
CHAPTER I

Introduction

1



2 Chapter I. Introduction

In this lecture, we discuss theory, numerics and application of advanced prob-
lems in linear algebra:

(II) matrix equations (example: solve AX ` XB “ C),

(III) matrix functions: compute fpAq or fpAqb, where A P Cnˆn, b P Cn,

(IV) randomized algorithms.

The main focus is on problems defined by real matrices/vectors. In most chap-
ters, we have to make the distinction between problems defined by

• dense matrices of small /moderate dimensions and

• large, sparse matrices, e.g. A P Cnˆn, n ° 104 or greater, but only Opnq

nonzero entries, often from PDEs.

We first have to review two important standard problems in numerical linear
algebra, namely solving linear systems of equations and eigenvalue problems.

I.1 Linear systems of equations

We consider the linear system

Ax “ b, (I.1)

with A P Cnˆn
pRnˆn

q, b P Cn
pRn

q. The linear system (I.1) admits a unique
solution, if and only if

• there exists an inverse A
´1

• detpAq ‰ 0

• no eigenvalues/ singular values are equal to zero

• . . .



I.1. Linear systems of equations 3

Numerical methods for small and dense A P Cnˆn

Gaussian Elimination (LU-factorization):

We decompose A such that

A “ LU, L “

„
@
@

1

1

@@

⇢
, U “

„
@

@@

⇢
.

We obtain, that

(I.1) ô LUx “ b ô x “ U
´1

pL
´1

bq.

Hence, we solve (I.1) in two steps:

1. Solve Ly “ b via backward substitution.

2. Solve Ux “ y via backward substitution.

This procedure is numerically more robust with pivoting PAQ “ LU , where
P, Q P Cn,n are permutation matrices. This method has a complexity of Opn

3
q

and is, therefore, only feasible for small (moderate) dimensions.

QR-decomposition:

We decompose A into a product of Q and R where Q is an orthogonal matrix
and R is an upper triangular matrix leading to the so-called Gram-Schmidt or
the modified Gram-Schmidt algorithm. Numerically this can be done either with
Givens rotations or with Householder transformations.

Methods for large and sparse A P Cnˆn

Storing and computing dense LU-factors is infeasible for large dimensions n

(Opn
2
q memory, Opn

3
q flops). One possibility are sparse direct solvers, i.e.

find permutation matrices P and Q, such that PAQ “ LU has sparse LU-
factors (cheap forward/ backward substitution and Opnq memory).

Example: We consider the LU-factorization of the following matrix

A “

«
˚ . . . ˚
.
.
.

. . .
˚ ˚

�
“

„
@
@

1

1

@@

⇢ „
@

@@

⇢
.

With the help of permutation matrices P and Q, we can factorize

PAQ “

«
˚ ˚

. . .
.
.
.

˚ . . . ˚

�
“

«
˚
.
.
.

. . .
˚ ˚

� «
˚ . . . ˚

. . .
˚

�
.



4 Chapter I. Introduction

Algorithm 1 Arnoldi method
Input: A P Cnˆn

, b P Cn

Output: Orthonormal basis Qk of (I.2)
1: Set q1 “

b

}b} and Qq :“ rq1s.
2: for j “ 1, 2, . . . do
3: Set z “ Aqj .
4: Set w “ z ´ QjpQ

H

j
zq.

5: Set qj`1 “
w

}w} .
6: Set Qj`1 “ rQj , qj`1s.
7: end for

Finding such P and Q and still ensuring numerical robustness is difficult and
based e.g. on graph theory.

In MATLAB, sparse-direct solvers are found in the "z"-command: x “ Azb or
lupAq-routine. (Never use invpAq!)

Iterative methods

Often an approximation px « x is sufficient. Hence, we generate a sequence
x1, x2, . . . , xk by an iteration, such that

lim
kÑ8

xk “ x “ A
´1

b

and each xk, k • 1 is generated efficiently (only Opnq computations). Of
course, we want xk « x for k ! n.

Idea: Search approximated solution in a low-dimensional subspace Qk Ä Cn,
dimpQkq “ k. Let Qk be given as rangepQkq “ Qk for a matrix Qk P Cnˆk.

A good choice of the subspace is the Krylow-subspace

Qk “ KkpA, bq “ spantb, Ab, . . . , A
k´1

bu. (I.2)

It holds for z P KkpA, bq, that z “ ppAqb for a polynomial of degree k ´ 1
p P ⇧k´1. An orthonormal basis of KkpA, bq can be constructed with the Arnoldi
process presented in Algorithm 1.

The Arnoldi process requires matrix-vector products z “ Aq. These are cheap
for sparse A and therefore feasible for large dimensions.

We find an approximation xk P x0 ` Qk by two common ways:

• Galerkin-approach:
Impose r “ b ´ Axk K rangepQkq ô pQ

H

k
AQkqyk “ Q

H

k
b.

We have to solve a k-dimensional system ñ low costs.



I.2. Eigenvalue problems (EVP) 5

• Minimize the residual:

min
xkPrangepQkq

}b ´ Axk}

in some norm. If xk is not good enough, we expand Qk.

There are many Krylov-subspace methods for linear systems. (Simplification
for A “ A

H: Arnoldi ù Lanczos)

In practice: Convergence acceleration by preconditioning:

Ax “ b ô P
´1

Ax “ P
´1

b

for easily invertible P P Cn,n and P
´1

A "nicer" than A (ù Literature NLA I).

Another very important building block is the numerical solution of eigenvalue
problems.

I.2 Eigenvalue problems (EVP)

For a matrix A P Cn,n we want to find the eigenvectors 0 ‰ x P Cn and the
eigenvalues � P C such that

Ax “ �x.

The set of eigenvalues ⇤pAq “ t�1, . . . ,�nu is called the spectrum of A.

Small, dense problems:

Computing the Jordan-Normal-Form (JNF)

X
´1

AX “ J “ diagpJs1p�1q, . . . , Jskp�kqq, Jsj p�jq :“

»

–
�j 1

. . . 1
�j

fi

fl

to several eigenvalues and eigenvectors is numerically infeasible, unstable
(NLA I).

Theorem I.1 (Schur): For all A P Cnˆn exists a unitary matrix Q P Cn,n

(QH
Q “ I), such that

Q
H
AQ “ R “

»

—–
�1 ˚

. . .
0 �n

fi

�fl

loooooooomoooooooon
Schur form of A



6 Chapter I. Introduction

with �i P ⇤pAq in arbitrary order.

The Schur form can be numerically stable computed in Opn
3
q (NLA I) by the

Francis-QR-algorithm. It is this basis for dense eigenvalue computations. In
MATLAB we use rQ,Rs “ schurpAq. Additionally, the routine eigspAq uses the
Schur form. In general, the columns of Q are no eigenvectors of A, but Qk “

Qp:, 1 : kq spans an A-invariant subspace for all k:

AQk “ QkRk, for a matrix Rk P Ckˆk with ⇤pRkq Ñ ⇤pAq.

But because of the Opn
3
q complexity and Opn

2
q memory, the Schur form is

infeasible for large and sparse matrices A.

Eigenvalue problems defined by large and sparse matrices A can again be
treaded with the Arnoldi-process and projections on the Krylov-subspace
KkpA, bq “ rangepQkq. We obtain the approximated eigenpair
xk “ Qkyk « x, µ « � by using the Galerkin-condition on the residual of
the eigenvalue problem:

rk “ Axk ´ µxk K rangepQkq ô Q
H

k
AQkyk “ µ yk,

which means pµ, ykq are the eigenpairs of the k ˆ k-dimensional eigenvalue
problem for QH

k
AQk. This small eigenvalue problem is solvable by the Francis-

QR-method. This is the basis of the eigspAq routine in MATLAB for computing
a few (! n) eigenpairs of A.

Summary: Solving linear systems and eigenvalue problems is for small or large
and sparse matrices A no problem!


