Input: A € R™*", target rank k < min{m, n}, oversampling parameter p.
Output: Q € R™*¥*P sych that QTQ = I+, and range(Q) ~ range(A).
1: Draw random n x (k + p) test matrix €.
2: Compute Y := AQ.
3: Set @ := orth(Y).

Why does is work?
Assume rank(A) = k, and let w be a random vector. Then y = Aw is a sample
from range(A). Repeat this k times:

y 9 = 4w, j=1,...,k, w" randomly chosen.

Very likely, {y™),...,4*)} < range(A) is linearly independent. Hence, for
Y = [yM,...,y®)], it holds likely that range(Y) = range(A).

Now assume A is not low rank exactly, but approximately, A = B + FE, where
rank(B) = k, | E| is small. We can expect that with p = 0,

y9) = Awl) = Bwl) + Bwl)| j=1,. . k+p, (IV.8)

leadsto Y = [yM, ..., y®] with range(Y") = range(B) ~ range(A) as Ewl)
likely moves 9 slightly outside the range(B). Hence, an enriched space with
p > 0 has better chance to recover range(B).

Note: usually 5 < p < 10 suffices! With this, we obtain a prototype algorithm
for Step 1, given in Algorithm 7. The matrix (2 is often a Gaussian, i.e. w;; draw
independently from normal distribution. Caution: Y may be ill-conditioned, so
care must be taken when orthonormalizing its columns.

How good is the random SVD (first example and Algorithm 7)?

Theorem IV.2: Let A € R™*™. Run Algorithm 7 with k > 2, p > 2,and k + p <
min{m, n}, choose () as standard Gaussian test matrix (w;; ~ N'(0, 1)). Then

4/k + :
E(JA - QQTA|2) < [1 + flpx/mln{m, n}] Okt1, (IV.9)
where oy 1 is the (k+ 1)-th singular value of A, is the best approximation error.

How likely is this approach to fail?

Theorem IV.3: Under the assumptions of Theorem IV.2 and p > 4,

P (||A —QQTA|; < [1 + 9v/k + py/min{m, n}] O'k+]_) =>1-3p P

68 Chapter IV. Randomized Numerical Linear Algebra

(p=5: pP=32-107% p=10: p? =109 = choose oversampling
parameter 5 < p < 10 justified!).

A posteriori error estimation: The exact error is | (I — QQT)A|. Can we get
information by computing |[(I — QQT)AwY|, j =1,...,R?

Theorem 1V.4: Let () be computed with Algorithm 7, (2 standard Gaussian test
matrix, and let w), j =1, ..., standard Gaussian test vectors. Then

2 ,
(I — Q™A < 10\[max (I - QQT)Aw (IV.10)
U J=4
with probability 1 — 107,

So for [= 10 we got a very reliable error estimate! If the error is too large,
increase p.

Now, as a final step we derive a prototype algorithm (Algorithm 8) for the ran-
domized SVD, where we add a few ¢ = 1,2,... steps of power iteration to
Step 1 to derive Y more into the direction of the dominant left singular vec-
tors of A(= eigenvectors of AAT = USVTVETUT = USVT). This requires
(2¢ + 2)km 4 + O(k*m) flops, where m 4 = cost for applying A, A" once to a
vector.

How does it perform?

Theorem IV.5: Let 2 < k < min{m, n}. Then the result of Algorithm 8
satisfies

— (IV.11)

N~

=:0g

i } (2g+1)~1
£(lA— UV < [1 4 M]

_

Truncating to a rank & factorization yields

E(A-UZVTY|) < opp1 + 6. (IV.12)

69

Algorithm 8 Randomized SVD
Input: A € R™ ™, target number k of singular values, small integer

q(¢=1,2).

Output: Rank 2k factorization A ~ UXVT, U and V have orthonormal
columns, ¥ = diag(oy,...,02), 05 = 0.
Step 1:

1: Generate a Gaussian test matrix Q € R”*2k,
2: FormY = (AAT)71AQ.
3: Set Q = orth(Y).
Step 2:
4: Form G := QT A.
5: Compute SVD G = USVT,
6: SetU := Q(?

70

Chapter IV. Randomized Numerical Linear Algebra

CHAPTER V

Outlook to Multilinear (Numerical) Linear Algebra

71

72 Chapter V. Outlook to Multilinear (Numerical) Linear Algebra

So far we considered 2D arrays A € R™*™ (matrices). In numerical methods,
matrix-factorizations are a very important ingredient. For instance, recall the
singular value decomposition (SVD)

1 0

_ T nxn _
A=UxVT UeR ,2_[0 0

j| c R’l’LXﬂ) V c Ran?

with UTU = 1, VIV = I, ¥, = diag(oy,...,0,), 01 = --- = 0, > 0,
r = rank(A). The SVD can be used to set a low-rank approximation

A~UQG1:B)2A:k1:EBV(E 1R, k<
In practice, d-order tensors (d-dimensional arrays)
AeRM>Xxnd g > 2

are more and more important. Our goal is to get an idea of SVD-type factoriza-
tions for tensors. Recall the vectorization operator for A € R™*™:

A(: 1)
vec(A) = : e Rmx1,
A(:y,m)

This operator transforms matrices into vectors (tensors of order 2 to order 1).
The "matricization" or "unfolding" of a d-order tensor A generalizes this con-
cept:

Definition V.1: Let A € R™ *"*™d_ The k-mode matrix matricization/ unfolding

A(k) = RnkX(nl...nk,lnk+1...nd)’ k — 1’ . 7d

has the element a,, ... », at the position ny, 1 + Z?=1 <(nj —1) an_zll nm)
j#k m#k
Applications:

« A € R™™ represents an n x m image, so A € R"*™*T represents a
sequence (video) of T" images.

 Physical problems in several dimensions:
— multibody problem,
— particle physics,
— quantum physics,

each part has 3 spatial dimensions + time + "quantum-numbers" (spin).

73

Lets consider definition V.1 for order 3 tensors A € R™1*m2*"n2,

Then the 1-mode matricization is

= [A] [4] - [4n]

the 2-mode matricization is

A = AT AT] .- AT

ns

and the 3-mode matricization is

= R’IH Xnans

= Rng Xnins

vec(Ap)T
vec(Ag)T
Ag) = (2 € Raxmnz,
vec(Ap,)"
1 4 7 10 13 16 19 22
Example: Let |2 5 8 11| and (14 17
3 6 9 12 15 18 21 24

A € R3*4%2_ Then the matricizations are

10 13 16 19 22

147
Ap=1[2 5 8 11 14 17 20 23|,
36 9

1 2 3 13 14 15
4 5 6 16 17 18
7T 8 9 19 20 21
10 11 12 22 23 24

(1 2 3 4 5 6
(13 14 15 16 17 18

Definition V.2: The multilinear rank of A € R™ **"d ig the tuple

(riy...,rq) := [rank(A(l)) Yo ,rank(A(d))].

12 15 18 21 24

and

7T 8 9 10 11 12

19 20 21 22 23 24|

The example has the multilinear rank (2, 2, 2).

Let M e R™* ™, k= 1,...,d and let By = MAg) € R™*(mnantisina),

20 23| be the frontal slices of

74 Chapter V. Outlook to Multilinear (Numerical) Linear Algebra

By can be folded back into a tensor B € R™ XX Tth—1XmxMkt1xX0d Thig is
called k-mode matrix multiplication:

B=Mo, A< B(k) = MA(k), M e R™* "k,
Relation to vectorization:
vec(M o1 A) = vec(MA(l))
= (Ing..ng @ M)vec(A())
= (Ind K- ® In2 ® M)VGC(A(l)).
In general it holds
VeC(M Ok A) = (Inl..Ank,lnkJFl...nd ® M)VeC(A(k))
=(I®M) H vec(A),

Ok

where o}, are the correct permutations.

Towards a higher order SVD

We recallthe SVD A = USVT, U e R 7 VV e R™*" ¥ e R"*". We obtain
vec(A) = (VR U)vec(X).
The Tucker decomposition of a three dimensional tensor is defined as
A=Uo1 VogWosC=:(UV,W)oC

for U e RM>" Ve R™*™2 ¥ e R™*"s orthogonal and the "core-tensor"
C e R"*"2%73 and leads to

vec(A) = (W®V QU)vec(C).

LW/
C

A U

It follows
Aqy =UCH(We V)"
Ap) =VCo(WeU)*
Ag) =WCs(VeU) .

75

We derive the higher order SVD (HOSVD) for the truncation to prescribed
multirank (1, r2,73):

1. Compute the SVDs of the k-matricizations

Awy = UGSeViE, k=1,2,3.

2. Truncate Uy := ﬁk, Vi = ‘/}k, = i\]k.
3. Form the core tensor vec(C) = (Us ® Uy ® Uy)vec(A).

We obtain a truncated version of A := (Us ® Uz ® U;)vec(C'). Note that C' €
R"™*72XT3 has no special (e.g.diagonal) structure. The generalization to order-
d tensors is straight forward. This is conceptually simple, but the memory is
intensive for C' (~ rd, r= max;—1,. 4 7;). 1here exist different tensor formats
(hierachical Tucker, canonocal polyadic decomposition, tensor trains, ...) to
reduce the memory demands.

76

Chapter V. Outlook to Multilinear (Numerical) Linear Algebra

77

	Introduction
	Linear systems of equations
	Eigenvalue problems (EVP)

	Matrix Equations
	Preliminaries
	Examples of Algebraic Matrix Equations

	Linear Matrix Equations
	Solution Theory
	Direct Numerical Solution
	Iterative Solutions of Large and Sparse Matrix Equations

	Algebraic Riccati Equations
	Hamiltonian Matrices and the ARE
	Characterization of Stabilizing Solutions
	Direct Numerical Solution Methods
	Iterative Solution of the ARE – The Newton-Kleinman Iteration
	Solving large-scale AREs

	Matrix Functions
	Introduction
	Definitions of f(A)
	Using the Jordan Canonical Form
	Polynomial Interpolation
	Cauchy integral definition
	Equivalence of definitions
	Non-primary matrix functions

	Applications
	Methods for computing f(A)
	Taylor series
	Rational and Padé approximations
	Methods based on matrix functions
	Scaling and squaring for eA
	Inverse Scaling and Squaring for log(A)
	Methods for matrix square roots

	Methods for f(A)b

	Randomized Numerical Linear Algebra
	Outlook to Multilinear (Numerical) Linear Algebra

