Otto-von-Guericke-Universität Magdeburg
Max Planck Institute for Dynamics of Complex Technical Systems
Prof. Dr. Peter Benner, Dr. Sara Grundel, Jennifer Przybilla

Numerische Lineare Algebra 2 – 11. Hausaufgabe

Bitte senden Sie die Lösungen inklusive der MATLAB[®] Implementierungen bis zum 03.07.20 an przybilla@mpi-magdeburg.mpg.de.

Aufgabe 1 (Randomisierte Niedrig-Rang Matrix Approximationen)

Sei $A \in \mathbb{R}^{n \times m}$ mit $m \leq n$ und Rang(A) = m. Das Ziel ist es, eine Approximation von A zu berechnen, welche von niedrigem Rang $k \leq m$ ist. Erinnern Sie sich, dass das gemacht werden kann, indem die eine (dünne) Singulärwert Zerlegung (SVD) von A nutzen und implementieren Sie diesen Ansatz in MATLAB.

Betrachten und implementieren Sie nun den folgenden randomisierten Ansatz, welcher eine Approximation von Rang 2k liefert:

- 1. Generieren Sie eine randomisierte Gaussian Matrix $\Omega \in \mathbb{R}^{m \times 2k}$ (d.h. Einträge unterliegen der Gaußschen Standardverteilung)
- **2.** $Y := AA^TA\Omega$.
- **3.** Berechne Q mit orthonormalen Spalten, sodass range(Q) =range(Y).
- **4.** Berechneen Sie die SVD von Q^TA : $USV^T = Q^TA$.
- **5.** Generieren Sie eine Niedrig-Rang Approximation durch $\hat{A}_{\Omega} := (QU)SV^{T}$.

Führen Sie beide Algorithmen aus und vergleichen Sie bezüglich der Gesamtrechendauer und der Approximationsqualität der gernerierten Resultate in der Spektral Norm. Nutzen Sie A = rand(5000, 500) und k = 10, 50, 100 als Testfall.