Otto-von-Guericke Universität Magdeburg Faculty of Mathematics Summer term 2015

Model Reduction for Dynamical Systems

— Lecture 8 —

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de

www.mpi-magdeburg.mpg.de/2909616/mor_ss15

Outline

- Introduction
- 2 Mathematical Basics
- 3 Model Reduction by Projection
- 4 Modal Truncation
- Balanced Truncation
- 6

Moment-Matching

7 Solving Large-Scale Matrix Equations

- Linear Matrix Equations
- Numerical Methods for Solving Lyapunov Equations
- Solving Large-Scale Algebraic Riccati Equations
- Software

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \Longrightarrow$ Lyapunov equation:

 $0 = \mathcal{L}(X) := A^T X + X A + W.$

- $n = 10^3 10^6 \iff 10^6 10^{12}$ unknowns!),
- A has sparse representation (A = −M^{−1}S for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, C \in \mathbb{R}^{p \times n}, p \ll n.$
- Standard (eigenproblem-based) O(n³) methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \implies$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + X A + W.$$

- $n = 10^3 10^6 \iff 10^6 10^{12}$ unknowns!),
- A has sparse representation (A = −M^{−1}S for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) O(n³) methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \implies$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + X A + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12}$ unknowns!),
- A has sparse representation $(A = -M^{-1}S \text{ for FEM})$,
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $O(n^3)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \implies$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + X A + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12}$ unknowns!),
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $O(n^3)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \implies$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + X A + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}),$
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $O(n^3)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

 $0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$

 $G = 0 \implies$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + X A + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}),$
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $O(n^3)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- Ω = [0, 1],
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101.$

Idea: $X = X^T \ge 0 \implies$

$$X = ZZ^{T} = \sum_{k=1}^{n} \lambda_k z_k z_k^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_k z_k z_k^{T}.$$

 \implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!

Solving Large-Scale Matrix Equations

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- Ω = [0, 1],
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101.$

Idea: $X = X^T \ge 0 \implies$

$$X = ZZ^{T} = \sum_{k=1}^{n} \lambda_k z_k z_k^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_k z_k z_k^{T}.$$

 \implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!

•••••••••••••••••••••••••••

Solving Large-Scale Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation

AX + XB = W AXB - X = W

with data $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$, $W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation

Stein equation (discrete Lyapunov equation)

 $AX + XA^T = W$ $AXA^T - X = W$

with data $A \in \mathbb{R}^{n \times n}$, $W = W^T \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Max Planck Institute Magdeburg

Solving Large-Scale Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation

AX + XB = W AXB - X = W

with data $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$, $W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation

Stein equation (discrete Lyapunov equation)

 $AX + XA^T = W$ $AXA^T - X = W$

with data $A \in \mathbb{R}^{n \times n}$, $W = W^T \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Max Planck Institute Magdeburg

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W).$$

Hence,

Sylvester equation has a unique solution

 $M := (I_m \otimes A) + (B^T \otimes I_n) \text{ is invertible.}$ \Leftrightarrow $0 \notin \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$ \Leftrightarrow $\Lambda(A) \cap \Lambda(-B) = \emptyset$

Corollary

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W).$$

Hence,

Sylvester equation has a unique solution

 $M := (I_m \otimes A) + (B^T \otimes I_n)$ is invertible.

 $0 \notin \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$

$$\wedge (A) \cap \wedge (-B) = \emptyset$$

Corollary

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W).$$

Hence,

Sylvester equation has a unique solution

 \longleftrightarrow $M := (I_m \otimes A) + (B^T \otimes I_n) \text{ is invertible.}$ \longleftrightarrow $0 \notin \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$ \longleftrightarrow $\Lambda(A) \cap \Lambda(-B) = \emptyset$

Corollary

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W).$$

Hence,

Sylvester equation has a unique solution

 \longleftrightarrow $M := (I_m \otimes A) + (B^T \otimes I_n) \text{ is invertible.}$ \longleftrightarrow $0 \notin \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$ \longleftrightarrow $\Lambda(A) \cap \Lambda(-B) = \emptyset$

Corollary

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W).$$

Hence,

Sylvester equation has a unique solution

 \longleftrightarrow $M := (I_m \otimes A) + (B^T \otimes I_n) \text{ is invertible.}$ \longleftrightarrow $0 \notin \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$ \longleftrightarrow $\Lambda(A) \cap \Lambda(-B) = \emptyset$

Corollary

Linear Matrix Equations Complexity Issues

Solving the Sylvester equation

$$AX + XB = W$$

via the equivalent linear system of equations

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W)$$

requires

- LU factorization of $nm \times nm$ matrix; for $n \approx m$, complexity is $\frac{2}{3}n^6$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^4 data for X.

Example

 $n = m = 1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6 cores, 3.46 GHz \rightarrow 83.2 GFLOP peak) would take > 94 DAYS and 7.3 TB of memory!

Linear Matrix Equations Complexity Issues

Solving the Sylvester equation

$$AX + XB = W$$

via the equivalent linear system of equations

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec} (X) = \operatorname{vec} (W)$$

requires

- LU factorization of $nm \times nm$ matrix; for $n \approx m$, complexity is $\frac{2}{3}n^6$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^4 data for X.

Example

 $n = m = 1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6 cores, 3.46 GHz \rightarrow 83.2 GFLOP peak) would take > 94 DAYS and 7.3 TB of memory!

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap); Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (lyapchol).

All based on the fact that if A, B^T are in Schur form, then

 $M = (I_m \otimes A) + (B^T \otimes I_n)$

- is block-upper triangular. Hence, solve Mx = b by back-substitution.
 - Clever implementation of back-substitution process requires nm(n+m) flops.
 - For Sylvester eqns., *B* in Hessenberg form is enough (~→ Hessenberg-Schur method).
 - Hammarling's method computes Cholesky factor *Y* of *X* directly.
 - All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (1yap); Hessenberg-Schur method for Sylvester equations (1yap); Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (1yapchol).

All based on the fact that if A, B^T are in Schur form, then

$$M = (I_m \otimes A) + (B^T \otimes I_n)$$

is block-upper triangular. Hence, solve Mx = b by back-substitution.

- Clever implementation of back-substitution process requires nm(n+m) flops.
- For Sylvester eqns., *B* in Hessenberg form is enough (~→ Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor *Y* of *X* directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (1yap); Hessenberg-Schur method for Sylvester equations (1yap); Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (1yapchol).

All based on the fact that if A, B^T are in Schur form, then

$$M = (I_m \otimes A) + (B^T \otimes I_n)$$

- is block-upper triangular. Hence, solve Mx = b by back-substitution.
 - Clever implementation of back-substitution process requires nm(n + m) flops.
 - For Sylvester eqns., B in Hessenberg form is enough (→ Hessenberg-Schur method).
 - Hammarling's method computes Cholesky factor Y of X directly.
 - All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S \begin{bmatrix} J^+ & 0 \\ 0 & J^- \end{bmatrix} S^{-1}$$

the matrix sign function is

$$\operatorname{sign}(Z) := S \left[\begin{array}{cc} I_k & 0 \\ 0 & -I_{n-k} \end{array} \right] S^{-1}.$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S \left[\begin{array}{cc} J^+ & 0 \\ 0 & J^- \end{array} \right] S^{-1}$$

the matrix sign function is

$$\operatorname{sign}(Z) := S \left[\begin{array}{cc} I_k & 0 \\ 0 & -I_{n-k} \end{array} \right] S^{-1}.$$

Lemma

Let $T \in \mathbb{R}^{n \times n}$ be nonsingular and Z as before, then

$$\operatorname{sign}\left(TZT^{-1}\right) = T\operatorname{sign}\left(Z\right)T^{-1}$$

Max Planck Institute Magdeburg

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Computation of sign (Z)

 $\operatorname{sign}(Z)$ is root of $I_n \Longrightarrow$ use Newton's method to compute it:

$$Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(c_j Z_j + \frac{1}{c_j} Z_j^{-1} \right), \qquad j = 1, 2, \dots$$

$$\implies \quad \mathrm{sign}\,(Z) = \lim_{j \to \infty} Z_j.$$

 $c_{\rm j}>0$ is scaling parameter for convergence acceleration and rounding error minimization, e.g.

$$c_j = \sqrt{\frac{\|Z_j^{-1}\|_F}{\|Z_j\|_F}},$$

based on "equilibrating" the norms of the two summands [HIGHAM '86].

Key observation:

If $X \in \mathbb{R}^{n \times n}$ is a solution of $AX + XA^T + W = 0$, then

$$\underbrace{\begin{bmatrix} I_n & -X \\ 0 & I_n \end{bmatrix}}_{=T^{-1}} \underbrace{\begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}}_{=:H} \underbrace{\begin{bmatrix} I_n & X \\ 0 & I_n \end{bmatrix}}_{=:T} = \begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}.$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$\operatorname{sign}(H) = \operatorname{sign}\left(T\begin{bmatrix}A & 0\\ 0 & -A^{T}\end{bmatrix}T^{-1}\right) = T\operatorname{sign}\left(\begin{bmatrix}A & 0\\ 0 & -A^{T}\end{bmatrix}\right)T^{-1}$$
$$= \begin{bmatrix}-I_{n} & 2X\\ 0 & I_{n}\end{bmatrix}.$$

Key observation:

If $X \in \mathbb{R}^{n \times n}$ is a solution of $AX + XA^T + W = 0$, then

$$\underbrace{\begin{bmatrix} I_n & -X \\ 0 & I_n \end{bmatrix}}_{=T^{-1}} \underbrace{\begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}}_{=:H} \underbrace{\begin{bmatrix} I_n & X \\ 0 & I_n \end{bmatrix}}_{=:T} = \begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}.$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$\operatorname{sign}(H) = \operatorname{sign}\left(T\begin{bmatrix}A & 0\\ 0 & -A^{T}\end{bmatrix}T^{-1}\right) = T\operatorname{sign}\left(\begin{bmatrix}A & 0\\ 0 & -A^{T}\end{bmatrix}\right)T^{-1}$$
$$= \begin{bmatrix}-I_{n} & 2X\\ 0 & I_{n}\end{bmatrix}.$$

Apply sign function iteration
$$Z \leftarrow \frac{1}{2}(Z + Z^{-1})$$
 to $H = \begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}$:

$$H + H^{-1} = \begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix} + \begin{bmatrix} A^{-1} & A^{-1}WA^{-T} \\ 0 & -A^{-T} \end{bmatrix}$$

 \implies Sign function iteration for Lyapunov equation:

$$\begin{array}{ll} A_0 \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2} \left(A_j + A_j^{-1} \right), \\ W_0 \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right), \end{array} \qquad j = 0, 1, 2, \dots$$

Define $A_{\infty} := \lim_{j \to \infty} A_j$, $W_{\infty} := \lim_{j \to \infty} W_j$.

Theorem

If A is Hurwitz, then

$$A_{\infty} = -I_n$$
 and $X = \frac{1}{2}W_{\infty}$.

Max Planck Institute Magdeburg

Recall sign function iteration for $AX + XA^T + W = 0$:

$$\begin{array}{ll} \mathcal{A}_0 \leftarrow \mathcal{A}, & \mathcal{A}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{A}_j + \mathcal{A}_j^{-1} \right), \\ \mathcal{W}_0 \leftarrow \mathcal{G}, & \mathcal{W}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{W}_j + \mathcal{A}_j^{-1} \mathcal{W}_j \mathcal{A}_j^{-T} \right), \end{array} \qquad j = 0, 1, 2, \dots.$$

Now consider the second iteration for $W = BB^T$, starting with $W_0 = BB^T =: B_0 B_0^T$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right)$$

$$= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T$$

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1}B_j \end{bmatrix}$$

with
$$S := \frac{1}{\sqrt{2}} \lim_{j \to \infty} B_j$$
 and $X = SS^T$.

Recall sign function iteration for $AX + XA^T + W = 0$:

$$\begin{array}{ll} \mathcal{A}_0 \leftarrow \mathcal{A}, & \mathcal{A}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{A}_j + \mathcal{A}_j^{-1} \right), \\ \mathcal{W}_0 \leftarrow \mathcal{G}, & \mathcal{W}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{W}_j + \mathcal{A}_j^{-1} \mathcal{W}_j \mathcal{A}_j^{-T} \right), \end{array} \qquad j = 0, 1, 2, \dots .$$

Now consider the second iteration for $W = BB^{T}$, starting with $W_0 = BB^{T} =: B_0 B_0^{T}$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right)$$

$$= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T$$

$$B_{j+1} \leftarrow rac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1}B_j \end{bmatrix}$$

with
$$S := \frac{1}{\sqrt{2}} \lim_{j \to \infty} B_j$$
 and $X = SS^T$.

Recall sign function iteration for $AX + XA^T + W = 0$:

$$\begin{array}{ll} \mathcal{A}_0 \leftarrow \mathcal{A}, & \mathcal{A}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{A}_j + \mathcal{A}_j^{-1} \right), \\ \mathcal{W}_0 \leftarrow \mathcal{G}, & \mathcal{W}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{W}_j + \mathcal{A}_j^{-1} \mathcal{W}_j \mathcal{A}_j^{-T} \right), \end{array} \qquad j = 0, 1, 2, \dots.$$

Now consider the second iteration for $W = BB^{T}$, starting with $W_0 = BB^{T} =: B_0 B_0^{T}$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right)$$

= $\frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T .$

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1}B_j \end{bmatrix}$$

with
$$S := \frac{1}{\sqrt{2}} \lim_{j \to \infty} B_j$$
 and $X = SS^T$.

Recall sign function iteration for $AX + XA^T + W = 0$:

$$\begin{array}{ll} \mathcal{A}_0 \leftarrow \mathcal{A}, & \mathcal{A}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{A}_j + \mathcal{A}_j^{-1} \right), \\ \mathcal{W}_0 \leftarrow \mathcal{G}, & \mathcal{W}_{j+1} \leftarrow \frac{1}{2} \left(\mathcal{W}_j + \mathcal{A}_j^{-1} \mathcal{W}_j \mathcal{A}_j^{-T} \right), \end{array} \qquad j = 0, 1, 2, \dots.$$

Now consider the second iteration for $W = BB^{T}$, starting with $W_0 = BB^{T} =: B_0 B_0^{T}$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right)$$

$$= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T.$$

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1}B_j \end{bmatrix}$$

with
$$S := \frac{1}{\sqrt{2}} \lim_{j \to \infty} B_j$$
 and $X = SS^T$.

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form [B./Quintana-Ortí '97]

Factored sign function iteration for $A(SS^{T}) + (SS^{T})A^{T} + BB^{T} = 0$

$$\begin{array}{ll} A_0 \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2} \left(A_j + A_j^{-1} \right), \\ B_0 \leftarrow B, & B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \left[B_j & A_j^{-1} B_j \right], \end{array} \qquad j = 0, 1, 2, \dots$$

Remarks:

• To get both Gramians, run in parallel

$$\mathcal{C}_{j+1} \leftarrow rac{1}{\sqrt{2}} egin{bmatrix} \mathcal{C}_{j} \ \mathcal{C}_{j} \mathcal{A}_{j}^{-1} \end{bmatrix}.$$

- To avoid growth in numbers of columns of B_j (or rows of C_j): column compression by RRLQ or truncated SVD.
- Several options to incorporate scaling, e.g., scale "A"-iteration only.
- Simple stopping cirterion: $||A_j + I_n||_F \leq tol$.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider Au = s where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$. ADI Iteration Idea: Decompose A = H + V with $H, V \in \mathbb{R}^{n \times n}$ such that

$$(H + pI)v = r$$
$$(V + pI)w = t$$

can be solved easily/efficiently.

ADI Iteration

If $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots$ such that

$$u_{0} = 0$$

(H + p_{k}l)u_{k-\frac{1}{2}} = (p_{k}l - V)u_{k-1} + s
(V + p_{k}l)u_{k} = (p_{k}l - H)u_{k-\frac{1}{2}} + s

converges to $u \in \mathbb{R}^n$ solving Au = s.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider Au = s where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$. ADI Iteration Idea: Decompose A = H + V with $H, V \in \mathbb{R}^{n \times n}$ such that

$$(H + pI)v = r$$
$$(V + pI)w = t$$

can be solved easily/efficiently.

ADI Iteration

If $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots$ such that

$$u_{0} = 0$$

(H + p_{k}l)u_{k-\frac{1}{2}} = (p_{k}l - V)u_{k-1} + s
(V + p_{k}l)u_{k} = (p_{k}l - H)u_{k-\frac{1}{2}} + s

converges to $u \in \mathbb{R}^n$ solving Au = s.

Numerical Methods for Solving Lyapunov Equations

The Lyapunov operator

$$\mathcal{L}: P \mapsto AX + XA^T$$

can be decomposed into the linear operators

 $\mathcal{L}_H: X \mapsto AX, \qquad \mathcal{L}_V: X \mapsto XA^T.$

In analogy to the standard ADI method we find the

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

Wachspress '95]

For $k = 1, \ldots, k_{\max}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T - p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \ldots, k_{max}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

 $\ldots \rightsquigarrow$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

For $k = 1, \ldots, k_{\max}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T - p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \ldots, k_{max}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

 $\ldots \rightsquigarrow$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03'

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

For $k = 1, \ldots, k_{\max}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T - p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \ldots, k_{max}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

... ~> low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

Solving Large-Scale Matrix Equations Numerical Methods for Solving Lyapunov Equations

$$Z_{k} = \left[\sqrt{-2p_{k}}(A + p_{k}I)^{-1}B, \ (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}\right]$$

[PENZL '00]

Observing that $(A - p_i I)$, $(A + p_k I)^{-1}$ commute, we rewrite $Z_{k_{\max}}$ as

$$Z_{k_{\max}} = [z_{k_{\max}}, P_{k_{\max}-1}z_{k_{\max}}, P_{k_{\max}-2}(P_{k_{\max}-1}z_{k_{\max}}), \dots, P_1(P_2 \cdots P_{k_{\max}-1}z_{k_{\max}})],$$

[LI/WHITE '02]

where

$$z_{k_{\max}} = \sqrt{-2p_{k_{\max}}}(A + p_{k_{\max}}I)^{-1}B$$

and

$$P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[I - (p_i + p_{i+1})(A + p_i I)^{-1} \right].$$

Solving Large-Scale Matrix Equations Numerical Methods for Solving Lyapunov Equations

$$Z_{k} = \left[\sqrt{-2p_{k}}(A + p_{k}I)^{-1}B, \ (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}\right]$$

[PENZL '00]

Observing that
$$(A - p_i I)$$
, $(A + p_k I)^{-1}$ commute, we rewrite $Z_{k_{\max}}$ as

$$Z_{k_{\max}} = [z_{k_{\max}}, P_{k_{\max}-1}z_{k_{\max}}, P_{k_{\max}-2}(P_{k_{\max}-1}z_{k_{\max}}), \dots, P_1(P_2 \cdots P_{k_{\max}-1}z_{k_{\max}})],$$

[LI/WHITE '02]

where

$$z_{k_{\max}} = \sqrt{-2p_{k_{\max}}}(A + p_{k_{\max}}I)^{-1}B$$

and

$$P_i := rac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[I - (p_i + p_{i+1})(A + p_i I)^{-1}
ight].$$

Numerical Methods for Solving Lyapunov Equations Lyapunov equation $0 = AX + XA^T + BB^T$.

Algorithm [Penzl '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'08]

$$V_1 \leftarrow \sqrt{-2\operatorname{re} p_1}(A+p_1I)^{-1}B, \quad Z_1 \leftarrow V_1$$

FOR k = 2, 3, ...

$$V_{k} \leftarrow \sqrt{\frac{\operatorname{re} \rho_{k}}{\operatorname{re} \rho_{k-1}}} \left(V_{k-1} - (\rho_{k} + \overline{\rho_{k-1}})(A + \rho_{k}I)^{-1}V_{k-1} \right)$$
$$Z_{k} \leftarrow \left[Z_{k-1} \quad V_{k} \right]$$
$$Z_{k} \leftarrow \operatorname{rrlq}(Z_{k}, \tau) \qquad \text{column compression}$$

At convergence, $Z_{k_{\max}} Z_{k_{\max}}^T \approx X$, where (without column compression)

$$Z_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \mathbb{C}^{n \times m} \end{bmatrix}$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Methods for Solving Lyapunov Equations Lyapunov equation $0 = AX + XA^T + BB^T$.

Algorithm [Penzl '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'08]

$$V_1 \leftarrow \sqrt{-2 \operatorname{re} p_1} (A + p_1 I)^{-1} B, \qquad Z_1 \leftarrow V_1$$

FOR k = 2, 3, ...

$$V_{k} \leftarrow \sqrt{\frac{\operatorname{re} p_{k}}{\operatorname{re} p_{k-1}}} \left(V_{k-1} - (p_{k} + \overline{p_{k-1}})(A + p_{k}I)^{-1}V_{k-1} \right)$$
$$Z_{k} \leftarrow \left[Z_{k-1} \quad V_{k} \right]$$
$$Z_{k} \leftarrow \operatorname{rrlq}(Z_{k}, \tau) \qquad \text{column compression}$$

At convergence, $Z_{k_{\text{max}}} Z_{k_{\text{max}}}^{T} \approx X$, where (without column compression)

$$Z_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Results for ADI Optimal Cooling of Steel Profiles

 Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$

$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7$$

$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_7.$$

$$\implies m = 7, q = 6.$$

- FEM Discretization, different models for initial mesh (n = 371),
 1, 2, 3, 4 steps of mesh refinement ⇒
 - n = 1357, 5177, 20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, SAAK 2003.

Numerical Results for ADI Optimal Cooling of Steel Profiles

• Solve dual Lyapunov equations needed for balanced truncation, i.e.,

 $APM^{T} + MPA^{T} + BB^{T} = 0, \quad A^{T}QM + M^{T}QA + C^{T}C = 0,$

for n = 79,841.

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- No factorization of mass matrix required.
- Computations done on Core2Duo at 2.8GHz with 3GB RAM and 32Bit-MATLAB.

Numerical Results for ADI Scaling / Mesh Independence

Computations by Martin Köhler '10

- A ∈ ℝ^{n×n} ≡ FDM matrix for 2D heat equation on [0, 1]² (LYAPACK benchmark demo_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Numerical Results for ADI Scaling / Mesh Independence

Computations by Martin Köhler '10

- A ∈ ℝ^{n×n} ≡ FDM matrix for 2D heat equation on [0, 1]² (LYAPACK benchmark demo_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

n	$M.E.S.S.^{+}(C)$	LyaPack	M.E.S.S. (MATLAB)
100	0.023	0.124	0.158
625	0.042	0.104	0.227
2,500	0.159	0.702	0.989
10,000	0.965	6.22	5.644
40,000	11.09	71.48	34.55
90,000	34.67	418.5	90.49
160,000	109.3	out of memory	219.9
250,000	193.7	out of memory	403.8
562,500	930.1	out of memory	1216.7
1,000,000	2220.0	out of memory	2428.6

CPU Times

Numerical Results for ADI Scaling / Mesh Independence

Computations by Martin Köhler '10

- A ∈ ℝ^{n×n} ≡ FDM matrix for 2D heat equation on [0, 1]² (LYAPACK benchmark demo_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- Compute orthonormal basis range (Z), Z ∈ ℝ^{n×r}, for subspace Z ⊂ ℝⁿ, dim Z = r.
- **③** Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$.
- Use $X \approx Z \hat{X} Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

● Rational Krylov [DRUSKIN/SIMONCINI '11] (~> exercises).

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- Compute orthonormal basis range (Z), Z ∈ ℝ^{n×r}, for subspace Z ⊂ ℝⁿ, dim Z = r.
- **③** Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$.
- Use $X \approx Z \hat{X} Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

• Rational Krylov [DRUSKIN/SIMONCINI '11] (~> exercises).

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- Compute orthonormal basis range (Z), Z ∈ ℝ^{n×r}, for subspace Z ⊂ ℝⁿ, dim Z = r.
- **③** Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$.
- Use $X \approx Z \hat{X} Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

• Rational Krylov [DRUSKIN/SIMONCINI '11] (~~ exercises).

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- Compute orthonormal basis range (Z), Z ∈ ℝ^{n×r}, for subspace Z ⊂ ℝⁿ, dim Z = r.
- **③** Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$.
- Use $X \approx Z \hat{X} Z^T$.

Examples:

• ADI subspace [B./R.-C. LI/TRUHAR '08]:

$$\mathcal{Z} = \operatorname{colspan} \left[\begin{array}{cc} V_1, & \dots, & V_r \end{array} \right].$$

Note:

- ADI subspace is rational Krylov subspace [J.-R. LI/WHITE '02].
- Similar approach: ADI-preconditioned global Arnoldi method [JBILOU '08].

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20, 209, m = 7, q = 6.

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20, 209, m = 7, q = 6.

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79,841.

M.E.S.S. w/o Galerkin projection and column compression

M.E.S.S. with Galerkin projection and column compression

Solving Large-Scale Matrix Equations Numerical example for BT: Optimal Cooling of Steel Profiles

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

Solving Large-Scale Matrix Equations Numerical example for BT: Optimal Cooling of Steel Profiles

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

- BT model computed using M.E.S.S. in MATLAB,
- dualcore, computation time: <10 min.

Solving Large-Scale Matrix Equations Numerical example for BT: Microgyroscope (Butterfly Gyro)

• FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)

 \rightsquigarrow n = 34,722, m = 1, q = 12.

• Reduced model computed using SPARED, r = 30.

00000000000000000000000

Solving Large-Scale Matrix Equations Numerical example for BT: Microgyroscope (Butterfly Gyro)

• FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)

 \rightsquigarrow n = 34,722, m = 1, q = 12.

• Reduced model computed using SPARED, r = 30.

00000000000000000000000

Solving Large-Scale Matrix Equations Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 - \rightsquigarrow n = 34,722, m = 1, q = 12.
- Reduced model computed using SPARED, r = 30.

Solving Large-Scale Algebraic Riccati Equations Theory [Lancaster/Rodman '95]

Theorem

Consider the (continuous-time) algebraic Riccati equation (ARE)

$$0 = \mathcal{R}(X) = C^{\mathsf{T}}C + A^{\mathsf{T}}X + XA - XBB^{\mathsf{T}}X,$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{q \times n}$, (A, B) stabilizable, (A, C) detectable. Then:

(a) There exists a unique stabilizing $X_* \in \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$, i.e., $\Lambda(A - BB^T X_*) \in \mathbb{C}^-$.

(b)
$$X_* = X_*^T \ge 0$$
 and $X_* \ge X$ for all $X \in \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$

(c) If (A, C) observable, then $X_* > 0$.

(d) span $\left\{ \begin{bmatrix} I_n \\ -X_* \end{bmatrix} \right\}$ is the unique invariant subspace of the Hamiltonian matrix

$$H = \begin{bmatrix} A & BB^T \\ C^T C & -A^T \end{bmatrix}$$

corresponding to $\Lambda(H) \cap \mathbb{C}^-$.

Solving Large-Scale Algebraic Riccati Equations Numerical Methods [Bini,

[Bini/Iannazzo/Meini '12]

Numerical Methods (incomplete list)

- Invariant subspace methods (~> eigenproblem for Hamiltonian matrix):
 - Schur vector method (care) [LAUB '79]
 - Hamiltonian SR algorithm [BUNSE-GERSTNER/MEHRMANN '86]
 - Symplectic URV-based method

[B./Mehrmann/Xu '97/'98, Chu/Liu/Mehrmann '07]

- Spectral projection methods
 - Sign function method
 - Disk function method

[Roberts '71, Byers '87] [BAI/Demmel/Gu '94, B. '97]

(rational, global) Krylov subspace techniques [JAIMOUKHA/KASENALLY '94, JBILOU '03/'06, HEYOUNI/JBILOU '09]

- Newton's method
 - Kleinman iteration
 - Line search acceleration
 - Newton-ADI
 - Inexact Newton

[Kleinman '68] [B./Byers '98] [B./J.-R. Li/Penzl '99/'08] [Feitzinger/Hylla/Sachs '09]

Solving Large-Scale Algebraic Riccati Equations Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

• Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA - XBB^T X$.

• Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}'_X: Z \to (A - BB^T X)^T Z + Z(A - BB^T X).$$

• Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

Solve the Lyapunov equation $A_j^T N_j + N_j A_j = -\mathcal{R}(X_j).$

$$I X_{j+1} \leftarrow X_j + t_j N_j.$$

Solving Large-Scale Algebraic Riccati Equations Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

• Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA - XBB^T X.$

• Frechét derivative of $\mathcal{R}(X)$ at X:

 $\mathcal{R}'_X: Z \to (A - BB^T X)^T Z + Z(A - BB^T X).$

• Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

Solve the Lyapunov equation $A_j^T N_j + N_j A_j = -\mathcal{R}(X_j).$

Solving Large-Scale Algebraic Riccati Equations Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

• Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA - XBB^T X.$

• Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}'_X: Z \to (A - BB^T X)^T Z + Z(A - BB^T X).$$

Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}_{X_j}^{'}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

Solve the Lyapunov equation $A_j^T N_j + N_j A_j = -\mathcal{R}(X_j).$

$$I X_{j+1} \leftarrow X_j + t_j N_j.$$

Solving Large-Scale Algebraic Riccati Equations Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

• Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA - XBB^T X.$

• Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}'_X: Z \to (A - BB^T X)^T Z + Z(A - BB^T X).$$

• Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

$$A_j \leftarrow A - BB^T X_j =: A - BK_j .$$

Solve the Lyapunov equation $A_j^T N_j + N_j A_j = -\mathcal{R}(X_j).$

$$X_{j+1} \leftarrow X_j + t_j N_j.$$

Newton's Method for AREs Properties and Implementation

• Convergence for K_0 stabilizing:

•
$$A_j = A - BK_j = A - BB^T X_j$$
 is stable $\forall j \ge 0$.

- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_j:

$$A_{j} = A - B \cdot K_{j}$$
$$= sparse - m \cdot constants$$

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}$$

• BUT: $X = X^T \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1)/2$ unknowns!

Newton's Method for AREs Properties and Implementation

• Convergence for K_0 stabilizing:

•
$$A_j = A - BK_j = A - BB^T X_j$$
 is stable $\forall j \ge 0$.

- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_j:

$$A_j = A - B \cdot K_j$$

= sparse - m · ____

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}$$

• BUT: $X = X^T \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1)/2$ unknowns!

Newton's Method for AREs Properties and Implementation

• Convergence for K_0 stabilizing:

•
$$A_j = A - BK_j = A - BB^T X_j$$
 is stable $\forall j \ge 0$.

•
$$\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$$
 (monotonically).

- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_j:

$$A_j = A - B \cdot K_j$$

= sparse - m · ____

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}$$

• BUT: $X = X^T \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1)/2$ unknowns!

Newton's Method for AREs Properties and Implementation

• Convergence for K_0 stabilizing:

•
$$A_j = A - BK_j = A - BB^T X_j$$
 is stable $\forall j \ge 0$.

•
$$\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$$
 (monotonically).

- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_j:

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}$$

• BUT: $X = X^T \in \mathbb{R}^{n \times n} \implies n(n+1)/2$ unknowns!

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

Factored Newton Iteration [B./LI/PENZL 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_j .

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

Factored Newton Iteration [B./LI/PENZL 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_j .
Low-Rank Newton-ADI for AREs Feedback Iteration

Optimal feedback

$$K_* = B^T X_* = B^T Z_* Z_*^T$$

can be computed by direct feedback iteration:

• *j*th Newton iteration:

$$K_j = B^T Z_j Z_j^T = \sum_{k=1}^{k_{\max}} (B^T V_{j,k}) V_{j,k}^T \xrightarrow{j \to \infty} K_* = B^T Z_* Z_*^T$$

 K_j can be updated in ADI iteration, no need to even form Z_j, need only fixed workspace for K_j ∈ ℝ^{m×n}!

Related to earlier work by [BANKS/ITO 1991].

ntroduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Galerkin-Newton-ADI

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [JAIMOUKHA/KASENALLY '94, JBILOU '06, HEYOUNI/JBILOU '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate.
- Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations → fix ADI parameters for all Newton iterations.

Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Galerkin-Newton-ADI

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [JAIMOUKHA/KASENALLY '94, JBILOU '06, HEYOUNI/JBILOU '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate.
- Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations → fix ADI parameters for all Newton iterations.

Numerical Results LQR Problem for 2D Geometry

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- $\bullet\,$ FD discretization on uniform 150 $\times\,$ 150 grid.
- n = 22.500, m = p = 1, 10 shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI					
step	rel. change	rel. residual	ADI		
1	1	9.99e-01	200		
2	9.99e-01	3.41e+01	23		
3	5.25e-01	6.37e+00	20		
4	5.37e-01	1.52e+00	20		
5	7.03e-01	2.64e-01	23		
6	5.57e-01	1.56e-02	23		
7	6.59e-02	6.30e-05	23		
8	4.02e-04	9.68e-10	23		
9	8.45e-09	1.09e-11	23		
10	1.52e–14	1.09e-11	23		
	CPU time:	76.9 sec.			

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI			Newton-Galerkin-ADI					
step	rel. change	rel. residual	ADI		step	rel. change	rel. residual	ADI
1	1	9.99e-01	200		1	1	3.56e-04	20
2	9.99e-01	3.41e+01	23		2	5.25e-01	6.37e+00	10
3	5.25e-01	6.37e+00	20		3	5.37e-01	1.52e+00	6
4	5.37e-01	1.52e+00	20		4	7.03e-01	2.64e-01	10
5	7.03e-01	2.64e-01	23		5	5.57e-01	1.57e-02	10
6	5.57e-01	1.56e-02	23		6	6.59e-02	6.30e-05	10
7	6.59e-02	6.30e-05	23		7	4.03e-04	9.79e-10	10
8	4.02e-04	9.68e-10	23		8	8.45e-09	1.43e-15	10
9	8.45e-09	1.09e-11	23				I	
10	1.52e-14	1.09e-11	23					
	CPU time:	76.9 sec.		ļ		CPU time:	38.0 sec.	

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI					
step	rel. change	rel. residual	ADI		
1	1	9.99e-01	200		
2	9.99e-01	3.56e+01	60		
3	3.11e-01	3.72e+00	39		
4	2.88e-01	9.62e-01	40		
5	3.41e-01	1.68e-01	45		
6	1.22e-01	5.25e-03	42		
7	3.88e-03	2.96e-06	47		
8	2.30e-06	6.09e-13	47		
	CPU time:	185.9 sec.			

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI			Newton-Galerkin-ADI					
step	rel. change	rel. residual	ADI		step	rel. change	rel. residual	ADI it.
1	1	9.99e-01	200		1	1	1.78e-02	35
2	9.99e-01	3.56e+01	60		2	3.11e-01	3.72e+00	15
3	3.11e-01	3.72e+00	39		3	2.88e-01	9.62e-01	20
4	2.88e-01	9.62e-01	40		4	3.41e-01	1.68e-01	15
5	3.41e-01	1.68e-01	45		5	1.22e-01	5.25e-03	20
6	1.22e-01	5.25e-03	42		6	3.89e-03	2.96e-06	15
7	3.88e-03	2.96e-06	47		7	2.30e-06	6.14e-13	20
8	2.30e-06	6.09e-13	47					
	CPU time:	185.9 sec.		ļ.		CPU time:	75.7 sec.	

- FDM for 2D heat/convection-diffusion equations on [0, 1]² (LYAPACK benchmarks, m = p = 1) → symmetric/nonsymmetric A ∈ ℝ^{n×n}, n = 10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of *A*.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Numerical Results Example: LQR Problem for 3D Geometry

Control problem for 3d Convection-Diffusion Equation

- FDM for 3D convection-diffusion equation on $[0,1]^3$
- proposed in [Simoncini '07], q = p = 1
- non-symmetric $A \in \mathbb{R}^{n \times n}$, $n = 10\,648$

Test system:

INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Max Planck Institute Magdeburg

Numerical Results Example: LQR Problem for 3D Geometry

Newton-ADI					
NWT	rel. change	rel. residual	ADI		
1	$1.0 \cdot 10^0$	$9.3 \cdot 10^{-01}$	100		
2	$3.7 \cdot 10^{-02}$	$9.6 \cdot 10^{-02}$	94		
3	$1.4 \cdot 10^{-02}$	$1.1 \cdot 10^{-03}$	98		
4	$3.5 \cdot 10^{-04}$	$1.0 \cdot 10^{-07}$	97		
5	$6.4 \cdot 10^{-08}$	$1.3 \cdot 10^{-10}$	97		
6	$7.5 \cdot 10^{-16}$	$1.3 \cdot 10^{-10}$	97		
CPU time: 4805.8 sec.					

NG-A	ADI ini	ner= 5, οι	iter = 1		
NWT	rel. change $1.0 \cdot 10^0$	rel. residual $5.0 \cdot 10^{-11}$	ADI 80		
_	CPU time	497.6 sec.			
NG-A	ADI ini	ner $=1$, ou	ter = 1		
NWT	rel. change	rel. residual	ADI		
1	$1.0 \cdot 10^0$	$7.4 \cdot 10^{-11}$	71		
CPU time: 856.6 sec.					
NG-ADI inner= 0, outer= 1					
NWT	rel. change	rel. residual	ADI		
1	$1.0 \cdot 10^0$	$6.5 \cdot 10^{-13}$	100		
CPU time: 506.6 sec.					

Test system:

INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Max Planck Institute Magdeburg

$$\partial_t x(\xi, t) = \Delta x(\xi, t) \quad \text{in } \Omega$$

$$\partial_\nu x = b(\xi) \cdot u(t) - x \quad \text{on } \Gamma_c$$

$$\partial_\nu x = -x \quad \text{on } \partial\Omega \setminus \Gamma_c$$

$$x(\xi, 0) = 1$$

Note:

Here $b(\xi) = 4(1 - \xi_2)\xi_2$ for $\xi \in \Gamma_c$ and 0 otherwise, thus $\forall t \in \mathbb{R}_{>0}$, we have $u(t) \in \mathbb{R}$.

$$\Rightarrow B_h = M_{\Gamma,h} \cdot b.$$

$$\partial_t x(\xi, t) = \Delta x(\xi, t) \quad \text{in } \Omega$$

$$\partial_\nu x = b(\xi) \cdot u(t) - x \quad \text{on } \Gamma_c$$

$$\partial_\nu x = -x \quad \text{on } \partial\Omega \setminus \Gamma_c$$

$$x(\xi, 0) = 1$$

Consider: output equation y = Cx, where

$$\begin{array}{ll} \mathcal{C}:\mathcal{L}^2(\Omega) & \to \mathbb{R} \\ x(\xi,t) & \mapsto y(t) = \int_{\Omega} x(\xi,t) \, d\xi \end{array} \Rightarrow \mathcal{C}_h = \underline{1} \cdot M_h. \end{array}$$

Simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts (16/50/25) with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS, stopping criterion tolerances: 10^{-10}

Computation Times					
discretization level	problem size	time in seconds			
3	81	$4.87 \cdot 10^{-2}$			
4	289	$2.81 \cdot 10^{-1}$			
5	1 089	$5.87 \cdot 10^{-1}$			
6	4 225	2.63			
7	16 641	$2.03 \cdot 10^{+1}$			
8	66 049	$1.22 \cdot 10^{+2}$			
9	263 169	$1.05 \cdot 10^{+3}$			
10	1 050 625	$1.65 \cdot 10^{+4}$			
11	4 198 401	$1.35\cdot 10^{+5}$			

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS, stopping criterion tolerances: 10^{-10}

ntroduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Software

Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Software

Lyapack

[Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08–]

• Extended and revised version of LYAPACK.

 Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).

• Many algorithmic improvements:

- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.

• C and MATLAB versions.

ntroduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Software

Lyapack

[Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08–]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
 - new ADI parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix,
 - new ADI versions avoiding complex arithmetic etc.

• C and MATLAB versions.

ntroduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations Software

Lyapack

[Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08–]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
 - new ADI parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix,
 - new ADI versions avoiding complex arithmetic etc.

• C and MATLAB versions.