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In this lecture, we discuss theory, numerics and application of advanced prob-
lems in linear algebra:

(II) matrix equations (example: solve AX ` XB “ C),

(III) matrix functions: compute fpAq or fpAqb, where A P C
nˆn, b P C

n,

(IV) randomized algorithms.

The main focus is on problems defined by real matrices/vectors. In most chap-
ters, we have to make the distinction between problems defined by

• dense matrices of small /moderate dimensions and

• large, sparse matrices, e.g. A P C
nˆn, n ° 104 or greater, but only Opnq

nonzero entries, often from PDEs.

We first have to review two important standard problems in numerical linear
algebra, namely solving linear systems of equations and eigenvalue problems.

I.1 Linear systems of equations

We consider the linear system

Ax “ b, (I.1)

with A P C
nˆn

pR
nˆn

q, b P C
n

pR
n

q. The linear system (I.1) admits a unique
solution, if and only if

• there exists an inverse A
´1

• detpAq ‰ 0

• no eigenvalues/ singular values are equal to zero

• . . .
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Numerical methods for small and dense A P C
nˆn

Gaussian Elimination (LU-factorization):

We decompose A such that

A “ LU, L “

„
@
@

1

1

@@

⇢
, U “

„
@

@@

⇢
.

We obtain, that

(I.1) ô LUx “ b ô x “ U
´1

pL
´1

bq.

Hence, we solve (I.1) in two steps:

1. Solve Ly “ b via backward substitution.

2. Solve Ux “ y via backward substitution.

This procedure is numerically more robust with pivoting PAQ “ LU , where
P, Q P C

n,n are permutation matrices. This method has a complexity of Opn
3
q

and is, therefore, only feasible for small (moderate) dimensions.

QR-decomposition:

We decompose A into a product of Q and R where Q is an orthogonal matrix
and R is an upper triangular matrix leading to the so-called Gram-Schmidt or
the modified Gram-Schmidt algorithm. Numerically this can be done either with
Givens rotations or with Householder transformations.

Methods for large and sparse A P C
nˆn

Storing and computing dense LU-factors is infeasible for large dimensions n

(Opn
2
q memory, Opn

3
q flops). One possibility are sparse direct solvers, i.e.

find permutation matrices P and Q, such that PAQ “ LU has sparse LU-
factors (cheap forward/ backward substitution and Opnq memory).

Example: We consider the LU-factorization of the following matrix

A “

«
˚ . . . ˚
.
.
.

. . .
˚ ˚

�
“

„
@
@

1

1

@@

⇢ „
@

@@

⇢
.

With the help of permutation matrices P and Q, we can factorize

PAQ “

«
˚ ˚

. . .
.
.
.

˚ . . . ˚

�
“

«
˚
.
.
.

. . .
˚ ˚

�«
˚ . . . ˚

. . .
˚

�
.
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Algorithm 1 Arnoldi method
Input: A P C

nˆn
, b P C

n

Output: Orthonormal basis Qk of (I.2)
1: Set q1 “

b

}b} and Qq :“ rq1s.
2: for j “ 1, 2, . . . do
3: Set z “ Aqj .
4: Set w “ z ´ QjpQ

H

j
zq.

5: Set qj`1 “
w

}w} .
6: Set Qj`1 “ rQj , qj`1s.
7: end for

Finding such P and Q and still ensuring numerical robustness is difficult and
based e.g. on graph theory.

In MATLAB, sparse-direct solvers are found in the "z"-command: x “ Azb or
lupAq-routine. (Never use invpAq!)

Iterative methods

Often an approximation px « x is sufficient. Hence, we generate a sequence
x1, x2, . . . , xk by an iteration, such that

lim
kÑ8

xk “ x “ A
´1

b

and each xk, k • 1 is generated efficiently (only Opnq computations). Of
course, we want xk « x for k ! n.

Idea: Search approximated solution in a low-dimensional subspace Qk Ä C
n,

dimpQkq “ k. Let Qk be given as rangepQkq “ Qk for a matrix Qk P C
nˆk.

A good choice of the subspace is the Krylow-subspace

Qk “ KkpA, bq “ spantb, Ab, . . . , A
k´1

bu. (I.2)

It holds for z P KkpA, bq, that z “ ppAqb for a polynomial of degree k ´ 1
p P ⇧k´1. An orthonormal basis of KkpA, bq can be constructed with the Arnoldi
process presented in Algorithm 1.

The Arnoldi process requires matrix-vector products z “ Aq. These are cheap
for sparse A and therefore feasible for large dimensions.

We find an approximation xk P x0 ` Qk by two common ways:

• Galerkin-approach:
Impose r “ b ´ Axk K rangepQkq ô pQ

H

k
AQkqyk “ Q

H

k
b.

We have to solve a k-dimensional system ñ low costs.
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• Minimize the residual:

min
xkPrangepQkq

}b ´ Axk}

in some norm. If xk is not good enough, we expand Qk.

There are many Krylov-subspace methods for linear systems. (Simplification
for A “ A

H: Arnoldi ù Lanczos)

In practice: Convergence acceleration by preconditioning:

Ax “ b ô P
´1

Ax “ P
´1

b

for easily invertible P P C
n,n and P

´1
A "nicer" than A (ù Literature NLA I).

Another very important building block is the numerical solution of eigenvalue
problems.

I.2 Eigenvalue problems (EVP)

For a matrix A P C
n,n we want to find the eigenvectors 0 ‰ x P C

n and the
eigenvalues � P C such that

Ax “ �x.

The set of eigenvalues ⇤pAq “ t�1, . . . ,�nu is called the spectrum of A.

Small, dense problems:

Computing the Jordan-Normal-Form (JNF)

X
´1

AX “ J “ diagpJs1p�1q, . . . , Jskp�kqq, Jsj p�jq :“

»

–
�j 1

. . . 1
�j

fi

fl

to several eigenvalues and eigenvectors is numerically infeasible, unstable
(NLA I).

Theorem I.1 (Schur): For all A P C
nˆn exists a unitary matrix Q P C

n,n

(QH
Q “ I), such that

Q
H
AQ “ R “

»

—–
�1 ˚

. . .
0 �n

fi

�fl

loooooooomoooooooon
Schur form of A
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with �i P ⇤pAq in arbitrary order.

The Schur form can be numerically stable computed in Opn
3
q (NLA I) by the

Francis-QR-algorithm. It is this basis for dense eigenvalue computations. In
MATLAB we use rQ,Rs “ schurpAq. Additionally, the routine eigspAq uses the
Schur form. In general, the columns of Q are no eigenvectors of A, but Qk “

Qp:, 1 : kq spans an A-invariant subspace for all k:

AQk “ QkRk, for a matrix Rk P C
kˆk with ⇤pRkq Ñ ⇤pAq.

But because of the Opn
3
q complexity and Opn

2
q memory, the Schur form is

infeasible for large and sparse matrices A.

Eigenvalue problems defined by large and sparse matrices A can again be
treaded with the Arnoldi-process and projections on the Krylov-subspace
KkpA, bq “ rangepQkq. We obtain the approximated eigenpair
xk “ Qkyk « x, µ « � by using the Galerkin-condition on the residual of
the eigenvalue problem:

rk “ Axk ´ µxk K rangepQkq ô Q
H

k
AQkyk “ µ yk,

which means pµ, ykq are the eigenpairs of the k ˆ k-dimensional eigenvalue
problem for QH

k
AQk. This small eigenvalue problem is solvable by the Francis-

QR-method. This is the basis of the eigspAq routine in MATLAB for computing
a few (! n) eigenpairs of A.

Summary: Solving linear systems and eigenvalue problems is for small or large
and sparse matrices A no problem!
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II.1 Preliminaries

Up to now we know linear systems of equations

Ax “ b,

where A P R
nˆn and b P R

n are given and x P R
n has to be found.

In this course we consider more general equations

F pXq “ C, (II.1)

where F : Rqˆr
Ñ R

pˆs, C P R
pˆs is given, and X P R

qˆr has to be found.
Equations of the form (II.1) are called algebraic matrix equations.

II.1.1 Examples of Algebraic Matrix Equations

1) F pXq “ AXB, i. e., (II.1) is

AXB “ C.

2) Sylvester equations:

AX ` XB “ C,

3) algebraic Lyapunov equations:

a) continuous time:

AX ` XA
T

“ ´BB
T
, X “ X

T
,

b) discrete time:

AXA
T

´ X “ ´BB
T
, X “ X

T
,

4) algebraic Riccati equations:

a) continuous time:

A
T
X ` XA ´ XBR

´1
B

T
X ` C

T
QC “ 0, X “ X

T
,

b) discrete time:

A
T
XA ´ X ´ pA

T
XBqpR ` B

T
XBq

´1
pB

T
XAq

` C
T
QC “ 0, X “ X

T
.
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c) non-symmetric

AX ` XM ´ XGX ` Q “ 0.

Examples 1) – 3) are linear matrix equations, since the map F is linear. Equa-
tions of the type 4) are called quadratic matrix equations. The goal of this
lecture is to understand the solution theory as well as numerical algorithms for
the above matrix equations. Our focus will be on the equations 2),3a) and 4a)
since these are the equations mainly appearing in the applications.

The term continuous-/discrete-time in 3a,b), 4a,b) refers to applications in con-
text of continuous-time dynamical systems

9xptq “ Axptq, t P R

or discrete-time dynamical systems

xk`1 “ Axk, k P N,

respectively. More info in courses on control theory or model order reduction.

There are also variants of the above equations containing X
T or XH – these

will not play a prominent role here. Furthermore, there are matrix equations
where X “ Xptq is a matrix-valued function and F contains derivative informa-
tion of X. Such equations are called differential matrix equations, for example
the differential Lyapunov equation

9Xptq ` Aptq
T
Xptq ` XptqAptq ` Qptq “ 0,

where A, Q P Cprt0, tf s,R
nˆn

q, and X P C
1
prt0, tf s,R

nˆn
q with Qptq “ Qptq

T
•

0 and Xptq “ Xptq
T for all t P rt0, tf s and the initial condition Xpt0q “ X0.
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II.2 Linear Matrix Equations

In this chapter we discuss the solution theory and the numerical solution of
linear matrix equations as defined precisely below.

Definition II.1 (linear matrix equation): Let Ai P C
pˆq, Bi P C

rˆs, and C P

C
pˆs

, i “ 1, . . . , k be given. An equation of the form

kÿ

i“1

AiXBi “ C (II.2)

is called a linear matrix equation.

II.2.1 Solution Theory

To discuss solvability and uniqueness of solutions of (II.2) we need the following
concepts.

Definition II.2 (vectorization operator and Kronecker product): For X “

“
x1 . . . xm

‰
“

»

—–
x11 . . . x1m

...
...

xn1 . . . xnm

fi

�fl P C
nˆm and Y P C

pˆq

a) the vectorization operator vec : Cnˆm
Ñ C

nm is given by

vecpXq :“

»

—–
x1

...
xm

fi

�fl ,

b) the Kronecker product is given by

X b Y “

»

—–
x11Y . . . x1mY

...
...

xn1Y . . . xnmY

fi

�fl P C
npˆmq

.

Lemma II.3: For T P C
nˆm, O P C

mˆp, and R P C
pˆr it holds

vecpT ORq “
`
R

T
b T

˘
vecpOq
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(Note that it has to be R
T in the above formula, even if all the matrices are

complex.)

Proof. Exercise.

By this lemma, and the obvious linearity of vecp¨q, we see that

kÿ

i“1

AiXBi “ C ô

kÿ

i“1

`
B

T

i b Ai

˘

looooooomooooooon
A

vecpXqloomoon
X

“ vecpCq ,looomooon
B

and we find that (II.2) has a unique solution if and only if the linear system of
equations AX “ B has one. Equivalently, A has to be nonsingular.

Theorem II.4: The linear matrix equation (II.2) with ps “ qr has a unique solu-
tion iff all eigenvalues of the matrix

A “

kÿ

i“1

`
B

T

i b Ai

˘

are non-zero.

In the following we will focus on the case k § 2 and p “ s “ q “ r, since
Lyapunov equations pk “ 2, A1 “ A, B1 “ A2 “ In, B2 “ A

T
q and Sylvester

equations pk “ 2, A1 “ A, B2 “ B, A2 “ In, B1 “ Imq are important special
cases of interest in applications.

To check the above condition for unique solvability, we do not want to evaluate
the Kronecker products. Therefore, we now derive easily checkable conditions
based on the original matrices.

Lemma II.5: a) Let W,X, Y, Z be matrices such that the products WX and
Y Z are defined. Then pW b Y qpX b Zq “ pWXq b pY Zq.

b) Let S,G be nonsingular matrices. Then S b G is nonsingular, too, and
pS b Gq

´1
“ S

´1
b G

´1.

c) If A and B, as well as, C and D are similar matrices then AbC and B bD

are similar (A similar to B if DQ nonsingular s.t. A “ Q
´1

BQ).

d) Let X P C
nˆn and Y P C

mˆm be given. Then

⇤pX b Y q “ t�µ | � P ⇤pXq, µ P ⇤pY qu.
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Proof. Exercise.

Theorem II.6 (Theorem of Stephanos): Let A P C
nˆn and B P C

mˆm with
⇤pAq “ t�1, . . . , �nu, ⇤pBq “ tµ1, . . . , µmu be given. For a bivariate polyno-

mial ppx, yq “

k∞
i,j“0

cijx
i
y
j we define by

ppA,Bq :“
kÿ

i,j“0

cijpA
i

b B
j
q

a polynomial of the two matrices. Then the spectrum of ppA,Bq is given by

⇤pppA,Bqq “ tpp�r, µsq | r “ 1, . . . , n, s “ 1, . . . , mu.

Proof. Use JNF or Schurforms of A,B + Lemma II.5.

Now we are ready to consider our preferred special cases of (II.2).

a) AXB “ C:

A “ B
T

b A invertible ô � ¨ µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô � ‰ 0 and µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô both A and B are nonsingular.

b) continuous-time Sylvester equation AX ` XB “ C, where A P C
nˆn,

B P C
mˆm, C, X P C

nˆm:

A “ Im b A ` B
T

b In invertible ô �` µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô ⇤pAq X ⇤p´Bq “ H.

c) continuous-time Lyapunov equation AX`XA
H

“ W , where A, X P C
nˆn,

W “ W
H

P C
nˆn:

A “ In b A ` A b In invertible ô ⇤pAq X ⇤p´A
H

q “ H.

For example, this is the case when A is asymptotically stable.

d) discrete-time Lyapunov equations Ñ exercise.

The following result gives some useful results about the solution structure of
Sylvester equations.
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Theorem II.7: Let A P C
nˆn, B P C

nˆn with ⇤pAq Ä C´,⇤pBq Ä C´. Then
AX ` XB “ W has a (unique) solution

X “ ´

8ª

0

eAt
W eBtdt

Proof. Exercise.

From now on

AX ` XA
˚

“ W, W “ W
˚
. (II.3)

Definition II.8 (controllability): Let A P C
nˆn and B P C

nˆm. We say pA,Bq is
controllable if rankrB,AB, . . . A

n´1
Bs “ n.

Lemma II.9: The above controllability condition is equivalent to

rankrA ´ �I, Bs “ n for all � P C

ñ y
˚
B ‰ 0 @y ‰ 0 : y

˚
A “ y

˚
� pleft. eigenvecs ofq A

Proof. We first prove that rankrA ´ �I,Bs “ n @� P C is equivalent to Def-
inition II.8. Assuming that rankrA ´ �I,Bs † n for a � P C then there exists
a w ‰ 0 such that wT

rA ´ �I, Bs “ 0 which means that wT
pA ´ �Iq “ 0

and w
T
B “ 0 and that means that wT

rB,AB, . . . A
n´1

Bs “ 0 which means
pA,Bq is not controllable. Assuming pA,Bq is not controllable and therefore
rankrB,AB, . . . A

n´1
Bs † n we define a matrix M contains a basis of the im-

age of rB,AB, . . . A
n´1

Bs. Then there is a matrix M̃ such that T “ rM, M̃ s is
invertible and

Ã “ T
´1

AT “

«
rA11

rA12

0 rA22

�
(II.4)

B̃ “ T
´1

B “

„ rB1

0

⇢
(II.5)

Let � be an eigenvalue of Ã22 and w22 a left eigenvector. Then

w :“

„
0

w̃22

⇢
T

´1
‰ 0.
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It also holds that wT
A “ �w

T and w
T
B “ 0 and therefore rankrA´ �i, Bs not

full. The proof of the equivalence is basically also done within this proof.

Theorem II.10: Consider Lyapunov equation (II.3) with W “ W
˚

“ ´BB
T

§

0, B P R
nˆm.

a) For ⇤pAq Ä C´: pA,Bq controllable ô D unique sol. X “ X
˚

° 0.

b) Let pA,Bq be controllable and assume there D unique sol. X “ X
˚

° 0.
Then ⇤pAq Ä C´.

Proof. a) If the spectrum of A is in the left half plane and W “ W
˚ then there

exist a unique symmetric solution of the Lyapunov equation. What is left to
prove is the equivalence of pA,Bq being controllable and the solution being
positive definite. The solution is given by

X “

8ª

0

eAt
BB

T eA
˚
tdt

which is positive if and only if pA,Bq are controllable.

b) Take an eigenvalue � P ⇤pAq and a corresponding left eigenvector y. Then

0 ° ´y
˚
BB

T
y “ y

˚
AXy ` y

˚
XA

˚
y “ p�` �̄qy

˚
Xy

Since X “ X
˚

° 0 we must have that � ` �̄ “ 2Re� † 0 and since � was
arbitrary that ⇤pAq Ä C´
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II.2.2 Direct Numerical Solution

We have seen that linear matrix equations are equivalent to linear systems.
Why do we not just apply a linear solver? Consider a (real) Lyapunov equation
where we obtain the system matrix A “ In b A ` A b In P R

n
2ˆn

2
. For

computing an LU-factorization of A and a forward/backwards substitution we
need approximately 2

3
pn

2
q
3

“
2

3
n
6 FLOPS and n

4 memory. This is only feasible
for small n. If n Á 50, then this is already prohibitively expensive (even if we
exploit the structure and symmetry).

Therefore, our first goal is to develop a basic algorithm with complexity Opn
3
q

for moderately sized linear matrix equations.

The Bartels-Stewart Algorithm

The idea of this method is the transformation of the matrix A into Schur form.

The Schur form can be computed in a numerically stable fashion by the QR
algorithm and it is the backbone of many dense eigenvalue algorithms (MAT-
LAB schur).

Consider (II.3) with ⇤pAq X ⇤p´A
H

q “ H and let QH
AQ “ T with be the

(complex) Schur form of A.

Premultiplication of (II.3) by Q
H and postmultiplication by Q leads to

Q
H
AXQ ` Q

H
XA

T
Q “ Q

H
WQ

ô Q
H
AQQ

H
XQloomoon

“:X̃

`Q
H
XQQ

H
A

T
Q “ Q

H
WQlooomooon

“:W̃

ô TX̃ ` X̃T
H

“ W̃ (II.6)

We partition this in the form
„
T1 T2

0 T3

⇢ „
X1 X2

X
H

2
X3

⇢
`

„
X1 X2

X
H

2
X3

⇢ „
T
H

1
0

T
H

2
T
H

3

⇢
“

„
W̃1 W̃2

W̃
H

2
W̃3

⇢
,

where T1 P C
pn´1qˆpn´1q

, T2 P C
n´1

, T3 P C. Thus we get
$
’&

’%

T1X1 ` T2X
H

2 ` X1T
H

1 ` X2T
H

2 “ W̃1,

T1X2 ` T2X3 ` X2T
H

3 “ W̃2,

T3X3 ` X3T
H

3 “ W̃3,

ô

$
’&

’%

T1X1 ` X1T
H

1 “ W̃1 ´ T2X
H

2 ´ X2T
H

2 , pn ´ 1q ˆ pn ´ 1q

T1X2 ` X2T3 “ W̃2 ´ T2X3, pn ´ 1q ˆ 1

pT3 ` T 3qX3 “ W̃3. 1 ˆ 1
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Algorithm 2 Bartels-Stewart algorithm (complex version)
Input: A, W P C

nˆn with W “ W
H .

Output: X “ X
H solving (II.3).

1: Compute T “ Q
H
AQ with the QR algorithm.

2: if diagpT q X diag
`
´T

H
˘

‰ H then
3: STOP (no unique solution)
4: end if
5: Set W̃ :“ Q

H
WQ.

6: Set k :“ n ´ 1.
7: while k ° 1 do
8: Solve (II.7a) with W̃3 “ W̃ pk ` 1, k ` 1q and T3 “ T pk ` 1, k ` 1q to

obtain Xpk ` 1, k ` 1q.
9: Solve (II.7b) with T1 “ T p1 : k, 1 : kq, T2 “ T p1 : k, k ` 1q, W̃2 “ W̃ p1 :

k, k ` 1q, and X3 “ Xpk ` 1, k ` 1q to obtain Xp1 : k, k ` 1q.
10: Set W̃ “ W̃ p1 : k, 1 : kq ´ T2X

H

2
´ X2T

H

2

11: Set k :“ k ´ 1.
12: end while
13: Solve (II.7c) with T1 “ T p1, 1q and Ŵ1 “ W̃ p1, 1q.
14: Set X :“ QXQ

H .

Now we get

X3 “
W̃3

T3 ` T 3

, (II.7a)

where T3 ` T 3 ‰ 0 since T3 P ⇤pAq R iR. Next we obtain

T1X2 ` X2T3 “ W̃2 ´ T2X3 “: Ŵ2, (II.7b)

which is a special Sylvester equation that is equivalent to the linear system

pT3In´1 ` T1qX2 “ Ŵ2,

and can easily be solved by backward substitution. Its solution always exists
since ⇤pT1q X

 
´T3

(
“ H. It remains to solve the smaller pn ´ 1q ˆ pn ´ 1q

sized ’triangular’ Lyapunov equation

T1X1 ` X1T
H

1 “ W̃1 ´ T2X
H

2 ´ X2T
H

2 “: Ŵ1, (II.7c)

which is also solvable since ⇤pT1q X⇤p´T
H

1
q “ H and Ŵ1 “ Ŵ

H

1
. This leads

to the complex Bartels-Stewart algorithm, see Algorithm 2. As a convention
we use MATLAB notation, i. e., we denote the section of a matrix A P C

nˆn

consisting only of the rows r1 to r2 and the columns c1 to c2 by Apr1 : r2, c1 :
c2q. If for example, r1 “ r2, then we shortly write Apr1, c1 : c2q.
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Remark: a) In total this algorithm needs approximately

32n3
« 25n3loomoon

Schur

` 3n3loomoon
premult.

` 3n3loomoon
postmult.

` n
3loomoon

while loop

complex floating point operations.

b) The algorithm uses only numerically backward stable parts and unitary
transformations and thus it can be considered backward stable.

c) The method is implemented in the MATLAB routine lyap and in SLICOT in
SB03MD (real version only).

d) The version for Sylvester equations works analogously (see exercise).

Major drawback: The algorithm uses complex arithmetic operations even if all
data is real. Luckily, it can be reformulated to use real operations only.

Theorem II.11 (real Schur form): For every A P R
nˆn there exists an orthogo-

nal matrix Q P R
nˆn such that A is transformed to real Schur form, i. e.

Q
T
AQ “ T “

»

—–
T11 . . . T1k

. . .
...

Tkk

fi

�fl , (II.8)

where for i “ 1, . . . , k, Tii P R
1ˆ1 (corresponding to a real eigenvalue of

A) or Tii “

”
↵i �i

´�i ↵i

ı
P R

2ˆ2 (corresponding to a pair of complex conjugate
eigenvalues ↵i ˘ i�i of A).

Proof. See the course on “Numerical Linear Algebra”.

To this end, we replace the Schur form by the real Schur form (II.8). Then T3

may be a 2 ˆ 2 block, i. e., T3 “
“
t1 t2
t3 t4

‰
. We obtain

„
t1 t2

t3 t4

⇢ „
x1 x2

x2 x3

⇢
`

„
x1 x2

x2 x3

⇢ „
t1 t3

t2 t4

⇢
“

„
w1 w2

w2 w3

⇢
.

This is equivalent to

$
’&

’%

w1 “ t1x1 ` t2x2 ` t1x1 ` t2x2 “ 2pt1x1 ` t2x2q,

w2 “ t1x2 ` t2x3 ` t3x1 ` t4x2 “ t3x1 ` pt1 ` t4qx2 ` t2x3,

w3 “ t3x2 ` t4x3 ` t3x2 ` t4x3 “ 2pt3x2 ` t4x3q.
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We can write this as a linear system of equations
»

–
t1 t2 0
t3 t1 ` t4 t2

0 t3 t4

fi

fl

»

–
x1

x2

x3

fi

fl “

»

–
w1
2

w2

w3
2

fi

fl .

Additionally, one can exploit the fact that T3 corresponds to a pair of complex

conjugate eigenvalues �1,2 “ a ˘ ib and T3 “

„
a b

´b a

⇢
which leads to

»

–
a b 0

´b 2a b

0 ´b a

fi

fl

»

–
x1

x2

x3

fi

fl “

»

–
w1
2

w2

w3
2

fi

fl .

Now (II.7b) becomes

T1X2 ` X2T
T

3 “ Ŵ2 :“ W̃2 ´ T2X3 P R
n´2ˆ2

. (II.9)

Consider the partitions corresponding to the quasi-triangular structure of T1:

X2 “

»

—–
x1

...
xk´1

fi

�fl , Ŵ2 “

»

—–
ŵ1

...
ŵk´1

fi

�fl ,

In general we have xi, ŵi P R
niˆnk , where ni, nk P t1, 2u and i “ 1, . . . , k´1.

We now compute X2 block-wise by progressing upwards from xk´1 to x1. It
holds

Tjjxj ` xjT
T

3 “ ŵj ´

kÿ

h“j`1

Tjhxh “: w̃j , j “ k ´ 1, k ´ 2, . . . , 1.

For the solution of this Sylvester equation four cases have to be considered:

a) nj “ nk “ 1: We obtain a scalar equation such that xj “ w̃j{pTjj ` T3q.

b) nj “ 2, nk “ 1: We obtain a linear system in R
2 with unique solution given

by

pTjj ` T3I2qxj “ w̃j .

c) nj “ 1, nk “ 2: We obtain a linear system in R
2 with unique solution given

by

pTjjI2 ` T3qx
T

j “ w̃
T

j .

d) nj “ 2, nk “ 2: We obtain a linear system in R
4 with unique solution given

by

ppI2 b Tjjq ` pT3 b I2qq vecpxjq “ vecpw̃jq .
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Hence, we get X2 and can set up a Lyap. eqn. for X1 defined by T1. Repeat
whole process until T1 P R or T1 P R

2ˆ2. Then back-transform the solution.

Remark II.12: The Sylvester equation (II.9) can be solved alternatively by solv-
ing a linear system of the form

pT
2

1 ` ↵T1 ` �In´2qX2 “ W̃2,

where X2 “ rs, ts, W̃2 “ ry, zs P R
n´2ˆ2 and ↵,� P R (see exercise).

Hammarling’s Method

Now we consider (II.3) with W “ ´BB
T . By Theorem II.10 we know that

X “ X
T

° 0, provided that ⇤pAq Ä C
´ and the pair pA,Bq is controllable.

Sometimes it is desirable to only compute a factor U of the solution, i. e., X “

UU
H with some matrix U . Later we will see that many further algorithms such

as projection methods for large scale matrix equations proceed with factors
rather than Gramians themselves.

Assume that we have already computed and applied the Schur decomposition
of A “ Q

H
TQ, analogously to (II.6). So our starting point is

TX̃ ` X̃T
H

“ ´B̃B̃
H with X̃ “ Q

H
XQ, B̃ “ Q

H
B. (II.10)

Since X ° 0, we also have X̃ ° 0 by Sylvester’s law of inertia. Our goal is to
compute upper triangular Cholesky factors Ũ of X̃ “ Ũ Ũ

H .

Partition

Ũ “

„
@
@@

⇢
“

„
U1 u

0 ⌧

⇢
, U1 P C

n´1ˆn´1
, u P C

n´1
, 0 † ⌧ P R.

Hammarlings method computes (similar to B.S.) first ⌧ (scalar equation), then
u (LS of size n ´ 1), and finally U1 as Cholesky factor or a n ´ 1 ˆ n ´ 1 Lyap.
equation defined by T1. As in B.S., repeat this until T1 P C, afterwards back-
transform U – QU . Complexity, stability, real version analog to BS. Details
here omitted.

Remark: Iterative methods for small, dense Matrix Equations: There are sev-
eral, iterative methods computing sequences Xk, k • 0 converging to the true
solution, i.e., lim

kÑ8
Xk “ X. For instance:

• Matrix sign function iteration

• Alternating directions implicit (ADI) iteration ù later for large problems.
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II.2.3 Iterative Solutions of Large and Sparse Matrix Equations

Now we consider

AX ` XA
T

“ ´BB
T
, (II.11)

where A P R
nˆn and n is ’large’, but A is sparse, i. e., only a few entries in A

are non-zero. Therefore, multiplication with A can be performed in Opnq rather
than Opn

2
q FLOPS. Also solves with A or A ` pI can be performed efficiently.

However, X P R
nˆn is usually dense and thus X cannot be stored for large n

since we would need Opn
2
q memory.

Thus the question arises whether it is possible to store the solution X more
efficiently.

The Low-Rank Phenomenon

In practice we often have B P R
nˆm, where m ! n, i. e., the right-hand side

BB
T has a low rank. Recall that if pA,Bq is controllable then X “ X

T
• 0

and rankpXq “ n.

It is a very common observation in practice that the eigenvalues of X solving
(II.11) decay very rapidly towards zero, and fall early below the machine preci-
sion.

This gives the concept of the numerical rank of X:

rankpX, ⌧q “ argminj“1,...,rankpXqt�jpXq • ⌧u, e.g., ⌧ “ ✏mach�1pXq.

Can we also theoretically explain this eigenvalue decay?

Theorem II.13: Let A be diagonalizable, i. e., there exists an invertible matrix
V P C

nˆn such that A “ V ⇤V ´1. Then the eigenvalues of X solving (II.11)
with B P C

nˆm satisfy

�km`1pXq

�1pXq
§ }V }

2

2

››V ´1
››2
2
⇢pMkq

2

for any choice of shift parameters pk used to construct

Mk “

kπ

i“1

pA ´ pkIqpA ` pkIq
´1

(in particular, the optimal ones).
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In the Theorem above the spectral radius ⇢ of a matrix is used:

⇢pAq “ max
1§i§n

|�ipAq|.

Remark II.14: • If the eigenvalues of A cluster in the complex plane, only a
few pk in the clusters suffice to get a small ⇢pMkq and thus �ipXq decay
fast.

• If A is normal, then }V }
2

››V ´1
››
2

“ 1 and the bound gives a good expla-
nation for the decay. The nonnormal case is much harder to understand.

• This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of �ipXq, then X can be well approxi-
mated as X “ X

T
« ZZ

H , where Z P C
nˆr with r ! n is a low-rank solution

factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.
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Projection Methods

Now we consider projection-based methods for the solution of large and sparse
Lyapunov equations

The main idea consists of representing the solution X by an approximation
extracted from a low-dimensional subspace Qk “ imQk with Q

T

k
Qk “ Ikm,

i. e., X « Xk “ QkYkQ
T

k
for some Yk P R

mkˆmk. Impose a Galerkin condition

RpXkq :“ AXk ` XkA
T

` BB
T

K Zk,

where

Zk :“
!
QkZQ

T

k
P R

nˆn

ˇ̌
ˇ QT

k
Qk “ Imk, imQk “ Qk, Z P R

kmˆkm

)

and orthogonality is with respect to the trace inner product. Equivalently, Yk
solves the small-scale Lyapunov equation

HkYk ` YkH
T

k
` Q

T

k
BB

T
Qk “ 0, Hk :“ Q

T

k
AQk, (II.12)

which can be solved by the Bartels-Stewart or Hammerling’s method.

In case that the residual norm }RpXkq} is not small enough, we increase the
dimension of Qk by a clever expansion (orthogonally expand Qk), otherwise
we prolongate to obtain Xk “ QkYkQ

T

k
(never formed explicitly).

What are good choices for Qk?

a) Standard block Krylov subspaces

Qk “ KkpA,Bq :“ spantB,AB, . . . , A
k´1

Bu :

A matrix Qk with orthonormal columns spanning Qk can be generated by a
block Arnoldi process, i. e. in the kth iteration we have Qk “

“
V1 . . . Vk

‰

fulfilling (assuming there is no breakdown in the process)

AQk “ QkHk ` Vk`1Hk`1,kE
T

k
,

where

Hk “

»

———————–

H11 H12 . . . . . . H1k

H21 H22 . . . . . .
...

0 H32 H33 . . .
...

...
. . . . . . . . .

...
0 . . . 0 Hk,k´1 Hkk

fi

�������fl

is a block upper Hessenberg matrix and Ek is a matrix of the last m columns
of Ikm, and

Hk “ Q
T

k
AQk.

The residual norm computation for this method is cheap as shown by the
following theorem.
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Theorem II.15: Suppose that k steps of the block Arnoldi process have
been taken. Assume that ⇤pHkq X ⇤p´Hkq “ H. Then the following state-
ments are satisfied:

a) It holds Q
T

k
RpQkY Q

T

k
qQk “ 0 if and only if Y “ Yk, where Yk solves

the Lyapunov equation (II.12).

b) The residual norm is given by
››RpQkYkQ

T

k
q

››
F

“

?

2
››Hk`1,kE

T

k
Yk

››
F
.

Proof. Exercise.

Unfortunately, this method often converges only slowly. Therefore, one often
chooses modified Krylov subspaces as follows.

b) Extended block Krylov subspaces

EKqpA,Bq :“ KqpA,Bq Y KqpA
´1

, A
´1

Bq :

The resulting method is also known as EKSM (extended Krylov subspace
method) or KPIK (Krylov plus inverted Krylov). We obtain a similar construc-
tion formula as for the block Arnoldi method above and also the residual
norm formula is similar. However, the approximation quality is often signif-
icantly better than with KqpA,Bq only. On the other hand, the subspace
dimension grows by 2m in each iteration step (until n is reached).

c) Rational Krylov subspaces

RKqpA,B, Sq (II.13)

:“spantps1In ´ Aq
´1

B, ps2In ´ Aq
´1

B, . . . , psqIn ´ Aq
´1

Bu,

S “ts1, . . . , squ Ä C
`
, si ‰ sj , i ‰ j : (shifts)

This choice often gives an even better approximation quality compared to
EKqpA,Bq, provided that good shifts S are known. Generating the basis
requires solving LS psiI ´ Aqv “ qi, but this is usually efficiently possible
(cf. Intro).

The shifts si are crucial for a fast convergence, but finding good ones is
difficult. For one possible shift selection approach, let m “ 1. One can
show

}Rk} „ max | kpzq| with  kpzq “

kπ

j“1

z ´ �j

z ` sj
, �j P ⇤pHkq.
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This leads to the following procedure for getting the next shift

sk`1 “ argmaxzPBD | kpzq|,

where BD is a discrete set of point taken from the convex hull of ⇤pHkq

(BD Ä convp⇤pHkqq).

For all choices of subspace a)-c): Is the reduced Lyapunov equation (II.12)
always uniquely solvable?

For general matrices A the answer is no. However, for strictly dissipative matri-
ces, i. e., matrices A with A ` A

T
† 0 we have the following result.

Theorem II.16: Let A P R
nˆn be strictly dissipative and Qk P R

nˆmk with
Q

T

k
Qk “ Ikm. Then ⇤pHkq Ä C

´ and the reduced Lyapunov equation (II.12)
is always uniquely solvable.

Proof. Since A ` A
T is symmetric and negative definite, it holds x

H
`
A `

A
T

˘
x † 0 for all x P C

n. Then we have

z
H

`
Hk ` H

T

k

˘
z “ z

H
pQ

T

k
AQk ` Q

T

k
A

T
Qkqz

“ y
H

pA ` A
T

qy † 0, y :“ Qkz, @ z P C
km

ñ Hk ` H
T

k
† 0

Now let Hkx̂ “ �̂x̂ for x̂ P C
km

zt0u. Then we have

x̂
H

`
Hk ` H

T

k

˘
x̂ “ �̂x̂

H
x̂ ` �̂x̂

H
x̂ “ 2Re

´
�̂

¯
x̂
H
x̂ † 0.

Thus ⇤pHkq Ä C
´ and the reduced Lyapunov equation (II.12) is uniquely solv-

able.
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Low-rank ADI

Consider the discrete-time Lyapunov equations

X “ AXA
T

` W, A P R
nˆn

, W “ W
T

P R
nˆn

. (II.14)

The existence of a unique solution is ensured if |�| † 1 for all � P ⇤pAq (see
exercise). This motivates the basic iteration

Xk “ AXk´1A
T

` W, k • 1, X0 P R
nˆn

. (II.15)

Let A be diagonalizable, i.e., there exists a nonsingular matrix V P C
nˆn such

that A “ V ⇤V ´1. Let ⇢pAq :“ max�P⇤pAq |�| denote the spectral radius of A.
Since

}Xk ´ X}2 “ }ApXk´1 ´ XqA
T

}2 “ . . . “ }A
k
pX0 ´ XqpA

T
q
k
}2

§ }A
k
}
2

2}X0 ´ X}2 § }V }
2

2}V
´1

}
2

2⇢pAq
2k

}X0 ´ X}2, (II.16)

this iteration converges because ⇢pAq † 1 (fixed point argumentation).

For continuous-time Lyapunov equations, recall the result from the exercise:

Lemma II.17: The continuous-times Lyapunov equation

AX ` XA
T

“ W, ⇤pAq Ä C
´

is equivalent to the discrete-time Lyapunov equation

X “CppqXCppq
H

` W̃ ppq, Cppq :“ pA ´ pInqpA ` pInq
´1

,

W̃ ppq :“ ´ 2Reppq pA ` pInq
´1

W pA ` pInq
´H

(II.17)

for p P C
´.

Proof. Exercise.

We call Cppq a Cayley transformations of A which is the rational function

�ppzq “
z ´ p

z ` p
.

applied to A. For z, p P C´ we have |�ppzq| † 1. It can be easily shown that
(special case of spectral mapping theorem)

⇤pCppqq “ t�pp�q, � P ⇤pAqu

and therefore ⇢pCppqq † 1. Applying (II.15) to (II.17) gives the Smith iteration

Xk “ CppqXk´1Cppq
H

` W̃ ppq, k • 1, X0 P R
nˆn

. (II.18)
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Similarly as in (II.16), we have

}Xk ´ X}2 § }V }
2

2}V
´1

}
2

2⇢pCppqq
2k

}X0 ´ X}2.

This means that we obtain fast convergence by choosing p such that ⇢pCppqq †

1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (II.18) in every step, we obtain the ADI iteration for
Lyapunov equations

Xk “CppkqXk´1Cppkq
H

` W̃ ppkq, k • 1, X0 P R
nˆn

, pk P C
´
. (II.19)

Remark: The name alternating directions implicit comes from a different (his-
torical) derivation of ADI for linear systems. To get the main idea for Lyapunov
equations, consider the splitting of the Lyapunov operator

LpXq “ AX ` XA
T

“ L1pXq ` L2pXq, L1pXq “ AX, L2pXq “ XA
T
.

Obviously, L1p¨q and L2p¨q are commuting linear operators. It is possible to
formulate an iteration working alternately on L1p¨q and L2p¨q, carrying out “half”-
iteration steps for each operator:

pA ` piInqX
i´ 1

2
“ ´Xi´1pA

T
´ piInq ` W,

pA ` piInqX
T

i “ ´X
T

i´ 1
2
pA

T
´ piInq ` W.

Rewriting this into a single step leads to (II.19).

We address two issues of the ADI iteration:

1. ADI requires, similar to the rational Krylov projection method, shift pa-
rameters that are crucial for a fast convergence. How to choose the shift
parameters pi, i • 1?

2. The iteration (II.19) is in its given form not feasible for large Lyapunov
equations.

The ADI Shift Parameter Problem One can show, similarly to (II.16), that

}Xk ´ X}2 § }V }
2

2

››V ´1
››2
2
⇢pMkq

2
}X0 ´ X}2, Mk :“

kπ

i“1

Cppiq, (II.20)

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations Mk are

⇤pMkq “

#
kπ

i“1

�´ pi

�` pi

ˇ̌
ˇ̌
ˇ � P ⇤pAq

+
.
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Good shifts p
˚
1
, . . . , p

˚
k

should make ⇢pMkq † 1 as small as possible. This
motivates the ADI shift parameter problem

rp
˚
1 , . . . , p

˚
k
s “ argminpiPC´ max

�P⇤pAq

ˇ̌
ˇ̌
ˇ

kπ

i“1

�´ pi

�` pi

ˇ̌
ˇ̌
ˇ . (II.21)

In general, this is very hard to solve. For instance, in general, ⇢pCppqq is not
differentiable and the problem is very expensive, if A is a large matrix. However,
there are some procedures that work well in practice:

• Wachspress shifts: Embed ⇤pAq in an elliptic function region that de-
pends on the parameters

max
�P⇤pAq

Rep�q , min
�P⇤pAq

Rep�q , arctan max
�P⇤pAq

ˇ̌
ˇ̌ Imp�q

Rep�q

ˇ̌
ˇ̌

(or approximations thereof). Then, (II.21) can be solved by employing an
elliptic integral.

• Heuristic Penzl shifts: If A is a large and sparse matrix, ⇤pAq is re-
placed by a small number of approximate eigenvalues (e.g., Ritz values).
Then (II.21) is solved heuristically.

• Self-generating shifts: If A is large and sparse, these shifts are based
on projections of A with the data obtained by previous iterations. These
shifts also make use of the right-hand side W .

The Low-Rank ADI For a low-rank version of ADI computing low-rank solu-
tion factors, consider one step of the dense iteration (II.19) and insert Xj “

ZjZ
H

j
:

Xj “ CppjqXj´1Cppjq
H

` W̃ ppjq

“ pA ´ pjInqpA ` pjInq
´1

Zj´1Z
H

j´1pA ` pjInq
´H

pA ´ pjInq
H

´ 2Reppjq pA ` pjInq
´1

BB
T

pA ` pjInq
´H

.

ñ Xj “ ZjZ
H

j , Zj “
“a

´2ReppjqpA ` pjInq
´1

B pA ´ pjInqpA ` pjInq
´1

Zj´1

‰
.

With Z0 “ 0 we find a low rank variant the ADI iteration (II.19) forming Zj

successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Zj).

However, there is a remedy to this problem. Obviously,

Si “ pA ` piInq
´1 and Tj “ pA ´ pjInq
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commute for all i, j with each other and themselves (proof it yourself).

Now consider Zj being the iterate after iteration step j

Zj “
“
↵jSjB pTjSjq↵j´1Sj´1B . . . pTjSjq ¨ ¨ ¨ pT2S2q↵1S1B

‰

with ↵i “

a
´2Reppiq. The order of application of the shifts is not important,

and we reverse their application to obtain the following alternative iterate

Z̃j “
“
↵1S1B ↵2pT1S1qS2B . . . ↵jpT1S1q ¨ ¨ ¨ pTj´1Sj´1qSjB

‰

“
“
↵1S1B ↵2pT1S2qS1B . . . ↵jpTj´1SjqpTj´2Sj´1q ¨ ¨ ¨ pT1S2qS1B

‰

“
“
↵1V1 ↵2V2 . . . ↵jVj

‰
,

V1 “ S1B, Vi “ Ti´1SiVi´1, i “ 1, . . . , j.

We have Xj “ Z̃jZ̃
H

j
, but in this formulation only the new columns are pro-

cessed. Even more structure is revealed by the Lyapunov residual.

Theorem II.18: The residual at step j of (II.19), started with X0 “ 0, is of rank
at most m and given by

Rj :“AZjZ
H

j ` ZjZ
H

j A
T

` BB
T

“ WjW
H

j ,

Wj “MjB “ CppjqWj´1 “ Wj´1 ´ 2ReppjqVj , W0 :“ B,

where Mj :“
±

j

i“1
Cppiq. Moreover, it holds Vj “ pA ` pjInq

´1
Wj´1.

Proof. We have

Rj “ AXj ` XjA
T

` BB
T

“ ApXj ´ Xq ` pXj ´ XqA
T

pby (II.11)q

“ AMjpX0 ´ XqM
H

j ` MjpX0 ´ XqM
H

j A
T

“ ´MjAXM
H

j ´ MjXA
T
M

H

j

“ ´MjpAX ` XA
T

qMj “ MjBB
T
Mj .

Moreover, it holds

Vj “ Tj´1SjVj´1 “ Tj´1SjTj´2Sj´1Vj´2 “ . . . “

“ Sj

˜
j´1π

k“1

TkSk

¸
B “ SjMj´1B “ pA ` pjInq

´1
Wj´1, (II.22)

and

Wj “ MjB “ SjTjWj´1 “ Wj´1 ´ 2ReppjqSjWj´1 “ Wj´1 ´ 2ReppjqVj .
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Algorithm 3 Low-rank ADI (LR-ADI) iteration for Lyapunov equations
Input: A, B from (II.11), shifts P “ tp1, . . . , pmaxiteru Ä C

´, residual toler-
ance tol.

Output: Zk such that X “ ZkZ
H

k
(approx.) solves (II.11).

1: Initialize j “ 1, W0 :“ B, Z0 :“ r s.
2: while }Wj´1}2 • tol do
3: Set Vj :“ pA ` pjInq

´1
Wj´1.

4: Set Wj :“ Wj´1 ´ 2ReppjqVj .
5: Set Zj :“

“
Zj´1

a
´ReppjqVj

‰
.

6: Set j :“ j ` 1.
7: end while

Thank to the above theorem, the norm of the Lyapunov residual norm can be
cheaply computed via }Rj}2 “ }WjW

H

j
}2 “ }Wj}

2

2
. All this leads to Algorithm

3. Again, the major work is solving the LS pA ` pjInqVj “ Wj´1 in each step,
which is efficiently possible for large,sparse A (cf. Introduction).

Algorithm 3 produces complex low-rank factors, if some of the shifts are com-
plex, which might be required for problems with nonsymmetric A. Ensuring that
Zj P R

nˆnj and limiting the number of complex operations can be achieved by
assuming that for a complex shift pi we have pi`1 “ pi (see handout)
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II.3 Algebraic Riccati Equations

In this section we concentrate on the continuous time algebraic Riccati equa-
tion (ARE) briefly introduced in Chapter II.1 as one important representative of
nonlinear matrix equations:

C
T
Q̂C ` A

T
X ` XA ´ XBR

´1
B

T
X “ 0, X “ X

T
.

Here, we simplify the representation to

F ` A
T
X ` XA ´ XGX “ 0, G • 0, X “ X

T
, (II.23)

where A, F “ F
T
, G “ G

T
P R

nˆn.

II.3.1 Hamiltonian Matrices and the ARE

Define the matrix

H “

„
A ´G

´F ´A
T

⇢
P R

2nˆ2n
.

If X solves the ARE, then we have
„
A ´G

´F ´A
T

⇢ „
In 0
X In

⇢
“

„
In 0
X In

⇢ „
A ´ GX ´G

0 ´A
T

` XG

⇢
,

which means that

H

„
In

X

⇢
“

„
In

X

⇢
pA ´ GXq,

which means that span
 “

In
X

‰(
is an H-invariant subspace and ⇤pA ´ GXq Ä

⇤pHq.

Assume on the other hand, that

H

„
U

V

⇢
“

„
U

V

⇢
M for U, V, M P R

nˆn
,

in particular, ⇤pMq Ä ⇤pHq. Then span
 “

U

V

‰(
is an H-invariant subspace.

Now assume that U is invertible. Then we find

AU ´ GV “ UM
U

´1 D
ô U

´1
AU ´ U

´1
GV “ M.

Moreover, we have

´FU ´ A
T
V “ VM “ V U

´1
AU ´ V U

´1
GV.
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A right-multiplication by U
´1 then yields

´F ´ A
T
V U

´1
“ V U

´1
A ´ V U

´1
GV U

´1
.

With X :“ V U
´1 this finally results in

0 “ F ` A
T
X ` XA ´ XGX.

If we can ensure that U is invertible, then computing an invariant subspace for
H provides a solution for the ARE. However, recall that in contrast to linear
matrix equations, solutions are (except in some special cases) not unique. In
practice one is interested in a stabilizing solution X˚ :“ V U

´1, i. e., ⇤pA ´

GX˚q Ä C
´.

Remark: Why a stabilizing solution? Consider the linear quadratic regulator
problem:

minJ puptqq “
1

2

8ª

0

}uptq}
2

` }xptq}
2
dt

subject to 9xptq “ Axptq ` Buptq, xpt0q “ x0 P R
n
.

for given A P R
nˆn possibly unstable, B P R

nˆm. Such problems are an im-
portant topic for control theory and widely used in practice to stabilize technical
systems.

One can show that, under certain conditions, a solution of this optimal control
problem is given by u˚ptq “ ´BB

T
X˚xptq, where X˚ is the stabilizing solution

of an ARE similar to (II.23).

So the question arises, which choice of the invariant subspace results in a
symmetric and stabilizing solution. For this we analyze the matrix H in more
detail, which turns out to be a Hamiltonian matrix.

Definition II.19 (Hamiltonian matrix): Define

J :“

„
0 In

´In 0

⇢
P R

2nˆ2n
. (II.24)

A matrix H P R
2nˆ2n is called Hamiltonian if

pHJq
T

“ HJ.

We denote the set of all real Hamiltonian 2n ˆ 2n matrices by Hn.
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Figure II.1: Eigenvalues of a real Hamiltonian matrix

Proposition II.20: The following statements are equivalent:

a) H is Hamiltonian.

b) H “ JS for some matrix S “ S
T

P R
2nˆ2n

.

c) It holds pJHq
T

“ JH.

d) H has the block structure

H “

„
H11 H12

H21 ´H
T

11

⇢
(II.25)

for H11 P R
nˆn, H12 “ H

T

12
P R

nˆn, and H21 “ H
T

21
P R

nˆn.

Proof. Exercise.

Proposition II.21 (Hamiltonian spectrum): Let H P Hn and pH the character-
istic polynomial of H . Then the following statements are satisfied:

a) It holds pHp�q “ pHp´�q for all � P C.

b) If pHp�q “ 0, then pHp´�q “ pHp´�q “ pHp�q “ 0 for � P C.

Proof. Exercise.

Proposition II.21 states that the spectrum of every real Hamiltonian matrix is
symmetric with respect to the real and imaginary axis, see also Figure II.1.
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II.3.2 Characterization of Stabilizing Solutions

Recall that we have started at
„
A ´G

´F ´A
T

⇢ „
U

V

⇢
“

„
U

V

⇢
M, ⇤pMq Ä ⇤pHq,

where U is assumed to be invertible. From the first row we see

AU ´ GV “ UM.

Assuming that U is invertible and a multiplication with U
´1 from the right gives

A´GX “ UMU
´1, where X :“ V U

´1. Thus, we have ⇤pA´GXq “ ⇤pMq.
In particular, A ´ GX is asymptotically stable if and only if ⇤pMq Ä C

´. This
means that span

 “
U

V

‰(
is the H-invariant subspace corresponding to ⇤pHq X

C
´.

First we show that stabilizing solutions (in case they exist) are unique.

Lemma II.22: The ARE (II.23) has at most one stabilizing solution.

Proof. If X˚ is a stabilizing solution of (II.23) then X˚ “ V U
´1, where

span

"„
U

V

⇢*
“ span

"„
In

X˚

⇢*

is the invariant subspace of H associated with its eigenvalues in C
´. If there

exists a second stabilizing solution X̃˚, then

span

"„
In

X˚

⇢*
“ span

"„
In

X̃˚

⇢*
,

implying that X˚ “ X̃˚.

We still don’t know when a stabilizing solution exists. For this recall a weaker
concept of controllability (Def. II.8) is useful.

Definition II.23: We call pA,Bq stabilizable if rank
“
�In ´ A B

‰
“ n @� P

C` :“ t� P C : Rep�q • 0u

The dual concept is detectability: pA,Cq detectable if pA
T
, C

T
q stabilizable.

The following theorem gives an equivalent characterization for the existence of
stabilizing solutions.
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Theorem II.24: The ARE (II.23) has a stabilizing solution X˚ if and only if
pA,Gq is stabilizable and the matrix H does not have imaginary eigenvalues.

It remains to check under which conditions there are no eigenvalues of H on
the imaginary axis. A sufficient condition is the following.

Theorem II.25: Let pA,Gq be stabilizable and pA,F q be detectable with F, G •

0. Then the Hamiltonian matrix H does not have imaginary eigenvalues.

Combining the above findings we can conclude the following theorem.

Theorem II.26: Consider the ARE (II.23) with F • 0. Let pA,Gq be stabilizable
and pA,F q be detectable. Further let span

 “
U

V

‰(
with U, V P R

nˆn be an
H-invariant subspace corresponding to the eigenvalues of H in the open left
half-plane. Then X˚ “ X

T˚ “ V U
´1 is the unique stabilizing solution of (II.23).

We analyze the structure of the stabilizing solution in more detail. First we show
that for AREs with F • 0 the stabilizing solution is positive semi-definite.

Proposition II.27: If F • 0, then the stabilizing solution X˚ of the ARE (II.23)
(if it exists) is positive semi-definite. Furthermore, if pA

T
, F q is controllable,

then X˚ ° 0.

Proof. If X is any symmetric solution of the ARE, we obtain

pA ´ GXq
T
X ` XpA ´ GXq “ ´XGX ´ F.

With Â :“ A ´ GX and F̂ :“ ´XGX ´ F it holds

Â
T
X ` XÂ “ F̂ .

If X “ X˚ is stabilizing, then ⇤pÂq Ä C
´. Since F • 0, we have F̂ § 0 and

thus X˚ • 0.

If pA
T
, F q is controllable, then so ispÂ, F̂ q : If Âv “ �v and F̂ v “ 0 for v ‰ 0,

then we get vH F̂ v “ 0 and therefore, GX˚v “ 0 and Fx “ 0. The former
implies Av “ �v. This yields v “ 0, since pA

T
, F q is controllable. This implies

X˚ ° 0 by Theorem II.10a).
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Algorithm 4 Schur vector method for solving the ARE

Input: H “

”
A ´G

´F ´A
T

ı
corresponding to (II.23).

Output: the stabilizing solution X˚ of (II.23).
1: Apply the standard QR iteration to H to compute a Schur decomposition.
2: Sort the eigenvalues according to (II.26) via orthogonal similarity transfor-

mations.
3: Solve the n linear systems X˚Q11 “ Q21.

II.3.3 Direct Numerical Solution Methods

Now we discuss direct numerical solution algorithms for the ARE (II.23). We
assume that all assumptions of Theorem II.26 are satisfied, such that a unique
stabilizing and positive semi-definite solution X˚ exists. We are interested in
computing this solution.

The Schur Vector Method

From Theorem II.26 we know that the Hamiltonian matrix H “

”
A ´G

´F ´A
T

ı
has

exactly n eigenvalues in C
´ and exactly n eigenvalues in C

`.

The simplest idea consists of using the real Schur decomposition to compute
the H-invariant subspace via

Q
T
HQ “

„
T11 T12

0 T22

⇢
“: T (II.26)

where T11, T22 are in real Schur form and ⇤pT11q Ä C
´
. By partitioning

Q “

„
Q11 Q12

Q21 Q22

⇢

as T in (II.26), we find that span
!”

Q11
Q21

ı)
is the desired subspace. The com-

putation of the stabilizing solution X˚ is summarized in Algorithm 4.

This method is very simple to implement and all steps numerically backward
stable. On the other hand, the Hamiltonian structure not exploited. This means
that the double symmetry of the Hamiltonian spectrum may be lost in T due to
round-off errors. In particular, the eigenvalues close to the imaginary axis may
move to the wrong half-plane. In this case the computation of X˚ may break
down. Therefore, we are interested in algorithms, that exploit and preserve the
Hamiltonian structure during the computation.
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Hamiltonian Schur Methods

Now we discuss structure-preserving methods for the Hamiltonian eigenvalue
problem. For this we need to define the class of structure-preserving transfor-
mations for which we need symplectic matrices.

Definition II.28 (Symplectic matrix): A matrix S P R
2nˆ2n is called symplectic

if
S
T
JS “ J,

where J is as in (II.24).

It can be shown that symplectic similarity transformations preserve the Hamil-
tonian structure. This is stated in the next lemma.

Lemma II.29: If H P R
2nˆ2n is Hamiltonian and S P R

2nˆ2n is symplectic, then
H̃ :“ S

´1
HS P R

2nˆ2n is Hamiltonian.

Proof. Ex.

In order to have transformations that do not increase the condition number of
the problem we aim at symplectic similarity transformations that are addition-
ally orthogonal. Orthogonal symplectic matrices have a certain block structure
given in the next lemma.

Lemma II.30: Every orthogonal symplectic matrix U P R
2nˆ2n is given as

U “

„
U1 U2

´U2 U1

⇢
for U1, U2 P R

nˆn
.

Proof. Exercise.

Using orthogonal symplectic transformations we can now formulate the follow-
ing result which gives us a Hamiltonian Schur form.

Theorem II.31 (Hamiltonian Schur form): Let H P R
2nˆ2n be a Hamiltonian

matrix with ⇤pHq X iR “ H. Then there exist an orthogonal symplectic U P

R
2nˆ2n and a Hamiltonian matrix T P R

2nˆ2n such that

U
T
HU “ T “

„
T1 T2

0 ´T
T

1

⇢
, (II.27)

where T1 is in real Schur form and T2 “ T
T

2
P R

nˆn
.
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The goal now is to devise an algorithm for computing (II.27). This is not easy!
For preserving Ham. structure by unitary symplectic trafos, all major steps
in the standard QR-Algorithm for the normal Schur form have to be modified
accordingly (Hessenberg-reductions, QR-factorization, . . .). Only in the recent
years this was achieved completely ù literature.

II.3.4 Iterative Solution of the ARE – The Newton-Kleinman Itera-
tion

Now we consider the ARE

RpXq “ F ` A
T
X ` XA ´ XGX “ 0. (II.28)

Assume that pA,Gq is stabilizable, pA,F q is detectable, and F, G • 0 such
that there exists a unique stabilizing solution X˚ of the ARE. We now consider
(II.28) as a nonlinear system of equations and apply Newton’s method. For this,
we need to evaluate the (Fréchet) derivative of RpXq with respect to X.

Definition II.32 (Fréchet differentiability, Fréchet derivative): Let pX , } ¨ }X q and
pY, } ¨ }Yq be two normed linear spaces and let U Ä X be an open subset. A
linear operator F : U Ñ Y is called Fréchet differentiable at X P U if there
exists a bounded linear operator F 1

pXq : X Ñ Y such that

lim
}N}X Ñ0

1

}N}X

››FpX ` Nq ´ FpXq ´ pF
1
pXqqpNq

››
Y “ 0.

The operator F 1
pXq is called Fréchet derivative of F at X. The map F

1 : U Ñ

LpX ,Yq with X fiÑ F
1
pXq is called Fréchet derivative of F on U .

Let us see whether Rp¨q is Fréchet differentiable and (if yes) determine its
Fréchet derivative. If the Fréchet derivative exists it is given by

pR
1
pXqqpNq “ lim

hÑ0

1

h
pRpX ` hNq ´ RpXqq

“ lim
hÑ0

1

h

`
F ` A

T
pX ` hNq ` pX ` hNqA

´pX ` hNqGpX ` hNq ´ pF ` A
T
X ` XA ´ XGXq

˘

“ lim
hÑ0

1

h
phA

T
N ` hNA ´ hXGN ´ hNGX ´ h

2
NGNq

“ lim
hÑ0

pA
T
N ` NA ´ XGN ´ NGX ´ hNGNq

“ A
T
N ` NA ´ XGN ´ NGX

“ pA ´ GXq
T
N ` NpA ´ GXq.
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Algorithm 5 Newton’s method for the algebraic Riccati equation
Input: A, F, G as in (II.28) and initial value X0 such that ⇤pA ´ GX0q Ä C

´.
Output: Stabilizing solution X˚ solving (II.28).

1: for j “ 1, 2 . . . , do
2: Set Aj :“ A ´ GXj´1.
3: Solve A

T

j
Nj´1 ` Nj´1Aj “ ´RpXj´1q for Nj´1.

4: Set Xj :“ Xj´1 ` Nj´1.
5: end for

Algorithm 6 Newton-Kleinman iteration for the algebraic Riccati equation
Input: A, F, G as in (II.28) and initial value X0 such that ⇤pA ´ GX0q Ä C

´.
Output: Stabilizing solution X˚ solving (II.28).

1: for j “ 1, 2, . . . do
2: Set Aj :“ A ´ GXj´1 and Fj :“ ´F ´ Xj´1GXj´1.
3: Solve A

T

j
Xj ` XjAj “ ´Fj .

4: end for

In other words, the Fréchet derivative of a Riccati operator is a Lyapunov oper-
ator. Now the Newton iteration is given by

pR
1
pXj´1qqpNj´1q “ ´RpXj´1q, Xj “ Xj´1 ` Nj´1, j “ 1, 2, . . .

and the iteration is summarized in Algorithm 5. This formulation of the algorithm
has the disadvantage that RpXj´1q is evaluated in every iteration. Therefore,
let us revisit the computation of the update Nj´1. We know that

pA ´ GXj´1q
T
Nj´1 ` Nj´1pA ´ GXj´1q

“ ´F ´ A
T
Xj´1 ´ Xj´1A ` Xj´1GXj´1. (II.29)

Plugging in Nj´1 “ Xj ´ Xj´1 then gives

pA ´ GXj´1q
T

pXj ´ Xj´1q ` pXj ´ Xj´1qpA ´ GXj´1q

“ ´F ´ A
T
Xj´1 ´ Xj´1A ` Xj´1GXj´1.

Some manipulations and rearrangements of the terms finally lead to

pA ´ GXj´1q
T
Xj ` XjpA ´ GXj´1q “ ´F ´ Xj´1GXj´1. (II.30)

This leads to Kleinman’s formulation of the Newton iteration which is given in Al-
gorithm 6. The question arises whether Algorithm 6 and Algorithm 5 converges
to the right solution.
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Theorem II.33: Consider the ARE (II.28) with stabilizable pA,Gq, detectable
pA,F q, and F, G • 0. Let X˚ be its unique stabilizing solution. Let further
X0 P R

nˆn be stabilizing, i. e., ⇤pA ´ GX0q Ä C
´. Then the iterates Xj ,

j “ 1, 2, . . . fulfill the following statements:

a) The matrix Xj is stabilizing.

b) It holds X˚ § ¨ ¨ ¨ § Xj`1 § Xj § ¨ ¨ ¨ § X1.

c) It holds limjÑ8 Xj “ X˚.

d) The convergence is globally quadratic, i. e., there exists a constant � ° 0
such that

}X˚ ´ Xj} § � }X˚ ´ Xj´1}
2
, j “ 1, 2, . . . .

Proof. a) Let X˚ be the stabilizing solution of the ARE (II.28) which exists and
is unique due to the assumptions. Now consider (II.30) and the Riccati
equation of the solution [F ` A

T
X˚ ` X˚A ´ X˚GX˚ “ 0]:

A
T

j´1ppXjq ´ X˚q ` ppXjq ´ X˚qAj´1

“ ´pXj´1 ´ X˚qGpXj´1 ´ X˚q. (II.31)

Assume that Xj´1 is stabilizing, i.e. ⇤pAj´1 “ A ´ GXj´1q Ä C´ With
G • 0 it follows

pXjq ´ X˚ • 0 (II.32)

from Lemma II.10 a). Now

(II.31) ´ rNj´1GppXjq ´ X˚q ` ppXjq ´ X˚qGNj´1s

ñ pA ´ GXjq
T

ppXjq ´ X˚q ` ppXjq ´ X˚qpA ´ GXjq

“ ´ppXjq ´ X˚qGppXjq ´ X˚q ´ Nj´1GNj´1 “: W.
(II.33)

The matrix W is negative semi-definite. Assume that A ´ GXj has an
eigenvalue � P C` with an associated eigenvector v ‰ 0. Then it holds

pA ´ GXjqv “ �v, v
˚
pA ´ GXjq

˚
“ �v

H
. (II.34)

v
˚(II.33)v ñ 2Rep�q v

H
ppXjq ´ X˚qv “ v

H
Wv.

The left-hand side is non-negative, since Rep�q • 0 and pXjq´X˚ • 0. On
the other hand, the right-hand side gives v

H
Wv § 0. Therefore, vHWv “ 0

and moreover,
v
H

ppXjq ´ X˚qGpXj ´ X˚qv “ 0.

Since G • 0, it holds GpXj ´ X˚qv “ 0, i. e., we have

GXjv “ GX˚v.
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Thus, together with (II.34) we obtain

�v “ pA ´ GXjqv “ pA ´ GX˚qv,

i. e., � is an eigenvalue of A ´ GX˚ and thus a contradiction to the asymp-
totic stability of A ´ GX˚.

b) From (II.32) we directly have that X˚ § Xj for j • 1. On the other hand, by
(II.30) and fixed j • 1 we have

pA ´ GXj´1q
T
Xj ` XjpA ´ GXj´1q “ ´F ´ Xj´1GXj´1, (II.35)

pA ´ GXjq
T
Xj`1 ` Xj`1pA ´ GXjq “ ´F ´ XjGXj . (II.36)

By subtracting (II.35) from (II.36) and some manipulations we obtain

pA ´ GXjq
T

pXj`1 ´ Xjq ` pXj`1 ´ XjqpA ´ GXjq

“ ´XjGXj ` Xj´1GXj´1 ` Nj´1GXj ` XjGNj´1 “ Nj´1GNj´1.

Since A ´ GXj is asymptotically stable and G • 0, it holds Xj`1 ´ Xj § 0
by Lemma II.7 a). Therefore, it holds Xj`1 § Xj for all j • 1.

c) From b) we know that tXju
8
j“1

is a monotonically decreasing and bounded
sequence. Therefore, the limit X̂ :“ limjÑ8 Xj exists. Since A ´ GXj

is asymptotically stable for all j • 1 and the eigenvalues of a matrix are
continuous with respect to the matrix entries, it holds ⇤pA ´ GX̂q Ä C´.
By taking the limit in (II.30), we see that X̂ solves the ARE (II.28). Thus”
In

X̂

ı
spans an invariant subspace corresponding to the eigenvalues in C´

of the matrix H “

”
A ´G

´F ´A
T

ı
. Since by Theorem II.25, H does not have

imaginary eigenvalues we obtain ⇤pA ´ GX̂q Ä C
´. Therefore, X̂ is a

stabilizing solution of the ARE. Since by Lemma II.22, the stabilizing solution
is unique, we have X˚ “ X̂.

d) From (II.31) we obtain

pR
1
pXj´1qqpXj ´ X˚q “ ´pXj´1 ´ X˚qGpXj´1 ´ X˚q.

Note that pR
1
pXj´1qqp¨q is invertible since A´GXj´1 is asymptotically sta-

ble. This gives

}X˚ ´ Xj} §

››pR
1
pXj´1qq

´1
›› }G} }X˚ ´ Xj´1}

2
,

where }¨} denotes any consistent norms. Since tXju
8
j“0

converges, the
limit limjÑ8 R

1
pXjq “ R

1
pX˚q exists. Since A ´ GX˚ is asymptotically

stable, also the limit limjÑ8pR
1
pXjqq

´1
“ pR

1
pX˚qq

´1 exists. Denote �j :“››pR
1
pXjqq

´1
›› and �˚ :“ limjÑ8 �j . Since the sequence t�ju

8
j“0

converges,
it has a supremum, denoted by �̂. Therefore, we get

}X˚ ´ Xj} § � }X˚ ´ Xj´1}
2
, j “ 1, 2, . . .
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with � :“ �̂ }G} and we have quadratic convergence. The statement for
arbitrary matrix norms follows by equivalence of matrix norms.

Remark II.34: a) Computing X by the Schur vector method costs as much as
6 ´ 7 iterations of Algorithm 6. Often, Algorithm 6 requires more iterations.
However, it is often very useful in refining solutions obtained by other meth-
ods.

b) If A is not asymptotically stable (otherwise X0 “ 0 is stabilizing), then the
computation of a stabilizing X0 usually costs as much as another iteration
step since this requires the solution of one additional Lyapunov equation
(Homework 3, Problem 2).

c) The convergence theory also holds for Xj :“ Xj´1 ` tNj´1 where t P

r0, 2s. There exist line search strategies to optimize the step length after
computation of the direction Nj´1 in Algorithm 5. That is, we use a step
length

t “ argmin⌧Pr0,2s }RpXj´1 ` ⌧Nj´1q}F.

The computation of t is usually much cheaper than the actual Newton step
which can drastically accelerate the iteration.

II.3.5 Solving large-scale AREs

We now consider large-scale AREs

RpXq “ C
T
C ` A

T
X ` XA ´ XBB

T
X “ 0, X “ X

T
,

where A P R
nˆn is large and sparse, B P R

nˆm, C P R
pˆn, and m, p !

n. We again assume that the assumptions of Theorem II.26 hold, i.e., pA,Bq

stabilizable and pA,Cq detectable. The constant and the quadratic term are
of low rank, a setting often arising in optimal control problems. Similar to the
linear (Lyapunov) case, this motivates to numerically compute an approximate
solution of low-rank X˚ « ZDZ

T , Z P R
nˆr, D “ D

T
P R

rˆr with r ! n.
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The Low-Rank Newton-Kleinman Method

Inserting the low-rank matrices G “ BB
T , F “ C

T
C into the NK iteration

scheme (II.30) gives
`
A ´ BB

T
Xj´1

˘
T
Xj ` Xj

`
A ´ BB

T
Xj´1

˘

“ ´C̃
T
C̃ ´ Xj´1BB

T
Xj´1 “ ´

“
C̃

T
Xj´1B

‰
looooooomooooooon

PRnˆpp`mq

“
C̃

T
Xj´1B

‰T (II.37)

Thus the right-hand side of the Lyapunov eqn. is of low rank and we can apply
any of the low-rank methods from Section II.2.3 (projection methods, low-rank
ADI) to obtain a low-rank approx. of Xj´1. This results in the low-rank Newton-
Kleinman method for AREs. One problem remains for extended, rational Krylov
and the LR-ADI method: even if A is sparse and B is thin, the closed loop
matrix

Aj :“ A ´ BB
T
Xj´1 (II.38)

at Newton step j is usually dense ù never explicitly form (II.38).

There are several ways to solve linear systems with the system matrix Aj`pjIn

efficiently in the low-rank ADI method or rational Krylov subspace methods:

a) Application of an iterative solver: This option only requires multiplica-
tions with Aj . Since Kj :“ Xj´1B and B have only a few columns and
rows, respectively, these can be carried out efficiently. On the other hand,
the convergence of iterative solvers is often slow, as long as no good pre-
conditioner is available.

b) Application of the Sherman-Morrison-Woodbury identity: It holds for
Sj :“ A ` pjIn

`
A ` pjIn ´ BK

T

j

˘´1
“ S

´1

j
` S

´1

j
B

`
Im ´ K

T

j S
´1

j
B

˘´1
K

T

j S
´1

j
.

Then a linear system solve with Sj :“ Aj ` pjIn only requires two sparse
solves with Sj and one small dense solve with the matrix Im ´ K

T

j
SjB.

Projection Approaches

In complete analogy to the Lyapunov case, we can use the Galerkin projection
approach directly onto the large ARE: build subspace U w.r.t. A

T
, C

T , e.g.,
rangepQkq “ EKpA

T
, C

T
q or rangepQkq “ RKpA

T
, C

T
, sq and solve small,

projected ARE

HkYk ` YkH
T

k
´ YkQ

H

k
BB

T
Qk ` QkC

T
CQk “ 0, Hj “ Q

T

k
pA

T
Qkq

for stabilizing Yk P R
kˆk in each step (e.g., by (Hamiltonian) Schur vector

method). Approximate stab. solution is X˚ « QkYkQ
T

k
.
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III.1 Introduction

By "Matrix Functions" we mean the following: take a scalar function f and
A P C

nˆn and specify fpAq P C
nˆn such that a useful generalization of fpzq,

z P C is obtained.

Other meanings of fpAq which are not part of this lecture are:

• element-wise operations, i.e. fpAq “ rfpaijqs
n

i,j“1
,

• scalar valued functions: f : Cnˆn
Ñ C, i.e. trace, det, pAq, . . . ,

• mappings f : Cnˆn
Ñ C

mˆm, with m ‰ n, which do not come from a
scalar function, e.g. AT

, A
H
, adjpAq, Ap1 : m, 1 : mq, . . . ,

• function mappings f : C Ñ C
nˆn, e.g. transfer function

fpsq “ CpsI ´ Aq
´1

B, with C P C
nˆm, A P C

nˆn, B P C
nˆm.

Let fptq be a scalar polynomial or rational function. We substitute A for t to
define fpAq, replacing t

´1 by A
´1, 1 by In.

Example: We consider the following two examples:

• fptq “
∞
↵it

i
ñ fpAq “

∞
↵iA

i,

• fptq “
1`t

3

1´t
ñ fpAq “ pI ´ Aq

´1
pI ` A

3
q “ pI ` A

3
qpI ´ Aq

´1.

This easily generalizes to functions, having a convergent power series:

fptq “

8ÿ

i“0

↵it
i
.

For example, we can write a representation of the logarithm logp1 ` tq

logp1 ` tq “ t ´
t
2

2
`

t
3

3
´

t
4

4
` . . . , |t| † 1,

ñ logpI ` Aq “ A ´
A

2

2
`

A
3

3
´

A
4

4
` . . . , ⇢pAq † 1.

Next, we want to define fpAq for general f . Moreover, some focus is given
to multivalued functions like

?
t, logptq, where we want to classify all possible

fpAq.
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III.2 Definitions of fpAq

III.2.1 Using the Jordan Canonical Form

We recall the Jordan normal form of an arbitrary matrix A P C
nˆn:

Z
´1

AZ “ J “ diagpJ1, . . . , Jsq, (III.1)
Jk “ diagpJ

1

k
, . . . , J

pk
k

q, (III.2)

J
i

k
“

»

———–

�k 1
. . .

. . .

. . . 1
�k

fi

���fl P C
m

i
kˆm

i
k ,

with Z nonsingular and
∞

s

k“1

∞
pk
i“1

m
i

k
“ n and �1, . . . ,�s are the distinct

eigenvalues of A. The index of �k is the dimension of the largest Jordan block
in which �k appears and denoted by nk “ maximi

k
.

Definition III.1: A function f is said to be defined on t�i, niu
s

i“1
if the values

f
pjq

p�iq, j “ 0, . . . , ni ´ 1, i “ 1, . . . , s

exist, where f
pjq denotes the jth derivative. We call all this evaluations the

values of f at t�i, niu
s

i“1
.

Definition III.2 (Matrix functions via Jordan normal form): Let f be defined on
t�i, niu

s

i“1
, where �i in the spectrum of A P C

nˆn and ni the index of �i, and
A “ ZJZ

´1 its Jordan normal form (III.1). Then

fpAq :“ ZfpJqZ
´1

“ ZdiagpfpJ
i

k
qqZ

´1
, (III.3)

fpJ
i

k
q “

»

————–

fp�kq f 1p�kq . . . fpmi
k´1qp�kq

pmi
k´1q!

. . .
. . .

...
. . . f 1p�kq

fp�kq

fi

����fl
P C

m
i
kˆm

i
k . (III.4)

Remark III.3: 1. Since every square matrixA has a Jordan form, fpAq is
defined as long as the function evaluations of f and its derivatives are
defined at the eigenvalues. In particular is fpAq always defined for a
function f that is smooth on all of C.

2. If A is diagonalizable it follows:
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• fpAq “ Zdiagpfp�iqqZ
´1,

• A and fpAq have the same eigenvectors.

3. In case of multivalued functions such as
?
t, logptq, we have to pick a

branch. But more on that later.

Example: We consider the Jordan normal form J “

„
1

2
1

0 1

2

⇢
and the matrix

function fpXq “ X
3. Applying the Definition III.2 leads to

fpJq “

„
fp

1

2
q f

1
p
1

2
q

0 fp
1

2
q

⇢
“

„
1

8

3

4

0 1

8

⇢
.

III.2.2 Polynomial Interpolation

Recall: The minimal polynomial of A P C
nˆn is the unique monic polynomial  

of lowest degree such that  pAq “ 0. It results from the Jordan normal form
that

 ptq “ ⇧s

i“1pt ´ �iq
ni

and  divides any polynomial p for which ppAq “ 0 holds.

Theorem III.4: Let p and q be two polynomials of A P C
nˆn. It holds

ppAq “ qpAq if and only if p and q take the same values on t�i, niu
s

i“1
where

�i in the spectrum of A P C
nˆn and ni the index of �i. (Here we do not use the

definition III.2 but the polynomial in the matrix as A
m is a defined quanitity for

matrices.)

Proof. Exercise

Definition III.5 (Matrix functions via Hermite interpolation): Let f be defined
on t�i, niu

s

i“1
where �i in the spectrum of A P C

nˆn and ni the index of �i
and  be the minimal polynomial of A. Then fpAq :“ ppAq, where degppq †

degp q “
∞

s

i“1
ni and p satisfies the Hermite interpolation condition

p
pjq

p�iq “ f
pjq

p�iq, j “ 0, . . . , ni ´ 1, i “ 1, . . . , s. (III.5)

p is unique and called Hermite interpolation polynomial.
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Example: We consider the matrix A “

„
2 2
1 3

⇢
and the function fptq “

?
t

(principal branch t
1{2 of square root function), ⇤pAq “ t1, 4u, s “ 2,

n1 “ n2 “ 1. The interpolation has to satisfy pp1q “ fp1q “ 1, pp4q “

fp4q “ 2.

ñ pptq “ fp1q
t´4

1´4
` fp4q

t´1

4´1
“

1

3
pt ` 2q

ñ fpAq “ ppAq “
1

3
pA ` 2Iq “

1

3

„
4 2
1 5

⇢

and obviously fpAq
2

“ A.

Attention: We do not have to use the same branch of square root for each
eigenvalue:

fp1q “ 1, fp4q “ ´2 ñ pptq “ 2 ´ t and fpAq “

„
0 ´2

´1 ´1

⇢
.

The following properties result immediately from the Definition III.5:

• fpAq “ ppAq with polynomial depending on A,

• fpAqA “ AfpAq,

• fpA
T

q “ fpAq
T.

Since  ptq divides the characteristic polynomial qptq “ detptI ´ Aq it follows

• qpAq “ 0 (Cayley-Hamilton),

• any power series collapses to polynomial in A:

8ÿ

k“0

↵kA
k

“

n´1ÿ

k“0

dkpAqA
k
,

dk dependent on A.

III.2.3 Cauchy integral definition

Excursus: Useful concepts from complex analysis

A function f : D Ñ C, D Ä C is called analytic in an open set U , if it is complex
differentiable for all z0 P U , i.e.

f
1
pz0q “ lim

zÑz0

fpzq ´ fpz0q

z ´ z0
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exists. An other name for this property is holomorphic. Analytic functions can
be expressed as convergent power series.

The following properties hold for analytic functions:

• It holds
∂
�
fpzqdz “ 0, where � is a closed curve in U (Cauchy integral

theorem).

• Cauchy integral formula: We consider f : U Ñ C analytic,
D “ tz : |z ´ z0| § ru Ä U , � circle around BD. For all a in the
interior of D it holds

fpaq “
1

2⇡i

ª

�

fpzq

z ´ a
dz. (III.6)

The equation (III.6) follows from elementary integral calculus and limit
considerations.

• A function f that is holomorphic on a disc is completely determined by its
values on the boundary of the disc.

This inspires the following definition of a matrix function for analytic functions f .

Definition III.6 (Matrix functions via Cauchy integral): For a matrix A P C
nˆn

we define the matrix function

fpAq :“
1

2⇡i

ª

�

fpzqpzI ´ Aq
´1dz, (III.7)

where f analytic on and inside the closed contour � that encloses ⇤pAq.

III.2.4 Equivalence of definitions

Theorem III.7: Definition III.2 and III.5 are equivalent. If f is analytic then also
Definition III.6 is equivalent to Definition III.2 and III.5.

Proof (part). Definition III.5 ô fpAq “ ppAq for a Hermite interpolation polyno-
mial that satisfies the condition III.5.

Assume A has a Jordan normal form (III.1).

ñ fpAq “ ppAq “ ppZJZ
´1

q “ ZppJqZ
´1

“ ZdiagpppJkqqZ
´1

ñ exersice ñ (III.4)
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III.2.5 Non-primary matrix functions

The three equivalent definitions lead to "primary matrix functions", which is
what we are mostly interested. However there is something called non-primary
matrix functions. Consider the nonlinear matrix equation

X
2

“ A

and the solutions X of this equation. If this where a scalar equation the solutions
of this equation for X is given by the square root of A.

But for some matrices A , some solutions of X2
“ A are not obtained as

primary matrix functions (i.e. in the sense of Definition III.2, III.5 and III.6 with

fpxq “ ˘
?
x). We consider A “

„
1 0
0 1

⇢
and we want to solve X

2
“ A. We

take fptq “
?
t as in Definition III.5 with pp1q “

?
1 “ ˘1. It follows pp1q “ 1

or pp1q “ ´1. Both I and ´I are square roots of I. Definition III.2 leads to the
same results.

If we ignore the demand that the same branches of
?
t are used for different

Jordan blocks associated to � “ 1, we find
„

´1 0
0 1

⇢
and

„
1 0
0 ´1

⇢
as extra

square roots (the double eigenvalue 1 was sent to different square roots).

Are there more?

Yes! It holds A “ I “ ZIZ
´1 for all nonsingular Z. It follows that Z

„
1 0
0 ´1

⇢
Z

´1

and Z

„
´1 0
0 1

⇢
Z

´1 give an infinite number of square roots. This includes the

matrices
„
cos ✓ sin ✓
sin ✓ ´cos ✓

⇢
(Housholder reflectors).

All these are examples of non-primary matrix functions. They occur when f
is multivalued, A is derogatory (a distinct evaluation occurs in more than one
Jordan block), and when equal eigenvalues in different branches are mapped
to different branches of f in Definition III.2. Nonprimary matrix functions are
not expressible as polynomials of A. Nor all nonprimary matrix functions come

from Jordan normal forms: A “

„
0 0
0 0

⇢
ñ X “

„
0 1
0 0

⇢
is square root of f .

Luckily, virtually all algorithms and applications need primary matrix functions.
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III.3 Applications

Differential equations

The differential equation

9xptq “ Axptq, x0 “ xp0q

with A P R
nˆn

, xptq P R
n has the solution xptq “ eAt

x0.

The general differential equation

9xptq “ Axptq ` fpt, xq, x0 “ xp0q

has the solution xptq “ eAt
x0 `

≥
t

0
eApt´⌧q

fp⌧, xqd⌧ . For the case of second
order time derivatives

:xptq ` Axptq “ 0, xp0q “ x0, 9xp0q “ 9x0

we obtain the solution xptq “ cosp
?

Atqx0 ` p

?

Aq
´1 sinp

?

Atq 9x0. We can
define

?

A by the matrix function coming from each of the two branches. We
can also use different branches on different eigenvalues or we can pick an
arbitrary matrix satisfying that its square is equal to A. The solution xptq is
independent of that. ùExercise

We can also rewrite the differential equation as

d

dt

„
xptq

9xptq

⇢
“

„
0 I

´A 0

⇢ „
xptq

9xptq

⇢
.

Matrix equations in control theory

We consider the dynamical system

9xptq “ Axptq ` Buptq, (III.8a)
yptq “ Cxptq (III.8b)

with A P R
nˆn, ⇤pAq P C

´. We know Lyapunov equations are important for
working with (III.8). The Lyapunov equation

AX ` XA
T

“ ´BB
T

has the solution

X “

ª 8

0

eAt
BB

TeA
T
tdt

“

ª 8

´8
piwI ´ Aq

´1
BB

T
piwI ´ Aq

´Tdw.
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1

2

3

4

Figure III.1: Undirected network graph

Exponential integrators

Define the phi-function �kpzq recursive via

�k`1pzq “
�kpzq ´ 1{k!

z
, �0pzq “ ez.

It holds that

9xptq “ Axptq, xp0q “ x0 ñ xptq “ �0pAtqx0

9xptq “ Axptq ` b, xp0q “ x0 ñ xptq “ �0pAtqx0 ` t�1ptAqb

9xptq “ Axptq ` ct, xp0q “ x0 ñ xptq “ �0pAtqx0 ` t
2
�2ptAqc

what extends to general polynomial inhomogenities

9xptq “ Axptq ` pptq.

Note: exp
„
A b

0 0

⇢
“

„
eA �1pAqb

0 1

⇢
.

Complex networks

Let A P R
n,n be the adjacency matrix of the undirected network graph pre-

sented in Figure III.3, A “

»

—–

0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

fi

�fl.
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Important network measures are

• Centrality peAqii ( how important is note i )

• Commutativity peAqij ( how well is information from note i to j ).

Other measures involve coshpAq, . . . .

Statistics

We want to sample a multivariate normal distribution Y „ Npµ,Cq, µ P R
n

(mean), C “ C
T

“ LL
T

° 0 (covariance matrix). Let X „ Np0, Iq which is
easy to simulate ,

Y “ µ ` LX „ Npµ,Cq if C “ LL
T
.

But

Y “ µ ` C
1{2

X „ Npµ,Cq

preferred because computing C
1{2

X is easier, especially if n is very large.

The next sections will discuss the numerical algebra for fpAq. We have to
distinguish two problems:

1. A P C
nˆn is small moderately sized and computing matrix-factorizations

(e.g. Schur form) is possible.

2. A P C
nˆn large, sparse (Schur form not possible), but matrix vector linear

system solves with A possible and only fpAqb for b P C
n desired.
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III.4 Methods for computing fpAq

We start with approaches for general f and A.

III.4.1 Taylor series

If f has a Taylor expansion

fpzq “

8ÿ

k“0

akpz ´ ↵q
k

with convergence radius r, it can be used as basic tool for fpAq:

fpAq “

8ÿ

k“0

akpA ´ ↵Iq
k
, if |�i ´ ↵| † r @�i P ⇤pAq. (III.9)

In practice, we truncate the sum after m terms. Important Taylor series are:

eA “ I ` A `
A

2

2!
`

A
3

3!
` . . . ,

cospAq “ I ´
A

2

2!
`

A
4

4!
´

A
6

6!
` . . . ,

sinpAq “ A ´
A

3

3!
`

A
5

5!
´ . . . ,

logpI ` Aq “ A ´
A

2

2!
`

A
3

3!
´ . . . , ⇢pAq ° 1.

III.4.2 Rational and Padé approximations

The Taylor series (III.9) provides a polynomial approximation of f , f « p with
degppq “ m.

A generalization is given by

fpzq « rkmpzq “
pkmpzq

qkmpzq
(III.10)

with numerator and denominator polynomials pkm, qkm of degree k and m,
respectively. We hope to achieve a better approximation of f with lower degrees
k, m compared to (III.9). We call (III.10) a rk{ms Padé approximant of f if
qkmp0q “ 1 and fpzq ´ rkmpzq “ Opz

k`m`1
q. For many important functions

(exppzq, logpzq,. . . ), Padé approximents are explicitly known ( book on (rational)
approximation theory). The evaluation of rkmpAq for an example can be done
via:
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• rkmpAq “ qkmpAq
´1

pkmpAq and pkmpAq, qkmpAq evaluated appropriate
(Horner scheme,. . . ),

• continued fraction form rmmpzq “ b0 `
a2z

b1` a2z

b2` a3z
b3`...

,

• partial function expansion.

III.4.3 Methods based on matrix functions

Easy start: Let A be diagonalizable A “ XDX
´1

, D “ diagp�iq such that

fpAq “ XfpDqX
´1

“ Xdiagpfp�iqqX
´1

.

From the point of numerical stability, this computation is not recommended be-
cause of the error application by pXq “ }X}}X

´1
} • 1.

Better: Use a unitary factorization, e.g. our beloved Schur form (Theorem I.1)

A “ QRQ
H
, Q

H
Q “ I, R “

@
@@

, such that

fpAq “ QfpRqQ
H
.

If �i ‰ �j for all i, j P ⇤pAq, we can compute first the diagonal of F “ fpRq

and then the strict upper triangular part. This is problematic if �i “ �j or
�i « �j .

Better: reorder and partition the Schurform

R “

»

—–
R11 . . . R1q

. . .
...

Rqq

fi

�fl , Rii P C
niˆni ,

qÿ

i“1

ni “ n (III.11)

with ⇤pRiiq X ⇤pRjjq “ H for all i ‰ j P t1, . . . , qu and |�i ´ �k| † �, �k P

⇤pRiiq. The spectra ⇤pRiiq are well separated from ⇤pRjjq, j P t1, . . . , quztiu.

Partition F :“ fpRq in the same way

F “

»

—–
F11 . . . F1q

. . .
...

Fqq

fi

�fl .

At first we compute the "atomic block" Fii “ fpRiiq, i “ 1, . . . , q. The eigen-
values of Rii are supposed to be close to each other. Let T P C

m,m be one of
the diagonal blocks of R in (III.11). We write T “ �I ` M, � “

1

m

∞
n

k“1
�k “

tracepT q{m ( “ mean of the eigenvalues ). It holds

fp� ` zq “

8ÿ

k“0

f
pkq

p�q

k!
z
k (III.12)
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and therefore with Section III.4.1

fpT q “

8ÿ

k“0

f
pkq

p�q

k!
M

k
.

If T has only one eigenvalue �, M is a strictly upper triangular matrix and
hence, Mk

“ 0. Otherwise we truncate (III.12), e.g. when the difference of
suczessive terms is small.

Sketch of algorithm:
1: Set � “ tracepT q{m, M “ T ´ �I, ✏ “ machine precision.
2: Set F0 “ fp�qI, P “ M .
3: for k “ 1, 2 . . . , do
4: Set Fs “ Fs´1 ` f

psq
p�q (Taylor series).

5: Set P “ PM{ps ` 1q (power of M ).
6: if }Fs ´ Fs´1}F § ✏}Fs}F then
7: STOP
8: end if
9: end for

Assume we now have the "atomic blocks" Fii “ fpRiiq, i “ 1, . . . , q, but still
require the strictly upper triangular block of F . We know FR “ RF because
F “ fpRq. We compute the "atomic blocks" Fij “ fpRijq by Taylor, Padé
explicit formula
»

—–
F11 . . . F1q

. . .
...

Fqq

fi

�fl

»

—–
R11 . . . R1q

. . .
...

Rqq

fi

�fl “

»

—–
R11 . . . R1q

. . .
...

Rqq

fi

�fl

»

—–
F11 . . . F1q

. . .
...

Fqq

fi

�fl .

We want to find F12:

F11R12 ` F12R22 “ R11F12 ´ R12F22

ô R11F12 ´ F12R22 “ F11R12 ´ R22F22

which is a Sylvester equation for F12. In general

RiiFij ´ FijRjj “ FiiRij ´ RijFjj `

j´1ÿ

k“i`1

pFikRkj ´ RikFkjq (III.13)

(Sylvester equation for Fij) is uniquely solvable because (III.11) and Section
II.2, e.g. by Sylvester variant of Bartels-Steward method II.2.2.

After computing F , we undo the unitary transformation Q: fpAq “ QFQ
H.

This method is called Schur-Parlett-Algorithm (Handout).

We now proceed towards methods for special f , especially f “ eA


