
CHAPTER I

Introduction

1

2 Chapter I. Introduction

In this lecture, we discuss theory, numerics and application of advanced prob-
lems in linear algebra:

(II) matrix equations (example: solve AX ` XB “ C),

(III) matrix functions: compute fpAq or fpAqb, where A P Cnˆn, b P Cn,

(IV) randomized algorithms.

The main focus is on problems defined by real matrices/vectors. In most chap-
ters, we have to make the distinction between problems defined by

• dense matrices of small /moderate dimensions and

• large, sparse matrices, e.g. A P Cnˆn, n ° 104 or greater, but only Opnq

nonzero entries, often from PDEs.

We first have to review two important standard problems in numerical linear
algebra, namely solving linear systems of equations and eigenvalue problems.

I.1 Linear systems of equations

We consider the linear system

Ax “ b, (I.1)

with A P Cnˆn
pRnˆn

q, b P Cn
pRn

q. The linear system (I.1) admits a unique
solution, if and only if

• there exists an inverse A
´1

• detpAq ‰ 0

• no eigenvalues/ singular values are equal to zero

• . . .

I.1. Linear systems of equations 3

Numerical methods for small and dense A P Cnˆn

Gaussian Elimination (LU-factorization):

We decompose A such that

A “ LU, L “

„
@
@

1

1

@@

⇢
, U “

„
@

@@

⇢
.

We obtain, that

(I.1) ô LUx “ b ô x “ U
´1

pL
´1

bq.

Hence, we solve (I.1) in two steps:

1. Solve Ly “ b via backward substitution.

2. Solve Ux “ y via backward substitution.

This procedure is numerically more robust with pivoting PAQ “ LU , where
P, Q P Cn,n are permutation matrices. This method has a complexity of Opn

3
q

and is, therefore, only feasible for small (moderate) dimensions.

QR-decomposition:

We decompose A into a product of Q and R where Q is an orthogonal matrix
and R is an upper triangular matrix leading to the so-called Gram-Schmidt or
the modified Gram-Schmidt algorithm. Numerically this can be done either with
Givens rotations or with Householder transformations.

Methods for large and sparse A P Cnˆn

Storing and computing dense LU-factors is infeasible for large dimensions n

(Opn
2
q memory, Opn

3
q flops). One possibility are sparse direct solvers, i.e.

find permutation matrices P and Q, such that PAQ “ LU has sparse LU-
factors (cheap forward/ backward substitution and Opnq memory).

Example: We consider the LU-factorization of the following matrix

A “

«
˚ . . . ˚
.
.
.

. . .
˚ ˚

�
“

„
@
@

1

1

@@

⇢ „
@

@@

⇢
.

With the help of permutation matrices P and Q, we can factorize

PAQ “

«
˚ ˚

. . .
.
.
.

˚ . . . ˚

�
“

«
˚
.
.
.

. . .
˚ ˚

�«
˚ . . . ˚

. . .
˚

�
.

4 Chapter I. Introduction

Algorithm 1 Arnoldi method
Input: A P Cnˆn

, b P Cn

Output: Orthonormal basis Qk of (I.2)
1: Set q1 “

b

}b} and Qq :“ rq1s.
2: for j “ 1, 2, . . . do
3: Set z “ Aqj .
4: Set w “ z ´ QjpQ

H

j
zq.

5: Set qj`1 “
w

}w} .
6: Set Qj`1 “ rQj , qj`1s.
7: end for

Finding such P and Q and still ensuring numerical robustness is difficult and
based e.g. on graph theory.

In MATLAB, sparse-direct solvers are found in the "z"-command: x “ Azb or
lupAq-routine. (Never use invpAq!)

Iterative methods

Often an approximation px « x is sufficient. Hence, we generate a sequence
x1, x2, . . . , xk by an iteration, such that

lim
kÑ8

xk “ x “ A
´1

b

and each xk, k • 1 is generated efficiently (only Opnq computations). Of
course, we want xk « x for k ! n.

Idea: Search approximated solution in a low-dimensional subspace Qk Ä Cn,
dimpQkq “ k. Let Qk be given as rangepQkq “ Qk for a matrix Qk P Cnˆk.

A good choice of the subspace is the Krylow-subspace

Qk “ KkpA, bq “ spantb, Ab, . . . , A
k´1

bu. (I.2)

It holds for z P KkpA, bq, that z “ ppAqb for a polynomial of degree k ´ 1
p P ⇧k´1. An orthonormal basis of KkpA, bq can be constructed with the Arnoldi
process presented in Algorithm 1.

The Arnoldi process requires matrix-vector products z “ Aq. These are cheap
for sparse A and therefore feasible for large dimensions.

We find an approximation xk P x0 ` Qk by two common ways:

• Galerkin-approach:
Impose r “ b ´ Axk K rangepQkq ô pQ

H

k
AQkqyk “ Q

H

k
b.

We have to solve a k-dimensional system ñ low costs.

I.2. Eigenvalue problems (EVP) 5

• Minimize the residual:

min
xkPrangepQkq

}b ´ Axk}

in some norm. If xk is not good enough, we expand Qk.

There are many Krylov-subspace methods for linear systems. (Simplification
for A “ A

H: Arnoldi ù Lanczos)

In practice: Convergence acceleration by preconditioning:

Ax “ b ô P
´1

Ax “ P
´1

b

for easily invertible P P Cn,n and P
´1

A "nicer" than A (ù Literature NLA I).

Another very important building block is the numerical solution of eigenvalue
problems.

I.2 Eigenvalue problems (EVP)

For a matrix A P Cn,n we want to find the eigenvectors 0 ‰ x P Cn and the
eigenvalues � P C such that

Ax “ �x.

The set of eigenvalues ⇤pAq “ t�1, . . . ,�nu is called the spectrum of A.

Small, dense problems:

Computing the Jordan-Normal-Form (JNF)

X
´1

AX “ J “ diagpJs1p�1q, . . . , Jskp�kqq, Jsj p�jq :“

»

–
�j 1

. . . 1
�j

fi

fl

to several eigenvalues and eigenvectors is numerically infeasible, unstable
(NLA I).

Theorem I.1 (Schur): For all A P Cnˆn exists a unitary matrix Q P Cn,n

(QH
Q “ I), such that

Q
H
AQ “ R “

»

—–
�1 ˚

. . .
0 �n

fi

�fl

loooooooomoooooooon
Schur form of A

6 Chapter I. Introduction

with �i P ⇤pAq in arbitrary order.

The Schur form can be numerically stable computed in Opn
3
q (NLA I) by the

Francis-QR-algorithm. It is this basis for dense eigenvalue computations. In
MATLAB we use rQ,Rs “ schurpAq. Additionally, the routine eigspAq uses the
Schur form. In general, the columns of Q are no eigenvectors of A, but Qk “

Qp:, 1 : kq spans an A-invariant subspace for all k:

AQk “ QkRk, for a matrix Rk P Ckˆk with ⇤pRkq Ñ ⇤pAq.

But because of the Opn
3
q complexity and Opn

2
q memory, the Schur form is

infeasible for large and sparse matrices A.

Eigenvalue problems defined by large and sparse matrices A can again be
treaded with the Arnoldi-process and projections on the Krylov-subspace
KkpA, bq “ rangepQkq. We obtain the approximated eigenpair
xk “ Qkyk « x, µ « � by using the Galerkin-condition on the residual of
the eigenvalue problem:

rk “ Axk ´ µxk K rangepQkq ô Q
H

k
AQkyk “ µ yk,

which means pµ, ykq are the eigenpairs of the k ˆ k-dimensional eigenvalue
problem for QH

k
AQk. This small eigenvalue problem is solvable by the Francis-

QR-method. This is the basis of the eigspAq routine in MATLAB for computing
a few (! n) eigenpairs of A.

Summary: Solving linear systems and eigenvalue problems is for small or large
and sparse matrices A no problem!

CHAPTER II

Matrix Equations

7

8 Chapter II. Matrix Equations

II.1 Preliminaries

Up to now we know linear systems of equations

Ax “ b,

where A P Rnˆn and b P Rn are given and x P Rn has to be found.

In this course we consider more general equations

F pXq “ C, (II.1)

where F : Rqˆr
Ñ Rpˆs, C P Rpˆs is given, and X P Rqˆr has to be found.

Equations of the form (II.1) are called algebraic matrix equations.

II.1.1 Examples of Algebraic Matrix Equations

1) F pXq “ AXB, i. e., (II.1) is

AXB “ C.

2) Sylvester equations:

AX ` XB “ C,

3) algebraic Lyapunov equations:

a) continuous time:

AX ` XA
T

“ ´BB
T
, X “ X

T
,

b) discrete time:

AXA
T

´ X “ ´BB
T
, X “ X

T
,

4) algebraic Riccati equations:

a) continuous time:

A
T
X ` XA ´ XBR

´1
B

T
X ` C

T
QC “ 0, X “ X

T
,

b) discrete time:

A
T
XA ´ X ´ pA

T
XBqpR ` B

T
XBq

´1
pB

T
XAq

` C
T
QC “ 0, X “ X

T
.

II.1. Preliminaries 9

c) non-symmetric

AX ` XM ´ XGX ` Q “ 0.

Examples 1) – 3) are linear matrix equations, since the map F is linear. Equa-
tions of the type 4) are called quadratic matrix equations. The goal of this
lecture is to understand the solution theory as well as numerical algorithms for
the above matrix equations. Our focus will be on the equations 2),3a) and 4a)
since these are the equations mainly appearing in the applications.

The term continuous-/discrete-time in 3a,b), 4a,b) refers to applications in con-
text of continuous-time dynamical systems

9xptq “ Axptq, t P R

or discrete-time dynamical systems

xk`1 “ Axk, k P N,

respectively. More info in courses on control theory or model order reduction.

There are also variants of the above equations containing X
T or XH – these

will not play a prominent role here. Furthermore, there are matrix equations
where X “ Xptq is a matrix-valued function and F contains derivative informa-
tion of X. Such equations are called differential matrix equations, for example
the differential Lyapunov equation

9Xptq ` Aptq
T
Xptq ` XptqAptq ` Qptq “ 0,

where A, Q P Cprt0, tf s,Rnˆn
q, and X P C

1
prt0, tf s,Rnˆn

q with Qptq “ Qptq
T

•

0 and Xptq “ Xptq
T for all t P rt0, tf s and the initial condition Xpt0q “ X0.

10 Chapter II. Matrix Equations

II.2 Linear Matrix Equations

In this chapter we discuss the solution theory and the numerical solution of
linear matrix equations as defined precisely below.

Definition II.1 (linear matrix equation): Let Ai P Cpˆq, Bi P Crˆs, and C P

Cpˆs
, i “ 1, . . . , k be given. An equation of the form

kÿ

i“1

AiXBi “ C (II.2)

is called a linear matrix equation.

II.2.1 Solution Theory

To discuss solvability and uniqueness of solutions of (II.2) we need the following
concepts.

Definition II.2 (vectorization operator and Kronecker product): For X “

“
x1 . . . xm

‰
“

»

—–
x11 . . . x1m

...
...

xn1 . . . xnm

fi

�fl P Cnˆm and Y P Cpˆq

a) the vectorization operator vec : Cnˆm
Ñ Cnm is given by

vecpXq :“

»

—–
x1

...
xm

fi

�fl ,

b) the Kronecker product is given by

X b Y “

»

—–
x11Y . . . x1mY

...
...

xn1Y . . . xnmY

fi

�fl P Cnpˆmq
.

Lemma II.3: For T P Cnˆm, O P Cmˆp, and R P Cpˆr it holds

vecpT ORq “
`
R

T
b T

˘
vecpOq

II.2. Linear Matrix Equations 11

(Note that it has to be R
T in the above formula, even if all the matrices are

complex.)

Proof. Exercise.

By this lemma, and the obvious linearity of vecp¨q, we see that

kÿ

i“1

AiXBi “ C ô

kÿ

i“1

`
B

T

i b Ai

˘

looooooomooooooon
A

vecpXqloomoon
X

“ vecpCq ,looomooon
B

and we find that (II.2) has a unique solution if and only if the linear system of
equations AX “ B has one. Equivalently, A has to be nonsingular.

Theorem II.4: The linear matrix equation (II.2) with ps “ qr has a unique solu-
tion iff all eigenvalues of the matrix

A “

kÿ

i“1

`
B

T

i b Ai

˘

are non-zero.

In the following we will focus on the case k § 2 and p “ s “ q “ r, since
Lyapunov equations pk “ 2, A1 “ A, B1 “ A2 “ In, B2 “ A

T
q and Sylvester

equations pk “ 2, A1 “ A, B2 “ B, A2 “ In, B1 “ Imq are important special
cases of interest in applications.

To check the above condition for unique solvability, we do not want to evaluate
the Kronecker products. Therefore, we now derive easily checkable conditions
based on the original matrices.

Lemma II.5: a) Let W,X, Y, Z be matrices such that the products WX and
Y Z are defined. Then pW b Y qpX b Zq “ pWXq b pY Zq.

b) Let S,G be nonsingular matrices. Then S b G is nonsingular, too, and
pS b Gq

´1
“ S

´1
b G

´1.

c) If A and B, as well as, C and D are similar matrices then AbC and B bD

are similar (A similar to B if DQ nonsingular s.t. A “ Q
´1

BQ).

d) Let X P Cnˆn and Y P Cmˆm be given. Then

⇤pX b Y q “ t�µ | � P ⇤pXq, µ P ⇤pY qu.

12 Chapter II. Matrix Equations

Proof. Exercise.

Theorem II.6 (Theorem of Stephanos): Let A P Cnˆn and B P Cmˆm with
⇤pAq “ t�1, . . . , �nu, ⇤pBq “ tµ1, . . . , µmu be given. For a bivariate polyno-

mial ppx, yq “

k∞
i,j“0

cijx
i
y
j we define by

ppA,Bq :“
kÿ

i,j“0

cijpA
i

b B
j
q

a polynomial of the two matrices. Then the spectrum of ppA,Bq is given by

⇤pppA,Bqq “ tpp�r, µsq | r “ 1, . . . , n, s “ 1, . . . , mu.

Proof. Use JNF or Schurforms of A,B + Lemma II.5.

Now we are ready to consider our preferred special cases of (II.2).

a) AXB “ C:

A “ B
T

b A invertible ô � ¨ µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô � ‰ 0 and µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô both A and B are nonsingular.

b) continuous-time Sylvester equation AX ` XB “ C, where A P Cnˆn,
B P Cmˆm, C, X P Cnˆm:

A “ Im b A ` B
T

b In invertible ô �` µ ‰ 0 @� P ⇤pAq and µ P ⇤pBq

ô ⇤pAq X ⇤p´Bq “ H.

c) continuous-time Lyapunov equation AX`XA
H

“ W , where A, X P Cnˆn,
W “ W

H
P Cnˆn:

A “ In b A ` A b In invertible ô ⇤pAq X ⇤p´A
H

q “ H.

For example, this is the case when A is asymptotically stable.

d) discrete-time Lyapunov equations Ñ exercise.

The following result gives some useful results about the solution structure of
Sylvester equations.

II.2. Linear Matrix Equations 13

Theorem II.7: Let A P Cnˆn, B P Cnˆn with ⇤pAq Ä C´,⇤pBq Ä C´. Then
AX ` XB “ W has a (unique) solution

X “ ´

8ª

0

eAt
W eBtdt

Proof. Exercise.

From now on

AX ` XA
˚

“ W, W “ W
˚
. (II.3)

Definition II.8 (controllability): Let A P Cnˆn and B P Cnˆm. We say pA,Bq is
controllable if rankrB,AB, . . . A

n´1
Bs “ n.

Lemma II.9: The above controllability condition is equivalent to

rankrA ´ �I, Bs “ n for all � P C
ñ y

˚
B ‰ 0 @y ‰ 0 : y

˚
A “ y

˚
� pleft. eigenvecs ofq A

Proof. We first prove that rankrA ´ �I,Bs “ n @� P C is equivalent to Def-
inition II.8. Assuming that rankrA ´ �I,Bs † n for a � P C then there exists
a w ‰ 0 such that wT

rA ´ �I, Bs “ 0 which means that wT
pA ´ �Iq “ 0

and w
T
B “ 0 and that means that wT

rB,AB, . . . A
n´1

Bs “ 0 which means
pA,Bq is not controllable. Assuming pA,Bq is not controllable and therefore
rankrB,AB, . . . A

n´1
Bs † n we define a matrix M contains a basis of the im-

age of rB,AB, . . . A
n´1

Bs. Then there is a matrix M̃ such that T “ rM, M̃ s is
invertible and

Ã “ T
´1

AT “

«
rA11

rA12

0 rA22

�
(II.4)

B̃ “ T
´1

B “

„ rB1

0

⇢
(II.5)

Let � be an eigenvalue of Ã22 and w22 a left eigenvector. Then

w :“

„
0

w̃22

⇢
T

´1
‰ 0.

14 Chapter II. Matrix Equations

It also holds that wT
A “ �w

T and w
T
B “ 0 and therefore rankrA´ �i, Bs not

full. The proof of the equivalence is basically also done within this proof.

Theorem II.10: Consider Lyapunov equation (II.3) with W “ W
˚

“ ´BB
T

§

0, B P Rnˆm.

a) For ⇤pAq Ä C´: pA,Bq controllable ô D unique sol. X “ X
˚

° 0.

b) Let pA,Bq be controllable and assume there D unique sol. X “ X
˚

° 0.
Then ⇤pAq Ä C´.

Proof. a) If the spectrum of A is in the left half plane and W “ W
˚ then there

exist a unique symmetric solution of the Lyapunov equation. What is left to
prove is the equivalence of pA,Bq being controllable and the solution being
positive definite. The solution is given by

X “

8ª

0

eAt
BB

T eA
˚
tdt

which is positive if and only if pA,Bq are controllable.

b) Take an eigenvalue � P ⇤pAq and a corresponding left eigenvector y. Then

0 ° ´y
˚
BB

T
y “ y

˚
AXy ` y

˚
XA

˚
y “ p�` �̄qy

˚
Xy

Since X “ X
˚

° 0 we must have that � ` �̄ “ 2Re� † 0 and since � was
arbitrary that ⇤pAq Ä C´

II.2. Linear Matrix Equations 15

II.2.2 Direct Numerical Solution

We have seen that linear matrix equations are equivalent to linear systems.
Why do we not just apply a linear solver? Consider a (real) Lyapunov equation
where we obtain the system matrix A “ In b A ` A b In P Rn

2ˆn
2
. For

computing an LU-factorization of A and a forward/backwards substitution we
need approximately 2

3
pn

2
q
3

“
2

3
n
6 FLOPS and n

4 memory. This is only feasible
for small n. If n Á 50, then this is already prohibitively expensive (even if we
exploit the structure and symmetry).

Therefore, our first goal is to develop a basic algorithm with complexity Opn
3
q

for moderately sized linear matrix equations.

The Bartels-Stewart Algorithm

The idea of this method is the transformation of the matrix A into Schur form.

The Schur form can be computed in a numerically stable fashion by the QR
algorithm and it is the backbone of many dense eigenvalue algorithms (MAT-
LAB schur).

Consider (II.3) with ⇤pAq X ⇤p´A
H

q “ H and let QH
AQ “ T with be the

(complex) Schur form of A.

Premultiplication of (II.3) by Q
H and postmultiplication by Q leads to

Q
H
AXQ ` Q

H
XA

T
Q “ Q

H
WQ

ô Q
H
AQQ

H
XQloomoon

“:X̃

`Q
H
XQQ

H
A

T
Q “ Q

H
WQlooomooon

“:W̃

ô TX̃ ` X̃T
H

“ W̃ (II.6)

We partition this in the form
„
T1 T2

0 T3

⇢ „
X1 X2

X
H

2
X3

⇢
`

„
X1 X2

X
H

2
X3

⇢ „
T
H

1
0

T
H

2
T
H

3

⇢
“

„
W̃1 W̃2

W̃
H

2
W̃3

⇢
,

where T1 P Cpn´1qˆpn´1q
, T2 P Cn´1

, T3 P C. Thus we get
$
’&

’%

T1X1 ` T2X
H

2 ` X1T
H

1 ` X2T
H

2 “ W̃1,

T1X2 ` T2X3 ` X2T
H

3 “ W̃2,

T3X3 ` X3T
H

3 “ W̃3,

ô

$
’&

’%

T1X1 ` X1T
H

1 “ W̃1 ´ T2X
H

2 ´ X2T
H

2 , pn ´ 1q ˆ pn ´ 1q

T1X2 ` X2T3 “ W̃2 ´ T2X3, pn ´ 1q ˆ 1

pT3 ` T 3qX3 “ W̃3. 1 ˆ 1

16 Chapter II. Matrix Equations

Algorithm 2 Bartels-Stewart algorithm (complex version)
Input: A, W P Cnˆn with W “ W

H .
Output: X “ X

H solving (II.3).
1: Compute T “ Q

H
AQ with the QR algorithm.

2: if diagpT q X diag
`
´T

H
˘

‰ H then
3: STOP (no unique solution)
4: end if
5: Set W̃ :“ Q

H
WQ.

6: Set k :“ n ´ 1.
7: while k ° 1 do
8: Solve (II.7a) with W̃3 “ W̃ pk ` 1, k ` 1q and T3 “ T pk ` 1, k ` 1q to

obtain Xpk ` 1, k ` 1q.
9: Solve (II.7b) with T1 “ T p1 : k, 1 : kq, T2 “ T p1 : k, k ` 1q, W̃2 “ W̃ p1 :

k, k ` 1q, and X3 “ Xpk ` 1, k ` 1q to obtain Xp1 : k, k ` 1q.
10: Set W̃ “ W̃ p1 : k, 1 : kq ´ T2X

H

2
´ X2T

H

2

11: Set k :“ k ´ 1.
12: end while
13: Solve (II.7c) with T1 “ T p1, 1q and Ŵ1 “ W̃ p1, 1q.
14: Set X :“ QXQ

H .

Now we get

X3 “
W̃3

T3 ` T 3

, (II.7a)

where T3 ` T 3 ‰ 0 since T3 P ⇤pAq R iR. Next we obtain

T1X2 ` X2T3 “ W̃2 ´ T2X3 “: Ŵ2, (II.7b)

which is a special Sylvester equation that is equivalent to the linear system

pT3In´1 ` T1qX2 “ Ŵ2,

and can easily be solved by backward substitution. Its solution always exists
since ⇤pT1q X

´T3

(
“ H. It remains to solve the smaller pn ´ 1q ˆ pn ´ 1q

sized ’triangular’ Lyapunov equation

T1X1 ` X1T
H

1 “ W̃1 ´ T2X
H

2 ´ X2T
H

2 “: Ŵ1, (II.7c)

which is also solvable since ⇤pT1q X⇤p´T
H

1
q “ H and Ŵ1 “ Ŵ

H

1
. This leads

to the complex Bartels-Stewart algorithm, see Algorithm 2. As a convention
we use MATLAB notation, i. e., we denote the section of a matrix A P Cnˆn

consisting only of the rows r1 to r2 and the columns c1 to c2 by Apr1 : r2, c1 :
c2q. If for example, r1 “ r2, then we shortly write Apr1, c1 : c2q.

II.2. Linear Matrix Equations 17

Remark: a) In total this algorithm needs approximately

32n3
« 25n3loomoon

Schur

` 3n3loomoon
premult.

` 3n3loomoon
postmult.

` n
3loomoon

while loop

complex floating point operations.

b) The algorithm uses only numerically backward stable parts and unitary
transformations and thus it can be considered backward stable.

c) The method is implemented in the MATLAB routine lyap and in SLICOT in
SB03MD (real version only).

d) The version for Sylvester equations works analogously (see exercise).

Major drawback: The algorithm uses complex arithmetic operations even if all
data is real. Luckily, it can be reformulated to use real operations only.

Theorem II.11 (real Schur form): For every A P Rnˆn there exists an orthogo-
nal matrix Q P Rnˆn such that A is transformed to real Schur form, i. e.

Q
T
AQ “ T “

»

—–
T11 . . . T1k

. . .
...

Tkk

fi

�fl , (II.8)

where for i “ 1, . . . , k, Tii P R1ˆ1 (corresponding to a real eigenvalue of
A) or Tii “

”
↵i �i

´�i ↵i

ı
P R2ˆ2 (corresponding to a pair of complex conjugate

eigenvalues ↵i ˘ i�i of A).

Proof. See the course on “Numerical Linear Algebra”.

To this end, we replace the Schur form by the real Schur form (II.8). Then T3

may be a 2 ˆ 2 block, i. e., T3 “
“
t1 t2
t3 t4

‰
. We obtain

„
t1 t2

t3 t4

⇢ „
x1 x2

x2 x3

⇢
`

„
x1 x2

x2 x3

⇢ „
t1 t3

t2 t4

⇢
“

„
w1 w2

w2 w3

⇢
.

This is equivalent to

$
’&

’%

w1 “ t1x1 ` t2x2 ` t1x1 ` t2x2 “ 2pt1x1 ` t2x2q,

w2 “ t1x2 ` t2x3 ` t3x1 ` t4x2 “ t3x1 ` pt1 ` t4qx2 ` t2x3,

w3 “ t3x2 ` t4x3 ` t3x2 ` t4x3 “ 2pt3x2 ` t4x3q.

18 Chapter II. Matrix Equations

We can write this as a linear system of equations
»

–
t1 t2 0
t3 t1 ` t4 t2

0 t3 t4

fi

fl

»

–
x1

x2

x3

fi

fl “

»

–
w1
2

w2

w3
2

fi

fl .

Additionally, one can exploit the fact that T3 corresponds to a pair of complex

conjugate eigenvalues �1,2 “ a ˘ ib and T3 “

„
a b

´b a

⇢
which leads to

»

–
a b 0

´b 2a b

0 ´b a

fi

fl

»

–
x1

x2

x3

fi

fl “

»

–
w1
2

w2

w3
2

fi

fl .

Now (II.7b) becomes

T1X2 ` X2T
T

3 “ Ŵ2 :“ W̃2 ´ T2X3 P Rn´2ˆ2
. (II.9)

Consider the partitions corresponding to the quasi-triangular structure of T1:

X2 “

»

—–
x1

...
xk´1

fi

�fl , Ŵ2 “

»

—–
ŵ1

...
ŵk´1

fi

�fl ,

In general we have xi, ŵi P Rniˆnk , where ni, nk P t1, 2u and i “ 1, . . . , k´1.

We now compute X2 block-wise by progressing upwards from xk´1 to x1. It
holds

Tjjxj ` xjT
T

3 “ ŵj ´

kÿ

h“j`1

Tjhxh “: w̃j , j “ k ´ 1, k ´ 2, . . . , 1.

For the solution of this Sylvester equation four cases have to be considered:

a) nj “ nk “ 1: We obtain a scalar equation such that xj “ w̃j{pTjj ` T3q.

b) nj “ 2, nk “ 1: We obtain a linear system in R2 with unique solution given
by

pTjj ` T3I2qxj “ w̃j .

c) nj “ 1, nk “ 2: We obtain a linear system in R2 with unique solution given
by

pTjjI2 ` T3qx
T

j “ w̃
T

j .

d) nj “ 2, nk “ 2: We obtain a linear system in R4 with unique solution given
by

ppI2 b Tjjq ` pT3 b I2qq vecpxjq “ vecpw̃jq .

II.2. Linear Matrix Equations 19

Hence, we get X2 and can set up a Lyap. eqn. for X1 defined by T1. Repeat
whole process until T1 P R or T1 P R2ˆ2. Then back-transform the solution.

Remark II.12: The Sylvester equation (II.9) can be solved alternatively by solv-
ing a linear system of the form

pT
2

1 ` ↵T1 ` �In´2qX2 “ W̃2,

where X2 “ rs, ts, W̃2 “ ry, zs P Rn´2ˆ2 and ↵,� P R (see exercise).

Hammarling’s Method

Now we consider (II.3) with W “ ´BB
T . By Theorem II.10 we know that

X “ X
T

° 0, provided that ⇤pAq Ä C´ and the pair pA,Bq is controllable.
Sometimes it is desirable to only compute a factor U of the solution, i. e., X “

UU
H with some matrix U . Later we will see that many further algorithms such

as projection methods for large scale matrix equations proceed with factors
rather than Gramians themselves.

Assume that we have already computed and applied the Schur decomposition
of A “ Q

H
TQ, analogously to (II.6). So our starting point is

TX̃ ` X̃T
H

“ ´B̃B̃
H with X̃ “ Q

H
XQ, B̃ “ Q

H
B. (II.10)

Since X ° 0, we also have X̃ ° 0 by Sylvester’s law of inertia. Our goal is to
compute upper triangular Cholesky factors Ũ of X̃ “ Ũ Ũ

H .

Partition

Ũ “

„
@
@@

⇢
“

„
U1 u

0 ⌧

⇢
, U1 P Cn´1ˆn´1

, u P Cn´1
, 0 † ⌧ P R.

Hammarlings method computes (similar to B.S.) first ⌧ (scalar equation), then
u (LS of size n ´ 1), and finally U1 as Cholesky factor or a n ´ 1 ˆ n ´ 1 Lyap.
equation defined by T1. As in B.S., repeat this until T1 P C, afterwards back-
transform U – QU . Complexity, stability, real version analog to BS. Details
here omitted.

Remark: Iterative methods for small, dense Matrix Equations: There are sev-
eral, iterative methods computing sequences Xk, k • 0 converging to the true
solution, i.e., lim

kÑ8
Xk “ X. For instance:

• Matrix sign function iteration

• Alternating directions implicit (ADI) iteration ù later for large problems.

20 Chapter II. Matrix Equations

II.2.3 Iterative Solutions of Large and Sparse Matrix Equations

Now we consider

AX ` XA
T

“ ´BB
T
, (II.11)

where A P Rnˆn and n is ’large’, but A is sparse, i. e., only a few entries in A

are non-zero. Therefore, multiplication with A can be performed in Opnq rather
than Opn

2
q FLOPS. Also solves with A or A ` pI can be performed efficiently.

However, X P Rnˆn is usually dense and thus X cannot be stored for large n

since we would need Opn
2
q memory.

Thus the question arises whether it is possible to store the solution X more
efficiently.

The Low-Rank Phenomenon

In practice we often have B P Rnˆm, where m ! n, i. e., the right-hand side
BB

T has a low rank. Recall that if pA,Bq is controllable then X “ X
T

• 0
and rankpXq “ n.

It is a very common observation in practice that the eigenvalues of X solving
(II.11) decay very rapidly towards zero, and fall early below the machine preci-
sion.

This gives the concept of the numerical rank of X:

rankpX, ⌧q “ argminj“1,...,rankpXqt�jpXq • ⌧u, e.g., ⌧ “ ✏mach�1pXq.

Can we also theoretically explain this eigenvalue decay?

Theorem II.13: Let A be diagonalizable, i. e., there exists an invertible matrix
V P Cnˆn such that A “ V ⇤V ´1. Then the eigenvalues of X solving (II.11)
with B P Cnˆm satisfy

�km`1pXq

�1pXq
§ }V }

2

2

››V ´1
››2
2
⇢pMkq

2

for any choice of shift parameters pk used to construct

Mk “

kπ

i“1

pA ´ pkIqpA ` pkIq
´1

(in particular, the optimal ones).

II.2. Linear Matrix Equations 21

In the Theorem above the spectral radius ⇢ of a matrix is used:

⇢pAq “ max
1§i§n

|�ipAq|.

Remark II.14: • If the eigenvalues of A cluster in the complex plane, only a
few pk in the clusters suffice to get a small ⇢pMkq and thus �ipXq decay
fast.

• If A is normal, then }V }
2

››V ´1
››
2

“ 1 and the bound gives a good expla-
nation for the decay. The nonnormal case is much harder to understand.

• This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of �ipXq, then X can be well approxi-
mated as X “ X

T
« ZZ

H , where Z P Cnˆr with r ! n is a low-rank solution
factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.

22 Chapter II. Matrix Equations

Projection Methods

Now we consider projection-based methods for the solution of large and sparse
Lyapunov equations

The main idea consists of representing the solution X by an approximation
extracted from a low-dimensional subspace Qk “ imQk with Q

T

k
Qk “ Ikm,

i. e., X « Xk “ QkYkQ
T

k
for some Yk P Rmkˆmk. Impose a Galerkin condition

RpXkq :“ AXk ` XkA
T

` BB
T

K Zk,

where

Zk :“
!
QkZQ

T

k
P Rnˆn

ˇ̌
ˇ QT

k
Qk “ Imk, imQk “ Qk, Z P Rkmˆkm

)

and orthogonality is with respect to the trace inner product. Equivalently, Yk
solves the small-scale Lyapunov equation

HkYk ` YkH
T

k
` Q

T

k
BB

T
Qk “ 0, Hk :“ Q

T

k
AQk, (II.12)

which can be solved by the Bartels-Stewart or Hammerling’s method.

In case that the residual norm }RpXkq} is not small enough, we increase the
dimension of Qk by a clever expansion (orthogonally expand Qk), otherwise
we prolongate to obtain Xk “ QkYkQ

T

k
(never formed explicitly).

What are good choices for Qk?

a) Standard block Krylov subspaces

Qk “ KkpA,Bq :“ spantB,AB, . . . , A
k´1

Bu :

A matrix Qk with orthonormal columns spanning Qk can be generated by a
block Arnoldi process, i. e. in the kth iteration we have Qk “

“
V1 . . . Vk

‰

fulfilling (assuming there is no breakdown in the process)

AQk “ QkHk ` Vk`1Hk`1,kE
T

k
,

where

Hk “

»

———————–

H11 H12 H1k

H21 H22
...

0 H32 H33 . . .
...

...
.

...
0 . . . 0 Hk,k´1 Hkk

fi

�������fl

is a block upper Hessenberg matrix and Ek is a matrix of the last m columns
of Ikm, and

Hk “ Q
T

k
AQk.

The residual norm computation for this method is cheap as shown by the
following theorem.

II.2. Linear Matrix Equations 23

Theorem II.15: Suppose that k steps of the block Arnoldi process have
been taken. Assume that ⇤pHkq X ⇤p´Hkq “ H. Then the following state-
ments are satisfied:

a) It holds Q
T

k
RpQkY Q

T

k
qQk “ 0 if and only if Y “ Yk, where Yk solves

the Lyapunov equation (II.12).

b) The residual norm is given by
››RpQkYkQ

T

k
q

››
F

“

?

2
››Hk`1,kE

T

k
Yk

››
F
.

Proof. Exercise.

Unfortunately, this method often converges only slowly. Therefore, one often
chooses modified Krylov subspaces as follows.

b) Extended block Krylov subspaces

EKqpA,Bq :“ KqpA,Bq Y KqpA
´1

, A
´1

Bq :

The resulting method is also known as EKSM (extended Krylov subspace
method) or KPIK (Krylov plus inverted Krylov). We obtain a similar construc-
tion formula as for the block Arnoldi method above and also the residual
norm formula is similar. However, the approximation quality is often signif-
icantly better than with KqpA,Bq only. On the other hand, the subspace
dimension grows by 2m in each iteration step (until n is reached).

c) Rational Krylov subspaces

RKqpA,B, Sq (II.13)

:“spantps1In ´ Aq
´1

B, ps2In ´ Aq
´1

B, . . . , psqIn ´ Aq
´1

Bu,

S “ts1, . . . , squ Ä C`
, si ‰ sj , i ‰ j : (shifts)

This choice often gives an even better approximation quality compared to
EKqpA,Bq, provided that good shifts S are known. Generating the basis
requires solving LS psiI ´ Aqv “ qi, but this is usually efficiently possible
(cf. Intro).

The shifts si are crucial for a fast convergence, but finding good ones is
difficult. For one possible shift selection approach, let m “ 1. One can
show

}Rk} „ max | kpzq| with kpzq “

kπ

j“1

z ´ �j

z ` sj
, �j P ⇤pHkq.

24 Chapter II. Matrix Equations

This leads to the following procedure for getting the next shift

sk`1 “ argmaxzPBD | kpzq|,

where BD is a discrete set of point taken from the convex hull of ⇤pHkq

(BD Ä convp⇤pHkqq).

For all choices of subspace a)-c): Is the reduced Lyapunov equation (II.12)
always uniquely solvable?

For general matrices A the answer is no. However, for strictly dissipative matri-
ces, i. e., matrices A with A ` A

T
† 0 we have the following result.

Theorem II.16: Let A P Rnˆn be strictly dissipative and Qk P Rnˆmk with
Q

T

k
Qk “ Ikm. Then ⇤pHkq Ä C´ and the reduced Lyapunov equation (II.12)

is always uniquely solvable.

Proof. Since A ` A
T is symmetric and negative definite, it holds x

H
`
A `

A
T

˘
x † 0 for all x P Cn. Then we have

z
H

`
Hk ` H

T

k

˘
z “ z

H
pQ

T

k
AQk ` Q

T

k
A

T
Qkqz

“ y
H

pA ` A
T

qy † 0, y :“ Qkz, @ z P Ckm

ñ Hk ` H
T

k
† 0

Now let Hkx̂ “ �̂x̂ for x̂ P Ckm
zt0u. Then we have

x̂
H

`
Hk ` H

T

k

˘
x̂ “ �̂x̂

H
x̂ ` �̂x̂

H
x̂ “ 2Re

´
�̂

¯
x̂
H
x̂ † 0.

Thus ⇤pHkq Ä C´ and the reduced Lyapunov equation (II.12) is uniquely solv-
able.

II.2. Linear Matrix Equations 25

Low-rank ADI

Consider the discrete-time Lyapunov equations

X “ AXA
T

` W, A P Rnˆn
, W “ W

T
P Rnˆn

. (II.14)

The existence of a unique solution is ensured if |�| † 1 for all � P ⇤pAq (see
exercise). This motivates the basic iteration

Xk “ AXk´1A
T

` W, k • 1, X0 P Rnˆn
. (II.15)

Let A be diagonalizable, i.e., there exists a nonsingular matrix V P Cnˆn such
that A “ V ⇤V ´1. Let ⇢pAq :“ max�P⇤pAq |�| denote the spectral radius of A.
Since

}Xk ´ X}2 “ }ApXk´1 ´ XqA
T

}2 “ . . . “ }A
k
pX0 ´ XqpA

T
q
k
}2

§ }A
k
}
2

2}X0 ´ X}2 § }V }
2

2}V
´1

}
2

2⇢pAq
2k

}X0 ´ X}2, (II.16)

this iteration converges because ⇢pAq † 1 (fixed point argumentation).

For continuous-time Lyapunov equations, recall the result from the exercise:

Lemma II.17: The continuous-times Lyapunov equation

AX ` XA
T

“ W, ⇤pAq Ä C´

is equivalent to the discrete-time Lyapunov equation

X “CppqXCppq
H

` W̃ ppq, Cppq :“ pA ´ pInqpA ` pInq
´1

,

W̃ ppq :“ ´ 2Reppq pA ` pInq
´1

W pA ` pInq
´H

(II.17)

for p P C´.

Proof. Exercise.

We call Cppq a Cayley transformations of A which is the rational function

�ppzq “
z ´ p

z ` p
.

applied to A. For z, p P C´ we have |�ppzq| † 1. It can be easily shown that
(special case of spectral mapping theorem ù later)

⇤pCppqq “ t�pp�q, � P ⇤pAqu

and therefore ⇢pCppqq † 1. Applying (II.15) to (II.17) gives the Smith iteration

Xk “ CppqXk´1Cppq
H

` W̃ ppq, k • 1, X0 P Rnˆn
. (II.18)

26 Chapter II. Matrix Equations

Similarly as in (II.16), we have

}Xk ´ X}2 § }V }
2

2}V
´1

}
2

2⇢pCppqq
2k

}X0 ´ X}2.

This means that we obtain fast convergence by choosing p such that ⇢pCppqq †

1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (II.18) in every step, we obtain the ADI iteration for
Lyapunov equations

Xk “CppkqXk´1Cppkq
H

` W̃ ppkq, k • 1, X0 P Rnˆn
, pk P C´

. (II.19)

Remark: The name alternating directions implicit comes from a different (his-
torical) derivation of ADI for linear systems. To get the main idea for Lyapunov
equations, consider the splitting of the Lyapunov operator

LpXq “ AX ` XA
T

“ L1pXq ` L2pXq, L1pXq “ AX, L2pXq “ XA
T
.

Obviously, L1p¨q and L2p¨q are commuting linear operators. It is possible to
formulate an iteration working alternately on L1p¨q and L2p¨q, carrying out “half”-
iteration steps for each operator:

pA ` piInqX
i´ 1

2
“ ´Xi´1pA

T
´ piInq ` W,

pA ` piInqX
T

i “ ´X
T

i´ 1
2
pA

T
´ piInq ` W.

Rewriting this into a single step leads to (II.19).

We address two issues of the ADI iteration:

1. ADI requires, similar to the rational Krylov projection method, shift pa-
rameters that are crucial for a fast convergence. How to choose the shift
parameters pi, i • 1?

2. The iteration (II.19) is in its given form not feasible for large Lyapunov
equations.

The ADI Shift Parameter Problem One can show, similarly to (II.16), that

}Xk ´ X}2 § }V }
2

2

››V ´1
››2
2
⇢pMkq

2
}X0 ´ X}2, Mk :“

kπ

i“1

Cppiq, (II.20)

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations Mk are

⇤pMkq “

#
kπ

i“1

�´ pi

�` pi

ˇ̌
ˇ̌
ˇ � P ⇤pAq

+
.

II.2. Linear Matrix Equations 27

Good shifts p
˚
1
, . . . , p

˚
k

should make ⇢pMkq † 1 as small as possible. This
motivates the ADI shift parameter problem

rp
˚
1 , . . . , p

˚
k
s “ argminpiPC´ max

�P⇤pAq

ˇ̌
ˇ̌
ˇ

kπ

i“1

�´ pi

�` pi

ˇ̌
ˇ̌
ˇ . (II.21)

In general, this is very hard to solve. For instance, in general, ⇢pCppqq is not
differentiable and the problem is very expensive, if A is a large matrix. However,
there are some procedures that work well in practice:

• Wachspress shifts: Embed ⇤pAq in an elliptic function region that de-
pends on the parameters

max
�P⇤pAq

Rep�q , min
�P⇤pAq

Rep�q , arctan max
�P⇤pAq

ˇ̌
ˇ̌ Imp�q

Rep�q

ˇ̌
ˇ̌

(or approximations thereof). Then, (II.21) can be solved by employing an
elliptic integral.

• Heuristic Penzl shifts: If A is a large and sparse matrix, ⇤pAq is re-
placed by a small number of approximate eigenvalues (e.g., Ritz values).
Then (II.21) is solved heuristically.

• Self-generating shifts: If A is large and sparse, these shifts are based
on projections of A with the data obtained by previous iterations. These
shifts also make use of the right-hand side W .

The Low-Rank ADI For a low-rank version of ADI computing low-rank solu-
tion factors, consider one step of the dense iteration (II.19) and insert Xj “

ZjZ
H

j
:

Xj “ CppjqXj´1Cppjq
H

` W̃ ppjq

“ pA ´ pjInqpA ` pjInq
´1

Zj´1Z
H

j´1pA ` pjInq
´H

pA ´ pjInq
H

´ 2Reppjq pA ` pjInq
´1

BB
T

pA ` pjInq
´H

.

ñ Xj “ ZjZ
H

j , Zj “
“a

´2ReppjqpA ` pjInq
´1

B pA ´ pjInqpA ` pjInq
´1

Zj´1

‰
.

With Z0 “ 0 we find a low rank variant the ADI iteration (II.19) forming Zj

successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Zj).

However, there is a remedy to this problem. Obviously,

Si “ pA ` piInq
´1 and Tj “ pA ´ pjInq

28 Chapter II. Matrix Equations

commute for all i, j with each other and themselves (proof it yourself).

Now consider Zj being the iterate after iteration step j

Zj “
“
↵jSjB pTjSjq↵j´1Sj´1B . . . pTjSjq ¨ ¨ ¨ pT2S2q↵1S1B

‰

with ↵i “

a
´2Reppiq. The order of application of the shifts is not important,

and we reverse their application to obtain the following alternative iterate

Z̃j “
“
↵1S1B ↵2pT1S1qS2B . . . ↵jpT1S1q ¨ ¨ ¨ pTj´1Sj´1qSjB

‰

“
“
↵1S1B ↵2pT1S2qS1B . . . ↵jpTj´1SjqpTj´2Sj´1q ¨ ¨ ¨ pT1S2qS1B

‰

“
“
↵1V1 ↵2V2 . . . ↵jVj

‰
,

V1 “ S1B, Vi “ Ti´1SiVi´1, i “ 1, . . . , j.

We have Xj “ Z̃jZ̃
H

j
, but in this formulation only the new columns are pro-

cessed. Even more structure is revealed by the Lyapunov residual.

Theorem II.18: The residual at step j of (II.19), started with X0 “ 0, is of rank
at most m and given by

Rj :“AZjZ
H

j ` ZjZ
H

j A
T

` BB
T

“ WjW
H

j ,

Wj “MjB “ CppjqWj´1 “ Wj´1 ´ 2ReppjqVj , W0 :“ B,

where Mj :“
±

j

i“1
Cppiq. Moreover, it holds Vj “ pA ` pjInq

´1
Wj´1.

Proof. We have

Rj “ AXj ` XjA
T

` BB
T

“ ApXj ´ Xq ` pXj ´ XqA
T

pby (II.11)q

“ AMjpX0 ´ XqM
H

j ` MjpX0 ´ XqM
H

j A
T

“ ´MjAXM
H

j ´ MjXA
T
M

H

j

“ ´MjpAX ` XA
T

qMj “ MjBB
T
Mj .

Moreover, it holds

Vj “ Tj´1SjVj´1 “ Tj´1SjTj´2Sj´1Vj´2 “ . . . “

“ Sj

˜
j´1π

k“1

TkSk

¸
B “ SjMj´1B “ pA ` pjInq

´1
Wj´1, (II.22)

and

Wj “ MjB “ SjTjWj´1 “ Wj´1 ´ 2ReppjqSjWj´1 “ Wj´1 ´ 2ReppjqVj .

II.2. Linear Matrix Equations 29

Algorithm 3 Low-rank ADI (LR-ADI) iteration for Lyapunov equations
Input: A, B from (II.11), shifts P “ tp1, . . . , pmaxiteru Ä C´, residual toler-

ance tol.
Output: Zk such that X “ ZkZ

H

k
(approx.) solves (II.11).

1: Initialize j “ 1, W0 :“ B, Z0 :“ r s.
2: while }Wj´1}2 • tol do
3: Set Vj :“ pA ` pjInq

´1
Wj´1.

4: Set Wj :“ Wj´1 ´ 2ReppjqVj .
5: Set Zj :“

“
Zj´1

a
´ReppjqVj

‰
.

6: Set j :“ j ` 1.
7: end while

Thank to the above theorem, the norm of the Lyapunov residual norm can be
cheaply computed via }Rj}2 “ }WjW

H

j
}2 “ }Wj}

2

2
. All this leads to Algorithm

3. Again, the major work is solving the LS pA ` pjInqVj “ Wj´1 in each step,
which is efficiently possible for large,sparse A (cf. Introduction).

Algorithm 3 produces complex low-rank factors, if some of the shifts are com-
plex, which might be required for problems with nonsymmetric A. Ensuring that
Zj P Rnˆnj and limiting the number of complex operations can be achieved by
assuming that for a complex shift pi we have pi`1 “ pi (see handout)

