Otto-Von-Guericke-University-Magdeburg
Department of Mathematics-Institute for Analysis and Numerik
Max-Planck-Institute-Magdeburg
Computational Methods for Systems and Control Theory

Summer Term 2015
Prof. Peter Benner
Dr. Lihong Feng
Dr. M. Ilyas Ahmad

Model Reduction of Dynamical Systems - 5

Task:1 (Solving algebraic Riccati equations via the matrix sign function)

Motivated by balancing-related methods such as LQG balanced truncation, let us consider the algebraic Riccati equation

$$
A^{T} X+X A-X F X+G=0
$$

where $A \in \mathbb{R}^{n \times n}$ and $F=F^{T}, G=G^{T} \in \mathbb{R}^{n \times n}$ are symmetric positive semi-definite matrices and (A, F) is stabilizable. Let $M=\left[\begin{array}{cc}A^{T} & G \\ F & -A\end{array}\right]$ and assume that the matrix sign function of M is partitioned as $\operatorname{sign}(M)=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$. Show that it holds $\left[\begin{array}{c}Z_{11}-I_{n} \\ Z_{21}\end{array}\right] X=-\left[\begin{array}{c}Z_{12} \\ Z_{22}-I_{n}\end{array}\right]$.
Hint: First show that it holds

$$
M=\left[\begin{array}{cc}
I_{n}-X Q & X \\
-Q & I_{n}
\end{array}\right]\left[\begin{array}{cc}
(A-F X)^{T} & 0 \\
0 & -(A-F X)
\end{array}\right]\left[\begin{array}{cc}
I_{n}-X Q & X \\
-Q & I_{n}
\end{array}\right]^{-1},
$$

where Q solves $(A-F X) Q+Q(A-F X)^{T}+F=0$. Then make use of the properties of the matrix sign function.

Task: 2 (The rational Krylov method for the Lyapunov equation)

Consider the Lyapunov equation

$$
A X+X A^{T}+b b^{T}=0
$$

with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$. Assume that a sequence of $m+1$ shift parameters $S=\left\{s_{1}, \ldots, s_{m}, s_{m+1}\right\} \subset \mathbb{C}$ is given and that a projection matrix $V \in \mathbb{R}^{n \times m}$ is constructed according to the following procedure.

```
Algorithm 1 Rational Krylov Method by Ruhe
Require: \(A, b, S\)
Ensure: \(V_{m+1} \in \mathbb{R}^{n \times m+1}, T_{m}=V_{m}^{*} A V_{m} \in \mathbb{R}^{m \times m}, H \in \mathbb{R}^{m+1 \times m}\).
    Compute \(\tilde{v}_{1}=\left(A-s_{1} I\right)^{-1} b\).
    Set \(v_{1}=\tilde{v}_{1} /\left\|\tilde{v}_{1}\right\|\).
    for \(j=2: m+1\) do
        \(r=\left(A-s_{j} I\right)^{-1} v_{j-1}\).
        \(h_{j-1}=V_{j-1}^{*} r\).
        \(r=r-V_{j-1} h_{j-1}\)
        \(h_{j, j-1}=\|r\|\).
        \(v_{j}=r / h_{j, j-1}\).
    end for
    Set \(T_{m}=V_{m}^{*} A V_{m}\).
```

Let $D_{m}=\operatorname{diag}\left(s_{2}, \ldots, s_{m+1}\right) \in \mathbb{R}^{m \times m}$. Show that it holds

$$
T_{m}=\left(I_{m}+H_{m} D_{m}-V_{m}^{*} A v_{m+1} h_{m+1, m} e_{m}^{T}\right) H_{m}^{-1} .
$$

Here, e_{m} denotes the m-th unit vector and H_{m} consists of the first m columns of the matrix H.
Assume now that Y_{m} is a solution of the reduced Lyapunov equation

$$
T_{m} Y_{m}+Y_{m} T_{m}^{T}+V_{m}^{*} b b^{T} V_{m}=0
$$

Show that if $\tilde{v}_{1}=b$, the residual $R_{m}=A V_{m} Y_{m} V_{m}^{*}+V_{m} Y_{m} V_{m}^{*} A^{T}+b b^{T}$ satisfies

$$
\left\|R_{m}\right\|_{F}=\left\|S J S^{T}\right\|_{F}, \quad J=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],
$$

where S is the 3×3 upper triangular matrix in the QR factorization of

$$
U=\left[\begin{array}{lll}
v_{m+1} s_{m+1} & V_{m} Y_{m} H_{m}^{-T} e_{m} h_{m+1, m} & -\left(I-V_{m} V_{m}^{*}\right) A v_{m+1}
\end{array}\right] .
$$

