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Software | Surrogate Modeling for AeRo Data Toolbox 

Applications 

 Surrogate-based shape optimization 
 Uncertainty quantification 
 Robust & inverse design optimization 

 Fusing experimental + CFD data 
 Optimal sensor placement 
 Wind-tunnel corrections and support 

 Accelerating CFD computations 
 Virtual flight testing 
 Rapid loads prediction across the 

flight envelope (and structural 
sizing) 

Key features 

 Design of experiments 
 Adaptive sampling 
 Surrogate Modeling 
 Variable-Fidelity Modeling 
 Reduced Order Modeling 
 Dimensionality reduction 
 CFD interface via FlowSimulator 
 Parallelized 

SMARTy is a modular Python package for rapidly predicting 
aerodynamic data based on high-fidelity CFD 
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Reduced Order Models 

 Linear and nonlinear methods 
 Intrusive and nonintrusive 
 Steady and unsteady flows 
 Subsonic and transonic speeds 

Reduced 
Order Model 

Snapshots 
𝑆𝑆𝑖𝑖(𝑝𝑝𝑖𝑖𝑖, … ) 

Prediction 
𝑉𝑉�(𝑝𝑝𝑖, … ) 

𝛼𝛼 = 0° 

𝛼𝛼 = 2° 

𝛼𝛼 = 6° 

𝜶𝜶 = 𝟒𝟒𝟒 

Software | Surrogate Modeling for AeRo Data Toolbox 

Users and collaborators 

 Industry: Airbus, MBDA 
 Research: DLR, DNW, ARA 
 Academia: diff. EU universities 

MODRED 2013:  
• T. Franz: Nonlinear Reduced Order Modeling for Transonic Flows via Manifold Learning 
• R. Zimmermann: A parametric ROM for the linear frequency domain approach to time-accurate CFD 
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1. Motivation and objectives 

2. Intro to our favorite Reduced-Order Modeling (ROM) methods 

3. Applications: 
 multi-disciplinary optimization (MDO) 

 static aeroelastic predictions 

 loads prediction and structural sizing 

 efficient selection of critical load cases 

 unsteady aerodynamics and maneuvers 

4. Summary & outlook 



4 control 
laws 

50 flight 
conditions 

100 mass 
configs. 

Motivation 
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PERFORMANCES 

Idealized drag coefficient 

Li
ft

 c
oe

ff
ic

ie
nt

 

zb 
yb 

xb 

0b 

0g 

Fg 

Zg Yg 

Xg 
Inertial frame 

Body frame 
Ro 

A 

M 

S 

C 

time 
short period ∆

 p
itc

h 
at

tit
ud

e 

5 maneuvers +  
25 gust lenghts 

O(106) 
simulations 

 From design to certification of an aircraft many aerodynamic data are needed 
– for the entire flight envelope – 

 Aerodynamic data  pressure and shear stress distribution on the aircraft 
surface, from steady and unsteady simulations 



Structural design 
and sizing 

Aerodynamic 
design 

Objectives 
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CFD too expensive to procure 
all the necessary Aero Data  

(in particular in 
multidisciplinary settings 

requiring repeated simulations) 

Solution(𝑝𝑝𝑖,𝑝𝑝2, …)? To reduce the computational 
complexity, ROMs based on 

Hi-Fi CFD should replace (e.g. 
in the MDO) high quality 

models and methods 

CFD / 
Aeroelastic 

Model 
ROM 

Goal: provide predictions of the aerodynamics with lower evaluation time 
and storage than the original CFD model based on high-fidelity CFD data 

(here: real time!) 

ROMs for 
compressible 

flows 

Result! 

MDAO 



 Reduced-order models operate on parameterically generated data (snapshots) 
• surface quantities: pressure and shear stress 𝑐𝑐𝑝𝑝, 𝑐𝑐𝑓𝑓 
• volume quantities: primitive variables 𝜌𝜌, 𝑣𝑣𝑖𝑖, 𝑝𝑝, 𝑇𝑇 

 Parameters can be related to the flow (e.g. angle of attack 𝛼𝛼, Mach number 𝑀𝑀𝑀𝑀) or 
to the geometry 

Reduced-Order Modeling (ROM) 
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Snapshots 
𝑆𝑆𝑖𝑖(𝑝𝑝𝑖𝑖𝑖, … ) 

𝛼𝛼 = 0° 

𝛼𝛼 = 2° 

𝛼𝛼 = 6° 

Prediction 
𝑉𝑉�(𝑝𝑝𝑖, … ) 

𝛼𝛼 = 4° 

Offline Online 

Reduced 
Order Model 

Restricted 
range of validity 

Low-dim. description 
of system dynamics 

Wide range of 
validity 

Full-order model, 
high-fidelity CFD data 

DoE 

(here: real time!) 



Aerodynamic ROMs:- 
POD based 
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4. Interpol./Optimization Step 
Determine POD-ROM coefficients ak 
such that defect of POD solution W(a)  
to governing equations is minimized  

2

),...,(
))((Resmin!

~1

aW
maaa=

3. Order Reduction 
Select      POD components 
with largest information content 

m~
RIC>0.9999 

POD-based Reduced-order Modeling (steady RANS) 
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Requires full 
flow field sol. 



Navier-Stokes ROM 
subsonic 

• Transport a/c config., grid size: 8,898,749 
• 4 Snapshots at α = [-1°,0°,1°,2°] with TAU code  
• Approximation at α = 7° (extrapolation) 

8,000 TAU it. 

By Ralf Zimmermann 
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POD-based Reduced-order Modeling (steady RANS) 

Requires 
surface sol. 



Navier-Stokes ROM 
subsonic 

• Transport a/c config., grid size: 8,898,749 
• 4 Snapshots at α = [-1°,0°,1°,2°] with TAU code  
• Approximation at α = 7° (extrapolation) 

ROM speed-up by factor: 470 

8,000 TAU it. 17 TAU it. 

By Ralf Zimmermann 
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POD-based Reduced-order Modeling (steady RANS) 



Reduced-order Modelling via Isomap 
• Grid: 237373 nodes 
• CFD Code: TAU Euler 

• Latin Hypercube Sampling 
• 25 Snapshots 

Prediction point (M=0.81, α=2.6°) 
Nearest neighbors on solution manifold 𝑀𝑀 = 0.81,α = 2.6° 

POD: all 25 snapshots 
Isomap: 7 neighbors 
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By Thomas Franz 

Euler ROM 
transonic 

Better: adaptive sampling, 
e.g. based on manifold learning 
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R. Zimmermann, T. Franz: On the notion of distance in data-driven manifold 
learning and surrogate modeling, MORML ‘16, Stuttgart 
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1. Motivation and objectives 

2. Intro to our favorite Reduced-Order Modeling (ROM) methods 

3. Applications: 
 multi-disciplinary optimization (MDO) 

 static aeroelastic predictions 

 loads prediction and structural sizing 

 efficient selection of critical load cases 

 unsteady aerodynamics and maneuvers 

4. Summary & outlook 



• Multidisciplinary optimization (MDO) uses optimization methods to solve 
design problems incorporating a number of disciplines 

• Optimum is superior to the design found by optimizing each discipline 
sequentially, since MDO can exploit the interactions between the disciplines 

• Including all disciplines simultaneously significantly increases the complexity of 
the problem 

• Complex multi-disciplinary interactions may occur, cannot be evaluated by  
low-fidelity models 

• High-fidelity CFD  / CFD-CSM “mature”  
but costly in many-query scenarios 

→ make use of parametric  
    aerodynamic / aeroelastic ROMs 
    based on hi-fi CFD 

Why use ROMs for multidisciplinary optimization (MDO) 
based on high-fidelity models? 

DLR.de  •  Chart 17 

Aero-structural optimization 
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Multidisciplinary optimization of transport aircraft 

Wing shape 
optimizer 

Aircraft Configuration 
Topology, Architecture 

and Layout 

a/c 
performance 

Design cases 
(altitude, Mach, load 

factor, payload) 

Mission 
requirements 
and objectives 
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(TAU) 

geometry 

lift/drag 

mass 

load cases 

b/2 

ctip 

croot 

Λ25% 

ROM 
parameters 

ROM 
parameters 

twist 

ROM 
snapshots 

Courtesy: P. Ciampa (DLR) 



Load Case Definitions 
 

• 5 Mass configurations 
− 1: OEM (operational empty mass) 
− 2: MZFM (max. zero fuel mass)  
− 3: MFM (max. fuel mass)  
− 4: MTOM (max. take off mass, max. Fuel)  
− 5: MTOM (max. take off mass, max. Payload)  

 
• 6 Design speeds [CS25] 
• 6 Flight levels (0 – 13.100 m) 

 
• 7 Stationary trim manoeuvers 

− Symmetric (Pull-up / Push-down) 
− Yawing, Rolling  

 
• 40 Gust encounters [CS25.431(a)] 

− 10 gust gradients 
− 4 directions 
 

www.DLR.de  •  Chart 19 

50.400 Load Cases 
(for one a/c configuration!) 

O(107) CFD* sim. 

Full MDO 

*: nowadays, fast low-fidelity methods and  
    corrections are used rather than CFD Courtesy T. Kier, DLR- SR 
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MDO: static aeroelastic loads predictions using ROMs 
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ROM (POD+I, Isomap+I) from 21 Snapshots for 
• a load factor of 2.5g, 
• a payload of 55t and 61t fuel mass 

 
Varying parameters: Mach, altitude 
 

Static aeroelastic loads prediction of the XRF1 aircraft 
 

CFD Model (RANS, 1M grid nodes) 

CFD 
(TAU) 

Structure 
(ANSYS) 

forces 

displacements 

Finite Element Model (2167 Elements) 
(Shells & Beams) 

Process Wall-Time 

ROM Building (1 core) 1 min 

ROM prediction (1 core) 0.02 s 

1 snapshot calculation (48 cores) 60 min 

Load factor: 2.5g 
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h=1000 m, 
Ma=0.75,  

load factor 2.5 g 

Pressure distribution 
visualized on the 
aircraft jig shape  

Static aeroelastic loads prediction of the XRF1 aircraft 
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Static aeroelastic loads prediction of the XRF1 aircraft 
 

h=1000 m, Ma=0.75, 
load factor 2.5 g 
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MDO: static aeroelastic loads predictions using ROMs 
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Aeroelastic structural optimization of the XRF1 aircraft 
 

Goal: a priori identification of the critical load cases for 2 load factors (−1𝑔𝑔, 2.5𝑔𝑔),  
5 mass cases and various altitudes/airspeeds for structural sizing 

 
1.  400 sized aeroelastic snapshots (CFD+CSM) are computed for a discrete set of 

parameters ,1000 m altitude steps (0 - 12000 m) 
   11 critical load cases are identified 
2. a parametric ROM (Mach, altitude) is created 
3. 360 additional predictions for two mass cases are 

computed using the ROM: 
 
 

 

Sizing CFD Structure 

ROMs Sizing 

400 Snapshots 

 Load case def. 

 
 3 additional candidates for critical 

load cases were found 
 Additional candidates for critical load 

cases are assessed by Hi-Fi CFD-
CSM, 1 was found to be critical 360 

predictions 

 ciritical load cases 



Gradient-Based High-Fidelity MDO Chain 
Aero-Structural Optimization 
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• XRF-1 wing-body configuration 
• Optimize the wing for the following objective: 

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑂𝑂𝑂𝑂𝑣𝑣𝑂𝑂 =  𝑖
𝐶𝐶𝑤𝑤
∗ 𝐶𝐶𝐿𝐿
𝐶𝐶𝐷𝐷

, where 𝐶𝐶𝑊𝑊 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶𝐶𝐶𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

 

• Computed points per design iteration:  
• 7 critical load cases (sizing 95% of the wing) (out of 12, a priori identified) 
• 5 performance points; 1 cruise (Ma=0.83, CL=0.5) and 4 points around it 

(Ma±0.02, CL±0.03) 

• Design variables: 
• 360 outer shape design variables (FFD control points) 
• 348 structural thickness variables 

• Constraints: 
• Implicit to optimizer: lift coefficient 
• Explicit to optimizer: pitching moment coefficient, strength, buckling 

 

 

 

 



Gradient-Based High-Fidelity MDO Chain 
Aero-Structural Optimization 
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• Results 
• The optimization converged after 4 optimization cycles (17 design 

iterations,~230 converged CFD-CSM couplings) 
• 80 hours on 96 cores were required to increase the objective by 6% 
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Parametric ROM for loads and sizing in MDO 
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 ROM (POD+I and Isomap+I) from  
100 adaptively sampled snapshots for 
𝑅𝑅𝑂𝑂 = 43.4 ⋅ 106, 𝑀𝑀𝑀𝑀 = 0.83 and target 
𝐶𝐶𝐿𝐿 = 0.5 with TAU S-A (neg) 

 5 FFD twist parameters for the wing 
geometry 

 ROM for geometry variation 

 Predictions point: largest “gap” between 
snapshots in parameter space. 

Process Wall-Time 

Isomap ROM building (1 core) 2 min 

POD ROM building (1core) 0.2 s 

ROM prediction (1 core) 0.02 s 

1 snapshot calculation (24 cores) 70 min 

Parametric ROM for loads and  
sizing in MDO 
 Rigid XRF-1 

784,384 grid points 
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Parametric ROM for loads and  
sizing in MDO 
 

Method Wing mass Difference 

CFD (TAU) ref. 3761.1 kg - 

ROM POD+I 3776.1 kg +0.4% 

ROM Isomap + I 3755.8 kg -0.1% 

Spanwise load 
distribution 

Only one load case used to size the structural model 

XRF-1 wing  
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Wing spar thicknesses 
(optimization regions) 

Parametric ROM for loads and sizing in MDO 
 

Isomap+I 

POD+I 



Outline 
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1. Motivation and objectives 

2. Intro to our favorite Reduced-Order Modeling (ROM) methods 

3. Applications: 
 multi-disciplinary optimization (MDO) 

 static aeroelastic predictions 

 loads prediction and structural sizing 

 efficient selection of critical load cases 

 unsteady aerodynamics and maneuvers 

4. Summary & outlook 



Search for an approximated solution 𝐰𝐰 = [ρ, ρ𝐯𝐯, ρ𝐸𝐸𝐶𝐶, 𝜈𝜈𝐶𝐶] ∈ ℝ𝑁𝑁  

 in the POD subspace 𝐔𝐔𝐶𝐶 ∈ ℝ𝑁𝑁 x 𝐶𝐶 , 𝑟𝑟 ≪ 𝑁𝑁 

 minimizing a the unsteady residual in the L2 norm 

 

𝐰𝐰 ≈�𝑀𝑀𝑖𝑖𝐔𝐔𝑖𝑖
𝐶𝐶

𝑖𝑖=𝑖

+ 𝐰𝐰 = 𝐔𝐔𝐶𝐶𝐚𝐚 + 𝐰𝐰 

𝐰𝐰: mean of the snapshots set 
𝐚𝐚: vector of the unknown coefficients 𝑀𝑀𝑖𝑖 

 N: order of CFD model 
(variables x nodes) 

 r: order of the ROM (i.e. 
number of POD modes) 

𝐑𝐑� ≝ 𝐑𝐑 𝐰𝐰 t + 𝛀𝛀
𝜕𝜕𝐰𝐰 t
𝜕𝜕𝜕

= 𝟎𝟎 ∈ ℝ𝑁𝑁 𝛀𝛀: cell volumes 
Semi-discrete unsteady 
Navier-Stokes Eqs.  

min
𝐚𝐚

∥ 𝐑𝐑� 𝐔𝐔𝐶𝐶𝐚𝐚 + 𝐰𝐰 ∥L2
2  

nonlinear least squares problem 

Nonlinear unsteady LSQ-ROM approach for 
aerodynamic applications 
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ONLINE 

time 

𝐂𝐂L Training output 

Global POD 

Collecting snapshots coming from an unsteady simulation  
 variation in the local effective angle of attack 
 Boundary conditions disturbances 
 Motion (forced or induced) 
 Gust perturbations (here: rigid aircraft, no motion) 

Building the POD subspace 

⋯ ⋯ 

𝐰𝐰 ti  𝐰𝐰 tj  

⋯ 

Flow field output time history 

(Lg, Ag)X 

ROM prediction 

Flow field output time history! 
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𝐑𝐑� ≝ 𝐑𝐑 𝐰𝐰rom tn+𝑖 + 𝛀𝛀
3𝐰𝐰rom tn+𝑖 − 4𝐰𝐰rom tn + 𝐰𝐰rom tn−𝑖

2Δ𝜕  

Per each physical time step, find the POD coefficients minimizing the unsteady residual 
at the time step n+1, by solving a nonlinear least squares problem (L-M algo.): 

𝐰𝐰rom tn+𝑖 ≈ 𝐔𝐔𝐚𝐚+ 𝐰𝐰 

𝐉𝐉T𝐉𝐉 + 𝛌𝛌𝛌𝛌 Δ𝐚𝐚 = −𝐉𝐉T𝐑𝐑� 
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Model order reduction for unsteady CFD 

 N: order of CFD model 
(variables x nodes) 

 r: order of the ROM (i.e. 
number of POD modes) 

𝐉𝐉 ∈ ℝ𝑵𝑵×𝒓𝒓 

𝐚𝐚 ← 𝐚𝐚 + Δ𝐚𝐚 

un
til

 
co

nv
er

ge
nc

e 

𝐉𝐉 is initialized at each time step via finite 
differences, or kept equal to those of the 
previous time step if 𝐉𝐉T𝐑𝐑� < 𝜖𝜖 



𝐑𝐑� ≝ 𝐑𝐑 𝐰𝐰rom tn+𝑖 + 𝛀𝛀
3𝐰𝐰rom tn+𝑖 − 4𝐰𝐰rom tn + 𝐰𝐰rom tn−𝑖

2Δ𝜕  

Per each physical time step, find the POD coefficients minimizing the unsteady residual 
at the time step n+1, by solving a nonlinear least squares problem (L-M algo.): 

𝐰𝐰rom tn+𝑖 ≈ 𝐔𝐔𝐚𝐚+ 𝐰𝐰 

𝐉𝐉T𝐉𝐉 + 𝛌𝛌𝛌𝛌 Δ𝐚𝐚 = −𝐉𝐉T𝐑𝐑� 
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Model order reduction for unsteady CFD 

Broyden’s method for updating 𝐉𝐉 
 
 
 

𝐉𝐉𝑘𝑘+𝑖 = 𝐉𝐉𝑘𝑘 +
∆𝐑𝐑� − 𝐉𝐉𝑘𝑘 Δ𝐚𝐚

Δ𝐚𝐚 2 Δ𝐚𝐚T 

 N: order of CFD model 
(variables x nodes) 

 r: order of the ROM (i.e. 
number of POD modes) 

Updating pseudo-Hessian matrix 𝐀𝐀 ≡ 𝐉𝐉T𝐉𝐉 ∈ ℝ𝒓𝒓×𝒓𝒓 ⇒ 𝒪𝒪 Nr2  
 
 
 
 
 
 

𝐀𝐀𝑘𝑘+𝑖 ≡ 𝐉𝐉𝑘𝑘+𝑖T 𝐉𝐉𝑘𝑘+𝑖

= 𝐀𝐀𝑘𝑘 +  
𝐉𝐉𝑘𝑘T ∆𝐑𝐑� − 𝐀𝐀𝑘𝑘  Δ𝐚𝐚

Δ𝐚𝐚 2 Δ𝐚𝐚T + Δ𝐚𝐚
∆𝐑𝐑�T 𝐉𝐉𝑘𝑘 − Δ𝐚𝐚T𝐀𝐀𝑘𝑘

Δ𝐚𝐚 2

+ Δ𝐚𝐚
∆𝐑𝐑�T∆𝐑𝐑� − ∆𝐑𝐑�T𝐉𝐉𝑘𝑘 Δ𝐚𝐚 − Δ𝐚𝐚T𝐉𝐉𝑘𝑘T ∆𝐑𝐑� + Δ𝐚𝐚T𝐀𝐀𝑘𝑘Δ𝐚𝐚

Δ𝐚𝐚 4 Δ𝐚𝐚T 

⇒ 𝒪𝒪 Nr  

𝐉𝐉 ∈ ℝ𝑵𝑵×𝒓𝒓 

𝐚𝐚 ← 𝐚𝐚 + Δ𝐚𝐚 

un
til
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I. compute the approx. solution 
 
 
 

II. evaluate the unsteady residual 
 
 
 

III. solve the LS problem 
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Model order reduction for unsteady CFD 
Curse of dimensionality in ROMs of nonlinear systems 

𝐑𝐑� 𝐰𝐰 t ≝ 𝐑𝐑 𝐰𝐰 t + 𝛀𝛀𝜕𝜕𝐰𝐰 t
𝜕𝜕t

 ⇒ 𝒪𝒪 N  

𝐰𝐰 t ≈ 𝐔𝐔 𝐚𝐚 t + 𝐰𝐰    ⇒ 𝒪𝒪 Nr   N: order of CFD model 
(variables x nodes) 

 r: order of the ROM (i.e. 
number of POD modes) 

Jacobian Matrix 𝐉𝐉 ∈ ℝ𝑵𝑵×𝒓𝒓 

nonlinear least squares problem 𝑚𝑚𝑂𝑂𝑚𝑚
𝐚𝐚

∥ 𝐑𝐑� 𝐔𝐔𝐚𝐚 + 𝐰𝐰 ∥L2
2  

The computational cost scales linearly with the dimension N of the full order model. 
No significant speedup can be expected when solving the minimum residual ROM. 

𝐉𝐉T𝐉𝐉 + 𝛌𝛌𝛌𝛌 Δ𝐚𝐚 = −𝐉𝐉T𝐑𝐑� ⇒ 𝒪𝒪 Nr  

i. Compute RHS −𝐉𝐉T𝐑𝐑�  
ii. Broyden’s method for updating 𝐉𝐉 
iii. Updating pseudo-Hessian matrix 

𝐀𝐀 ≡ 𝐉𝐉T𝐉𝐉 ∈ ℝ𝒓𝒓×𝒓𝒓 
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Hyper-reduction approaches 

Selecting the subset indices  
 Gappy POD 
 Missing Point Estimation 
 (Discrete) Empirical Interpolation Method 

Complexity reduction by sampling (or compute only a few entries of) the 
nonlinear unsteady residual vector 𝐑𝐑� 

𝐑𝐑� 

𝐑𝐑�� 

𝐑𝐑�∗ 

Reconstruction 
 approximation of the entire 

vector, by interpolation or by 
least-squares projection onto a 
subspace 𝐕𝐕 = U 𝐔𝐔𝑇𝑇P 𝐏𝐏𝑇𝑇U −𝑖𝐔𝐔𝑇𝑇P 
 

Collocation 
 omission of many components 
 non intrusive 

= V 

𝐏𝐏 

mask matrix  

𝐏𝐏T𝐑𝐑� 

U 𝐔𝐔𝑇𝑇P 𝐏𝐏𝑇𝑇U −𝑖𝐔𝐔𝑇𝑇P 𝐏𝐏𝑇𝑇
= 1/𝜎𝜎min 𝐏𝐏𝑇𝑇𝐔𝐔  

Greedy: minimize 

 The complete nonlinear unsteady residual vector 𝐑𝐑� is evaluated, 
 but only a small subset of its entries are used in the minimization process 



Exhaustive greedy MPE for maximizing 𝜎𝜎min 𝐏𝐏𝑠𝑠+𝑖𝑇𝑇 𝐔𝐔  
 
Input:  𝐔𝐔 ∈ ℝ𝑁𝑁×𝐶𝐶: basis of a r-dim subspace,  

𝐉𝐉𝑠𝑠 ∈ ℝ𝑠𝑠×𝑖: index set, 
𝐏𝐏𝑠𝑠 ∈ ℝ𝑁𝑁×𝑠𝑠: mask matrix with s indices, where s ≥ r. 
 

1.  𝜎𝜎opt = 0,  �̅�𝐉s = 1, … ,𝑁𝑁  \ 𝐉𝐉𝑠𝑠 
2.  for  𝑂𝑂 ∈ �̅�𝐉s  do 
3.   𝐏𝐏� = 𝐏𝐏𝑠𝑠, 𝐞𝐞𝑗𝑗 ∈ ℝ𝑁𝑁× 𝑠𝑠+𝟏𝟏  
4.   Compute  𝜎𝜎min 𝐏𝐏�𝑇𝑇𝐔𝐔  
5.   if  𝜎𝜎j > 𝜎𝜎opt  then 
6.    𝜎𝜎opt = 𝜎𝜎j ;  𝑂𝑂opt = 𝑂𝑂 
 
Output: next index 𝐉𝐉𝑠𝑠+𝑖 = 𝐉𝐉𝑠𝑠 ∪ 𝑂𝑂opt , 𝐏𝐏𝑠𝑠+𝑖𝑇𝑇 = 𝐏𝐏𝑠𝑠, 𝐞𝐞𝑗𝑗, opt  
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Exhaustive greedy missing point estimation procedure 

𝐏𝐏𝑠𝑠 𝐉𝐉𝑠𝑠 
2 
5 
7 

𝐞𝐞2 𝐞𝐞5 𝐞𝐞7 

Greedy point selection algorithms minimize an error indicator by sequentially 
looping over all entries  costly ⇒ > 𝒪𝒪 Nr3  

rank-one SVD update 

Singular Value Decomposition 

The penultimate singular value 
bounds the growth of 𝜎𝜎min  
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Accelerated greedy missing point estimation procedure 

R. Zimmermann and K. Willcox. An accelerated greedy missing point estimation procedure.  
SIAM Journal on Scientific Computing, 38(5), A2827–A2850. DOI:10.1137/15M1042899 

. 

Idea: 

 Select the vector 𝐯𝐯𝑗𝑗 leading to the largest growth in the smallest 
eigenvalue 𝜆𝜆min 𝐯𝐯𝑗𝑗  of 𝐌𝐌 ≔ 𝚺𝚺𝑠𝑠2 + 𝐯𝐯𝑗𝑗𝐯𝐯𝑗𝑗𝑇𝑇 ∈ ℝ𝐶𝐶×𝐶𝐶 

 Build fast approximations that sort the set of candidate vectors that induce 
the rank-one modifications ( without solving the modified eigenvalue pb.) 

Rank-one 
SVD update 𝐔𝐔𝑇𝑇𝐏𝐏𝑠𝑠+𝑖𝐏𝐏𝑠𝑠+𝑖𝑇𝑇 𝐔𝐔 = 𝚽𝚽𝒔𝒔 𝚺𝚺𝑠𝑠2 + 𝐯𝐯𝑗𝑗𝐯𝐯𝑗𝑗𝑇𝑇 𝚽𝚽𝑠𝑠

𝑇𝑇 

Symmetric rank-one 
eigenvalue modification 

𝐯𝐯𝑗𝑗 ≔ 𝐞𝐞𝑗𝑗, 𝑠𝑠+𝑖
𝑇𝑇 𝐔𝐔𝚽𝚽𝑠𝑠

𝑇𝑇 

0 < 𝜇𝜇𝑖𝑖 < 1 
 ∑ 𝜇𝜇𝑖𝑖𝐶𝐶

𝑖𝑖=𝑖 = 1 

𝜆𝜆𝑖𝑖 = 𝜎𝜎𝑖𝑖2 + 𝜇𝜇𝑖𝑖 𝐯𝐯 2 

Eigenvalues 

Select the vectors 𝐯𝐯𝑗𝑗, opt that feature the largest absolute values in the 
ultimate component while all other components are comparably small. 



Accelerated greedy MPE with rank-1 SVD update 

Using an (additional) rank-1 SVD update within the iterative 
greedy step, to further accelerate the selection of the grid nodes 

LANN wing test case  
• 0.47 Mi grid nodes 
• 23 POD modes 
• 6 cores 

Computational cost 
• Alg. Ref. [1]: 𝓞𝓞 𝐍𝐍𝐫𝐫𝟐𝟐𝐬𝐬 + 𝐫𝐫 𝐬𝐬𝟑𝟑  
• Rank-1 SVD update: 𝓞𝓞 𝐍𝐍𝐫𝐫𝟐𝟐𝐬𝐬 +  𝐫𝐫𝟑𝟑𝐬𝐬  

 N: order of CFD model (variables x nodes) 
 r: order of the ROM (i.e. number of POD modes) 
 s (> r): number of MPE selected nodes 

[1] R. Zimmermann and K. Willcox. An accelerated greedy 
missing point estimation procedure. SIAM Journal on 

Scientific Computing, 38(5), A2827–A2850. 
DOI:10.1137/15M1042899 

𝐑𝐑� 
𝐑𝐑�∗ 𝐏𝐏T𝐑𝐑� 
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450560 elements 
469213 points 

Unsteady loads prediction for the LANN wing 
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 RANS equations with SA-neg turbulence model 
 V∞ = 271.66 m/s, Mach = 0.82, Re = 7.17 106 

 Chirp training maneuver exciting up to k ≝ 𝜔𝜔𝑠𝑠𝑟𝑟
𝑉𝑉∞

= 0.35 

 Predicted periodic pitching oscillation: 𝛼𝛼 𝜏𝜏 = 2.6° + 0.25 sin(𝐤𝐤 𝜏𝜏) , τ ≝ 𝑉𝑉∞𝐶𝐶
𝑠𝑠𝑟𝑟

 

CFD settings 
 Min residual: 1e-5 
 Max inner iterations: 100 

ROM settings 
 18 POD modes 
 5000 MPE nodes 
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Total number of grid nodes: 469213 

5000 nodes selected by the greedy MPE 

Unsteady loads prediction for the LANN wing 

~1% of the total number of grid nodes 



k=0.3 
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Unsteady loads prediction for the LANN wing 

Online Performances 
CFD  

(10 cores) 

ROM (10 cores) 

w/o MPE with MPE 

Average 
Wall Time 

total 25 h 50 min 2 h 44 min 1 h 29 min 
per time step  ~16 min 1 min 36 s 36 s 
speed-up 1 9.5 26.7 

5000 

Compute snapshots: 4d 10h 40min   
POD ROM building: ~5 min  
Fast greedy MPE: ~6 min 

Offline Performances (10 cores) 



Total number of grid nodes: 3.8 Mi Steady state 

Unsteady ROM prediction assessment for a full aircraft 
 
 RANS equations with SA-neg turbulence model 
 V∞ = 246 m/s, Mach = 0.83, Re = 6.5 106 

 Linear chirp training maneuver exciting up to 𝑘𝑘𝑚𝑚𝑠𝑠𝑚𝑚 = 3: 
 𝛼𝛼 𝜏𝜏 = 2.0164° + 2.3266 sin(𝑘𝑘 𝜏𝜏) 
 with 𝑘𝑘 𝜏𝜏 = 𝑘𝑘𝑚𝑚𝑠𝑠𝑚𝑚

𝑠𝑠𝑟𝑟
𝑉𝑉∞
𝜏𝜏 

 Predicted (1-cos)–like pitching oscillation  
at 𝑘𝑘 = 0.33 
 

k ≝
𝜔𝜔𝑐𝑐𝐶𝐶
𝑉𝑉∞

 τ ≝
𝑉𝑉∞𝑂𝑂
𝑐𝑐𝐶𝐶

 

CFD setting 
• Dual time stepping 
• Min residual: 1e-6 
• Max inner iterations per time step: 5000 
• Physical time steps: 550 
• Linearly distributed time steps 

ROM setting 
Truncation of the POD modes to 99.999% of 
their energy content (~100 modes) 
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Training maneuver 
Chirp pitching oscillation  
up to reduced frequency k=3 

Predicted maneuver 
(1-cos)–like pitching oscillation 

𝑽𝑽∞ = 246 𝑚𝑚/𝑠𝑠 

𝒘𝒘𝑔𝑔 = 10 𝑚𝑚/𝑠𝑠 
∆𝛼𝛼 ≅ 2.3° 

Training @ Mach = 0.83, Re = 6.5*1e6 ROM prediction w/o MPE procedure 

ROM run-time (48 cores): 1.3 h  
Speed-up: 2.3 

Forced Motion 

Unsteady ROM prediction assessment for a full aircraft 
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Grid 
N° nodes: 3.8 Mi 

 100 POD modes 
 48 cores 
 Offline! 

rank-1 SVD update 
Greedy MPE 
N° nodes: 0.19 
Mi  
(5% of total nodes) 

Accelerated greedy MPE with rank-1 SVD update 

𝐑𝐑� 
𝐑𝐑�∗ 𝐏𝐏T𝐑𝐑� 
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The effectiveness of CFD-based Reduced Order Models has been 
demonstrated for: 

o real-time applications 

omulti-disciplinary optimization (MDO) 

 static aeroelastic predictions 

 loads prediction and structural sizing 

 efficient selection of critical load cases 

o unsteady aerodynamics and maneuvers 

 

 
 
 

 
 
 

Summary 
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Outlook 

 Include the greedy MPE selection in the ROM prediction for the full aircraft 
 

 Investigate devide-and-conquer algorithm and coarse-grid residual evaluation as 
an alternative to greedy algorithm 
 

 Apply the nonlinear unsteady least-squares ROM approach to discrete gusts 
 

 What is the best training maneuver? → ROM challenge … 
 

 Investigate alternatives to POD (DMD, isomap, …) for unsteady ROMs 
 

 Consider interpolation-based approaches instead of residual minimization?! 
 
 
 
 

NEVER FORGET THE PHYSICS 
Nathan Kutz, Washington Uni 
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