Otto-von-Guericke Universität Magdeburg Faculty of Mathematics

Model Reduction for Dynamical Systems

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

Magdeburg, Germany
benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de
www.mpi-magdeburg.mpg.de/2909616/mor_ss15

Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by ProjectionModal TruncationBalanced TruncationMoment-Matching
(7) Solving Large-Scale Matrix Equations

- Linear Matrix Equations
- Numerical Methods for Solving Lyapunov Equations
- Solving Large-Scale Algebraic Riccati Equations
- Software

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).
eigenvalues of P_{h} for $\mathbf{h}=\mathbf{0 . 0 1}$

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Solving Large-Scale Matrix Equations

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).
eigenvalues of P_{h} for $\mathrm{h}=0.01$

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Solving Large-Scale Matrix Equations

Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation
$A X+X B=W \quad A X B-X=W$
with data $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

$$
A X+X A^{T}=W \quad A X A^{T}-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, W=W^{T} \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Solving Large-Scale Matrix Equations

Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation
$A X+X B=W \quad A X B-X=W$
with data $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

$$
A X+X A^{T}=W \quad A X A^{T}-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, W=W^{T} \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,

Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}$.

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}$.

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz $=$ Sylvester equation has unique solution.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\} .
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

[^0]
Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\} .
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary
 A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\} .
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$
A X+X B=W
$$

via the equivalent linear system of equations

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

requires

- LU factorization of $n m \times n m$ matrix; for $n \approx m$, complexity is $\frac{2}{3} n^{6}$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^{4} data for X.

> Example
> $n=m=1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6 cores, $3.46 \mathrm{GHz} \rightsquigarrow 83.2$ GFLOP peak) would take >94 DAYS and 7.3 TB of memory!

Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$
A X+X B=W
$$

via the equivalent linear system of equations

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

requires

- LU factorization of $n m \times n m$ matrix; for $n \approx m$, complexity is $\frac{2}{3} n^{6}$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^{4} data for X.

Example

$n=m=1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6 cores, $3.46 \mathrm{GHz} \rightsquigarrow 83.2$ GFLOP peak) would take >94 DAYS and 7.3 TB of memory!

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester eqns., B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

$$
\text { Not feasible for large-scale problems (} n>10,000 \text {). }
$$

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester eqns., B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

Not feasible for large-scale problems ($n>10,000$).

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester eqns., B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

$$
\text { Not feasible for large-scale problems }(n>10,000) \text {. }
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap \imath \mathbb{R}=\emptyset$ and Jordan canonical form

$$
Z=S\left[\begin{array}{cc}
J^{+} & 0 \\
0 & J^{-}
\end{array}\right] S^{-1}
$$

the matrix sign function is

$$
\operatorname{sign}(Z):=S\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] S^{-1}
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap \imath \mathbb{R}=\emptyset$ and Jordan canonical form

$$
Z=S\left[\begin{array}{cc}
J^{+} & 0 \\
0 & J^{-}
\end{array}\right] S^{-1}
$$

the matrix sign function is

$$
\operatorname{sign}(Z):=S\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] S^{-1}
$$

Lemma

Let $T \in \mathbb{R}^{n \times n}$ be nonsingular and Z as before, then

$$
\operatorname{sign}\left(T Z T^{-1}\right)=T \operatorname{sign}(Z) T^{-1}
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Computation of $\operatorname{sign}(Z)$

$\operatorname{sign}(Z)$ is root of $I_{n} \Longrightarrow$ use Newton's method to compute it:

$$
\begin{aligned}
& Z_{0} \leftarrow Z, \quad Z_{j+1} \leftarrow \frac{1}{2}\left(c_{j} Z_{j}+\frac{1}{c_{j}} Z_{j}^{-1}\right), \quad j=1,2, \ldots \\
\Longrightarrow & \operatorname{sign}(Z)=\lim _{j \rightarrow \infty} Z_{j} .
\end{aligned}
$$

$c_{j}>0$ is scaling parameter for convergence acceleration and rounding error minimization, e.g.

$$
c_{j}=\sqrt{\frac{\left\|Z_{j}^{-1}\right\|_{F}}{\left\|Z_{j}\right\|_{F}}}
$$

based on "equilibrating" the norms of the two summands [Higham '86].

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If $X \in \mathbb{R}^{n \times n}$ is a solution of $A X+X A^{T}+W=0$, then

$$
\underbrace{\left[\begin{array}{cc}
I_{n} & -X \\
0 & I_{n}
\end{array}\right]}_{=T^{-1}} \underbrace{\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]}_{=: H} \underbrace{\left[\begin{array}{cc}
I_{n} & X \\
0 & I_{n}
\end{array}\right]}_{=: T}=\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] .
$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If $X \in \mathbb{R}^{n \times n}$ is a solution of $A X+X A^{T}+W=0$, then

$$
\underbrace{\left[\begin{array}{cc}
I_{n} & -X \\
0 & I_{n}
\end{array}\right]}_{=T^{-1}} \underbrace{\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]}_{=: H} \underbrace{\left[\begin{array}{cc}
I_{n} & X \\
0 & I_{n}
\end{array}\right]}_{=: T}=\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] .
$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$
\begin{aligned}
\operatorname{sign}(H) & =\operatorname{sign}\left(T\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] T^{-1}\right)=T \operatorname{sign}\left(\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right]\right) T^{-1} \\
& =\left[\begin{array}{cc}
-I_{n} & 2 X \\
0 & I_{n}
\end{array}\right]
\end{aligned}
$$

Solving Lyapunov Equations with the Matrix Sign Function Method

Apply sign function iteration $Z \leftarrow \frac{1}{2}\left(Z+Z^{-1}\right)$ to $H=\left[\begin{array}{cc}A & W \\ 0 & -A^{T}\end{array}\right]$:

$$
H+H^{-1}=\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]+\left[\begin{array}{cc}
A^{-1} & A^{-1} W A^{-T} \\
0 & -A^{-T}
\end{array}\right]
$$

\Longrightarrow Sign function iteration for Lyapunov equation:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W \leftarrow G & W^{*} \leftarrow \frac{1}{1}\left(W_{i}+A^{-1} W_{:} A^{-T}\right)
\end{array} j=0,1,2, \ldots
$$

Define $A_{\infty}:=\lim _{j \rightarrow \infty} A_{j}, W_{\infty}:=\lim _{j \rightarrow \infty} W_{j}$.

Theorem

If A is Hurwitz, then

$$
A_{\infty}=-I_{n} \quad \text { and } \quad X=\frac{1}{2} W_{\infty}
$$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right),
\end{array} \quad j=0,1,2, \ldots .
$$

Now consider the second iteration for $W=B B^{\top}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}:$

Hence, obtain factored iteration

$$
B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]
$$

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{\top}$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right),
\end{array} \quad j=0,1,2, \ldots .
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

Hence, obtain factored iteration

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{\top}$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right), \quad j=0,1,2, \ldots
\end{array}
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

$$
\begin{aligned}
\frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right) & =\frac{1}{2}\left(B_{j} B_{j}^{T}+A_{j}^{-1} B_{j} B_{j}^{T} A_{j}^{-T}\right) \\
& =\frac{1}{2}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]^{T}
\end{aligned}
$$

Hence, obtain factored iteration

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{T}$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right), \quad j=0,1,2, \ldots
\end{array}
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

$$
\begin{aligned}
\frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right) & =\frac{1}{2}\left(B_{j} B_{j}^{T}+A_{j}^{-1} B_{j} B_{j}^{T} A_{j}^{-T}\right) \\
& =\frac{1}{2}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]^{T}
\end{aligned}
$$

Hence, obtain factored iteration

$$
B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]
$$

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{T}$.

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form
 [B./Quintana-Ortí '97]

Factored sign function iteration for $A\left(S S^{T}\right)+\left(S S^{T}\right) A^{T}+B B^{T}=0$

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
B_{0} \leftarrow B, & B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right],
\end{array} \quad j=0,1,2, \ldots .
$$

Remarks:

- To get both Gramians, run in parallel

$$
C_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{c}
C_{j} \\
C_{j} A_{j}^{-1}
\end{array}\right]
$$

- To avoid growth in numbers of columns of B_{j} (or rows of C_{j}): column compression by RRLQ or truncated SVD.
- Several options to incorporate scaling, e.g., scale " A "-iteration only.
- Simple stopping cirterion: $\left\|A_{j}+I_{n}\right\|_{F} \leq$ tol.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:
Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea: Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.
AD Iteration
If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} l\right) u_{k-\frac{1}{2}} & =\left(p_{k} l-V\right) u_{k-1}+s \\
\left(V+p_{k} l\right) u_{k} & =\left(p_{k} l-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea: Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.

ADI Iteration

If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

Numerical Methods for Solving Lyapunov Equations

The Lyapunov operator

$$
\mathcal{L}: \quad P \quad \mapsto \quad A X+X A^{T}
$$

can be decomposed into the linear operators

$$
\mathcal{L}_{H}: X \mapsto A X, \quad \mathcal{L}_{V}: X \mapsto X A^{T} .
$$

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation

$$
\begin{aligned}
X_{0} & =0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-W-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T} & =-W-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right) .
\end{aligned}
$$

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\text {max }}$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{\top}, k=0, \ldots, k_{\max }$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{T}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

\rightsquigarrow low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\max }$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{T}, k=0, \ldots, k_{\text {max }}$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{T}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

\rightsquigarrow low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl "99/'08, Gugercin/Sorensen/Antoulas '03]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\max }$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{T}, k=0, \ldots, k_{\text {max }}$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{T}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

$\ldots \rightsquigarrow$ low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

Introduction Mathematical Basics
 Solving Large-Scale Matrix Equations

 Numerical Methods for Solving Lyapunov Equations$$
Z_{k}=\left[\sqrt{-2 p_{k}}\left(A+p_{k} I\right)^{-1} B,\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1}\right]
$$

[Penzl '00]
Observing that $\left(A-p_{i} l\right),\left(A+p_{k} l\right)^{-1}$ commute, we rewrite $Z_{k_{\max }}$ as
$Z_{k_{\max }}=\left[z_{k_{\max }}, P_{k_{\max }-1} z_{k_{\max }}, P_{k_{\max }-2}\left(P_{k_{\max }-1} z_{k_{\max }}\right), \ldots, P_{1}\left(P_{2} \ldots P_{k_{\max }-1} z_{k_{\max }}\right)\right]$,
where

$$
z_{k_{\max }}=\sqrt{-2 p_{k_{\max }}}\left(A+p_{k_{\max }} I\right)^{-1} B
$$

and

$$
P_{i}:=\frac{\sqrt{-2 p_{i}}}{\sqrt{-2 p_{i+1}}}\left[I-\left(p_{i}+p_{i+1}\right)\left(A+p_{i} I\right)^{-1}\right] .
$$

Solving Large-Scale Matrix Equations Numerical Methods for Solving Lyapunov Equations

$$
Z_{k}=\left[\sqrt{-2 p_{k}}\left(A+p_{k} I\right)^{-1} B,\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1}\right]
$$

[Penzl '00]
Observing that $\left(A-p_{i} I\right),\left(A+p_{k} I\right)^{-1}$ commute, we rewrite $Z_{k_{\max }}$ as

$$
Z_{k_{\max }}=\left[z_{k_{\max }}, P_{k_{\max }-1} z_{k_{\max }}, P_{k_{\max }-2}\left(P_{k_{\max }-1} z_{k_{\max }}\right), \ldots, P_{1}\left(P_{2} \ldots P_{k_{\max }-1} z_{k_{\max }}\right)\right]
$$

[LI/White '02]
where

$$
z_{k_{\max }}=\sqrt{-2 p_{k_{\max }}}\left(A+p_{k_{\max }} I\right)^{-1} B
$$

and

$$
P_{i}:=\frac{\sqrt{-2 p_{i}}}{\sqrt{-2 p_{i+1}}}\left[I-\left(p_{i}+p_{i+1}\right)\left(A+p_{i} I\right)^{-1}\right] .
$$

Numerical Methods for Solving Lyapunov Equations

 Lyapunov equation $0=A X+X A^{T}+B B^{T}$.Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \text { re } p_{1}}\left(A+p_{1} I\right)^{-1} B, \quad Z_{1} \leftarrow V_{1} \\
& \text { FOR } k=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\text { re } p_{k}}{\text { re } p_{-1}}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Z_{k} \leftarrow\left[Z_{k-1} \quad V_{k}\right] \\
& Z_{k} \leftarrow \operatorname{rrlq}\left(Z_{k}, \tau\right) \quad \text { column compression }
\end{aligned}
$$

At convergence, $Z_{k_{\max }} Z_{k_{\max }}^{\top} \approx X$, where (without column compression)

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Methods for Solving Lyapunov Equations

 Lyapunov equation $0=A X+X A^{T}+B B^{T}$.Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{re} p_{1}}\left(A+p_{1} /\right)^{-1} B, \quad Z_{1} \leftarrow V_{1}
$$

FOR $k=2,3, \ldots$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{r e}{r e} p_{k}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Z_{k} \leftarrow\left[Z_{k-1} \quad V_{k}\right] \\
& Z_{k} \leftarrow \operatorname{rrlq}\left(Z_{k}, \tau\right) \quad \text { column compression }
\end{aligned}
$$

At convergence, $Z_{k_{\max }} Z_{k_{\max }}^{T} \approx X$, where (without column compression)

$$
\left.z_{k_{\max }}=\left[\begin{array}{lll}
v_{1} & \ldots & v_{k_{\max }}
\end{array}\right], \quad v_{k}=\right] \in \mathbb{C}^{n \times m} .
$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Results for ADI

Optimal Cooling of Steel Profiles

- Mathematical model: boundary control for linearized 2D heat equation.

$$
\begin{aligned}
c \cdot \rho \frac{\partial}{\partial t} x & =\lambda \Delta x, \quad \xi \in \Omega \\
\lambda \frac{\partial}{\partial n} x & =\kappa\left(u_{k}-x\right), \quad \xi \in \Gamma_{k}, 1 \leq k \leq 7 \\
\frac{\partial}{\partial n} x & =0, \quad \xi \in \Gamma_{7} . \\
\Longrightarrow m=7, q & =6 .
\end{aligned}
$$

- FEM Discretization, different models for initial mesh ($n=371$),
$1,2,3,4$ steps of mesh refinement \Rightarrow $n=1357,5177,20209,79841$.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, SaAk 2003.

Numerical Results for ADI

Optimal Cooling of Steel Profiles

- Solve dual Lyapunov equations needed for balanced truncation, i.e.,

$$
A P M^{T}+M P A^{T}+B B^{T}=0, \quad A^{T} Q M+M^{T} Q A+C^{T} C=0
$$

for $n=79,841$.

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- No factorization of mass matrix required.
- Computations done on Core2Duo at 2.8 GHz with 3GB RAM and 32Bit-MATLAB.

CPU times: 626 / 356 sec.

Numerical Results for ADI

Scaling / Mesh Independence

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Numerical Results for ADI

Scaling / Mesh Independence

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

CPU Times

n	M.E.S.S. ${ }^{1}(\mathrm{C})$	LyaPack	M.E.S.S. (MATLAB)
100	0.023	0.124	0.158
625	0.042	0.104	0.227
2,500	0.159	0.702	0.989
10,000	0.965	6.22	5.644
40,000	11.09	71.48	34.55
90,000	34.67	418.5	90.49
160,000	109.3	out of memory	219.9
250,000	193.7	out of memory	403.8
562,500	930.1	out of memory	1216.7
$1,000,000$	2220.0	out of memory	2428.6

Numerical Results for ADI

Scaling / Mesh Independence

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Note: for $n=1,000,000$, first sparse LU needs $\sim 1,100$ sec., using UMFPACK this reduces to 30 sec .

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(0) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(- Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Saad '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini ${ }^{\circ} 07$],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right) .
$$

- Rational Krylov [Druskin/Simoncini '11] (\rightsquigarrow exercises).

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(0) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.

- Use $X \approx Z \hat{X} Z^{\top}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

- Rational Krylov [Druskin/Simoncini '11] (\rightsquigarrow exercises).

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(- Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.

- Use $X \approx Z \hat{X} Z^{\top}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Sadd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini $\left.{ }^{\circ} 07\right]$,

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

- Rational Krylov [Druskin/Simoncini '11] (\rightsquigarrow exercises).

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$
Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- ADI subspace [B./R.-C. Li/Truhar '08]:

$$
\mathcal{Z}=\operatorname{colspan}\left[\begin{array}{lll}
V_{1}, & \ldots, & V_{r}
\end{array}\right]
$$

Note:
(1) ADI subspace is rational Krylov subspace [J.-R. Li/White '02].
(2) Similar approach: ADI-preconditioned global Arnoldi method [Jbilou '08].

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, q=6$.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).
Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, q=6$.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).
Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations

Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, $n=79,841$.

M.E.S.S. w/o Galerkin projection and column compression

Rank of solution factors: 532 / 426

M.E.S.S. with Galerkin projection and column compression

Rank of solution factors: 269 / 205

Solving Large-Scale Matrix Equations

Numerical example for BT: Optimal Cooling of Steel Profiles

$n=1,357$, Absolute Error

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

Solving Large-Scale Matrix Equations
 Numerical example for BT: Optimal Cooling of Steel Profiles

$n=1,357$, Absolute Error

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

$n=79,841$, Absolute Error

- BT model computed using M.E.S.S. in MATLAB,
- dualcore, computation time: $<10 \mathrm{~min}$.

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Frequency Repsonse Analysis

Solving Large-Scale Matrix Equations
 Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Frequency Repsonse Analysis

Hankel Singular Values

Solving Large-Scale Algebraic Riccati Equations

Theorem

Consider the (continuous-time) algebraic Riccati equation (ARE)

$$
0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n},(A, B)$ stabilizable, (A, C) detectable. Then:
(a) There exists a unique stabilizing $X_{*} \in\left\{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X)=0\right\}$, i.e., $\Lambda\left(A-B B^{T} X_{*}\right) \in \mathbb{C}^{-}$.
(b) $X_{*}=X_{*}^{\top} \geq 0$ and $X_{*} \geq X$ for all $X \in\left\{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X)=0\right\}$.
(c) If (A, C) observable, then $X_{*}>0$.
(d) $\operatorname{span}\left\{\left[\begin{array}{c}I_{n} \\ -X_{*}\end{array}\right]\right\}$ is the unique invariant subspace of the Hamiltonian matrix

$$
H=\left[\begin{array}{cc}
A & B B^{T} \\
C^{T} C & -A^{T}
\end{array}\right]
$$

corresponding to $\Lambda(H) \cap \mathbb{C}^{-}$.

Solving Large-Scale Algebraic Riccati Equations Numerical Methods
 [Bini/lannazzo/Meini '12]

Numerical Methods (incomplete list)

- Invariant subspace methods (\rightsquigarrow eigenproblem for Hamiltonian matrix):
- Schur vector method (care)
[LaUB '79]
- Hamiltonian SR algorithm [Bunse-Gerstner/Mehrmann '86]
- Symplectic URV-based method
[B./Mehrmann/Xu '97/'98, Chu/Liu/Mehrmann '07]
- Spectral projection methods
- Sign function method
- Disk function method
[Roberts '71, Byers '87] [Bai/Demmel/Gu '94, B. '97]
- (rational, global) Krylov subspace techniques
[Jaimoukha/Kasenally '94, Jbilou '03/'06, Heyouni/Jbilou '09]
- Newton's method
- Kleinman iteration
- Line search acceleration
- Newton-ADI
- Inexact Newton

[Kleinman '68]
[B./Byers '98]
[B./J.-R. Li/Penzl '99/'08]
[Feitzinger/Hylla/Sachs '09]

Solving Large-Scale Algebraic Riccati Equations Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right) .
$$

- Newton-Kantorovich method:

Solving Large-Scale Algebraic Riccati Equations

 Newton's Method for AREs[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right) .
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Solving Large-Scale Algebraic Riccati Equations

 Newton's Method for AREs[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right) .
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Solving Large-Scale Algebraic Riccati Equations

 Newton's Method for AREs[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right) .
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

FOR $j=0,1, \ldots$
(1) $A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
(c) Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.

- $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j

Newton's Method for AREs

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j}

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:
$\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(i)} I\right)^{-1}$
- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury $\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1}$.
- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right) \\
\Longleftrightarrow \\
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+\underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}} A_{j}=\underbrace{-C^{T} C-X_{j} B B^{T} X_{j}}_{=--W_{j} W_{j}^{T}}
\end{gathered}
$$

$$
\text { Set } X_{j}=Z_{j} Z_{j}^{T} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow
$$

$$
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
$$

Factored Newton Iteration [B. /Li/Pbenzl 1999/2008]
 Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

$$
\begin{gathered}
\text { Set } X_{j}=Z_{j} Z_{j}^{T} \text { for rank }\left(Z_{j}\right) \ll n \Longrightarrow \\
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
\end{gathered}
$$

Factored Newton Iteration
 [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Low-Rank Newton-ADI for AREs

Feedback Iteration

Optimal feedback

$$
K_{*}=B^{T} X_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

can be computed by direct feedback iteration:

- jth Newton iteration:

$$
K_{j}=B^{T} Z_{j} Z_{j}^{T}=\sum_{k=1}^{k_{\max }}\left(B^{T} V_{j, k}\right) V_{j, k}^{T} \xrightarrow{j \rightarrow \infty} \quad K_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

- K_{j} can be updated in ADI iteration, no need to even form Z_{j}, need only fixed workspace for $K_{j} \in \mathbb{R}^{m \times n}$!

Related to earlier work by [BANKS/ITO 1991].

Solving Large-Scale Matrix Equations

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [Jaimoukha/Kasenally '94, Jbilou '06, Heyouni/Jbilou '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate.
- Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations \rightsquigarrow fix ADI parameters for all Newton iterations.

Solving Large-Scale Matrix Equations

Galerkin-Newton-ADI

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [Jaimoukha/Kasenally '94, Jbilou '06, Heyouni/Jbilou '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate.
- Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations \rightsquigarrow fix ADI parameters for all Newton iterations.

Numerical Results

LQR Problem for 2D Geometry

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n=22.500, m=p=1,10$ shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

Numerical Results
 Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Numerical Results
 Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23
	CPU time:	76.9 sec.	

Numerical Results

Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23
	CPU time:	76.9 sec.	

Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI
1	1	$3.56 \mathrm{e}-04$	20
2	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	10
3	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	6
4	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	10
5	$5.57 \mathrm{e}-01$	$1.57 \mathrm{e}-02$	10
6	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	10
7	$4.03 \mathrm{e}-04$	$9.79 \mathrm{e}-10$	10
8	$8.45 \mathrm{e}-09$	$1.43 \mathrm{e}-15$	10

Numerical Results

Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Numerical Results
 Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47
CPU time:			
185.9 sec.$$			

Numerical Results

Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47
	CPU time:	185.9 sec.	

Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI it.
1	1	$1.78 \mathrm{e}-02$	35
2	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	15
3	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	20
4	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	15
5	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	20
6	$3.89 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	15
7	$2.30 \mathrm{e}-06$	$6.14 \mathrm{e}-13$	20
	CPU time:	75.7 sec.	

Numerical Results

Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Numerical Results

Example: LQR Problem for 3D Geometry

Control problem for 3d Convection-Diffusion Equation

- FDM for 3D convection-diffusion equation on $[0,1]^{3}$
- proposed in [Simoncini '07], $q=p=1$
- non-symmetric $A \in \mathbb{R}^{n \times n}, n=10648$

Test system:

INTEL Xeon 5160 3.00GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Numerical Results

Example: LQR Problem for 3D Geometry

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$9.3 \cdot 10^{-01}$	100
2	$3.7 \cdot 10^{-02}$	$9.6 \cdot 10^{-02}$	94
3	$1.4 \cdot 10^{-02}$	$1.1 \cdot 10^{-03}$	98
4	$3.5 \cdot 10^{-04}$	$1.0 \cdot 10^{-07}$	97
5	$6.4 \cdot 10^{-08}$	$1.3 \cdot 10^{-10}$	97
6	$7.5 \cdot 10^{-16}$	$1.3 \cdot 10^{-10}$	97
CPU time: 4805.8 sec.			

NG-ADI inner $=5$, outer $=1$

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$5.0 \cdot 10^{-11}$	80
	CPU time: 497.6 sec.		

\[

\]

NG-ADI
 inner= 0 , outer $=1$

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$6.5 \cdot 10^{-13}$	100
	CPU time: 506.6 sec.		

Test system:

INTEL Xeon 51603.00 GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Numerical Results

Scaling of CPU times / Mesh Independence

Note:

Here $b(\xi)=4\left(1-\xi_{2}\right) \xi_{2}$ for $\xi \in \Gamma_{c}$ and 0 otherwise, thus $\forall t \in \mathbb{R}_{>0}$, we have $u(t) \in \mathbb{R}$.

$$
\Rightarrow B_{h}=M_{\Gamma, h} \cdot b
$$

Numerical Results

Scaling of CPU times / Mesh Independence

$(0,1)$

$$
\begin{aligned}
\partial_{t} x(\xi, t) & =\Delta x(\xi, t) & & \text { in } \Omega \\
\partial_{\nu} x & =b(\xi) \cdot u(t)-x & & \text { on } \Gamma_{c} \\
\partial_{\nu} x & =-x & & \text { on } \partial \Omega \backslash \Gamma_{c}
\end{aligned}
$$

$$
x(\xi, 0)=1
$$

Consider: output equation $y=C x$, where

$$
\begin{aligned}
C: \mathcal{L}^{2}(\Omega) & \rightarrow \mathbb{R} \\
x(\xi, t) & \mapsto y(t)=\int_{\Omega} x(\xi, t) d \xi
\end{aligned} \Rightarrow C_{h}=\underline{1} \cdot M_{h} .
$$

Numerical Results

Scaling of CPU times / Mesh Independence

Simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts $(16 / 50 / 25)$ with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

Test system:

INTEL Xeon 5160 @ 3.00 GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS, stopping criterion tolerances: 10^{-10}

Numerical Results

Scaling of CPU times / Mesh Independence

Computation Times

discretization level	problem size	time in seconds
3	81	$4.87 \cdot 10^{-2}$
4	289	$2.81 \cdot 10^{-1}$
5	1089	$5.87 \cdot 10^{-1}$
6	4225	2.63
7	16641	$2.03 \cdot 10^{+1}$
8	66049	$1.22 \cdot 10^{+2}$
9	263169	$1.05 \cdot 10^{+3}$
10	1050625	$1.65 \cdot 10^{+4}$
11	4198401	$1.35 \cdot 10^{+5}$

Test system:

INTEL Xeon 5160 @ 3.00 GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS, stopping criterion tolerances: 10^{-10}

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

 [B./Köhler/Saak '08-]- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

 [B./Köhler/Saak '08-]- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

[^0]: Corollary
 A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

