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Solving Large-Scale Matrix Equations
Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for A,G = GT ,W = W T ∈ Rn×n

given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not applicable!
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Solving Large-Scale Matrix Equations
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkz
T
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkz
T
k .

=⇒ Goal: compute Z (r) ∈ Rn×r directly w/o ever forming X !

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 4/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkz
T
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkz
T
k .

=⇒ Goal: compute Z (r) ∈ Rn×r directly w/o ever forming X !

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 4/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Large-Scale Matrix Equations
Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation

AX + XB = W AXB − X = W

with data A ∈ Rn×n, B ∈ Rm×m, W ∈ Rn×m and unknown X ∈ Rn×m.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

AX + XAT = W AXAT − X = W

with data A ∈ Rn×n, W = W T ∈ Rn×n and unknown X ∈ Rn×n.

Here: focus on (Sylvester and) Lyapunov equations; analogous results
and methods for discrete versions exist.
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Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk , | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk , | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk , | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk , | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk , | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Linear Matrix Equations
Complexity Issues

Solving the Sylvester equation

AX + XB = W

via the equivalent linear system of equations(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W )

requires

LU factorization of nm × nm matrix; for n ≈ m, complexity is 2
3n

6;

storing n ·m unknowns: for n ≈ m we have n4 data for X .

Example

n = m = 1, 000 ⇒ Gaussian elimination on an Intel core i7 (Westmere, 6
cores, 3.46 GHz  83.2 GFLOP peak) would take > 94 DAYS and 7.3
TB of memory!
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Numerical Methods for Solving Lyapunov Equations
Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap);
Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling’s method for Lyapunov equations AX + XAT + GGT = 0

with A Hurwitz (lyapchol).

All based on the fact that if A,BT are in Schur form, then

M = (Im ⊗ A) +
(
BT ⊗ In

)
is block-upper triangular. Hence, solve Mx = b by back-substitution.

Clever implementation of back-substitution process requires nm(n + m)
flops.

For Sylvester eqns., B in Hessenberg form is enough ( 
Hessenberg-Schur method).

Hammarling’s method computes Cholesky factor Y of X directly.

All methods require Schur decomposition of A and Schur or Hessenberg
decomposition of B ⇒ need QR algorithm which requires 25n3 flops for
Schur decomposition.

Not feasible for large-scale problems (n > 10, 000).
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Numerical Methods for Solving Lyapunov Equations
The Sign Function Method

Definition

For Z ∈ Rn×n with Λ (Z ) ∩ ıR = ∅ and Jordan canonical form

Z = S

[
J+ 0

0 J−

]
S−1

the matrix sign function is

sign (Z ) := S

[
Ik 0

0 −In−k

]
S−1.
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Lemma
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sign
(
TZT−1

)
= T sign (Z )T−1
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Numerical Methods for Solving Lyapunov Equations
The Sign Function Method

Computation of sign (Z )

sign (Z ) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z , Zj+1 ←
1

2

(
cjZj +

1

cj
Z−1
j

)
, j = 1, 2, . . .

=⇒ sign (Z ) = limj→∞ Zj .

cj > 0 is scaling parameter for convergence acceleration and rounding error
minimization, e.g.

cj =

√
‖Z−1

j ‖F
‖Zj‖F

,

based on “equilibrating” the norms of the two summands [Higham ’86].
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Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If X ∈ Rn×n is a solution of AX + XAT + W = 0, then[

In −X

0 In

]
︸ ︷︷ ︸

=T−1

[
A W

0 −AT

]
︸ ︷︷ ︸

=:H

[
In X

0 In

]
︸ ︷︷ ︸

=:T

=

[
A 0

0 −AT

]
.

Hence, if A is Hurwitz (i.e., asymptotically stable), then

sign (H) = sign

(
T

[
A 0

0 −AT

]
T−1

)
= T sign

([
A 0

0 −AT

])
T−1

=

[
−In 2X

0 In

]
.
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Solving Lyapunov Equations with the Matrix Sign Function Method

Apply sign function iteration Z ← 1
2 (Z + Z−1) to H =

[
A W

0 −AT

]
:

H + H−1 =

[
A W
0 −AT

]
+

[
A−1 A−1WA−T

0 −A−T
]

=⇒ Sign function iteration for Lyapunov equation:

A0 ←A, Aj+1 ← 1
2

(
Aj + A−1

j

)
,

W0←G , Wj+1← 1
2

(
Wj + A−1

j WjA
−T
j

)
,

j = 0, 1, 2, . . . .

Define A∞ := limj→∞ Aj , W∞ := limj→∞Wj .

Theorem
If A is Hurwitz, then

A∞ = −In and X =
1

2
W∞.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 11/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Solving Lyapunov Equations with the Matrix Sign Function Method
Factored form

Recall sign function iteration for AX + XAT + W = 0:

A0 ←A, Aj+1 ← 1
2

(
Aj + A−1

j

)
,

W0←G , Wj+1← 1
2

(
Wj + A−1

j WjA
−T
j

)
,

j = 0, 1, 2, . . . .

Now consider the second iteration for W = BBT , starting with
W0 = BBT =: B0B

T
0 :

1

2

(
Wj + A−1

j WjA
−T
j

)
=

1

2

(
BjB

T
j + A−1

j BjB
T
j A−T

j

)
=

1

2

[
Bj A−1

j Bj

] [
Bj A−1

j Bj

]T
.

Hence, obtain factored iteration

Bj+1 ←
1√
2

[
Bj A−1

j Bj

]
with S := 1√

2
limj→∞ Bj and X = SST .
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Solving Lyapunov Equations with the Matrix Sign Function Method
Factored form

Recall sign function iteration for AX + XAT + W = 0:

A0 ←A, Aj+1 ← 1
2

(
Aj + A−1

j

)
,

W0←G , Wj+1← 1
2

(
Wj + A−1

j WjA
−T
j

)
,

j = 0, 1, 2, . . . .
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Solving Lyapunov Equations with the Matrix Sign Function Method
Factored form [B./Quintana-Ort́ı ’97]

Factored sign function iteration for A(SST ) + (SST )AT + BBT = 0

A0←A, Aj+1← 1
2

(
Aj + A−1

j

)
,

B0←B, Bj+1← 1√
2

[
Bj A−1

j Bj

]
,

j = 0, 1, 2, . . . .

Remarks:

To get both Gramians, run in parallel

Cj+1 ←
1√
2

[
Cj

CjA
−1
j

]
.

To avoid growth in numbers of columns of Bj (or rows of Cj): column
compression by RRLQ or truncated SVD.

Several options to incorporate scaling, e.g., scale ”A”-iteration only.

Simple stopping cirterion: ‖Aj + In‖F ≤ tol .
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Numerical Methods for Solving Lyapunov Equations
The ADI Method

Recall Peaceman Rachford ADI:
Consider Au = s where A ∈ Rn×n spd, s ∈ Rn. ADI Iteration Idea:
Decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration
If H,V spd ⇒ ∃pk , k = 1, 2, . . . such that

u0 = 0
(H + pk I )uk− 1

2
= (pk I − V )uk−1 + s

(V + pk I )uk = (pk I − H)uk− 1
2

+ s

converges to u ∈ Rn solving Au = s.
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Numerical Methods for Solving Lyapunov Equations

The Lyapunov operator

L : P 7→ AX + XAT

can be decomposed into the linear operators

LH : X 7→ AX , LV : X 7→ XAT .

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [Wachspress ’88]

X0 = 0
(A + pk I )Xk− 1

2
= −W − Xk−1(AT − pk I )

(A + pk I )X
T
k = −W − XT

k− 1
2

(AT − pk I ).

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 15/39
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Numerical Methods for Solving Lyapunov Equations
Low-Rank ADI

Consider AX + XAT = −BBT for stable A; B ∈ Rn×m with m� n.

ADI iteration for the Lyapunov equation [Wachspress ’95]

For k = 1, . . . , kmax

X0 = 0
(A + pk I )Xk− 1

2
= −BBT − Xk−1(AT − pk I )

(A + pk I )X
T
k = −BBT − XT

k− 1
2

(AT − pk I )

Rewrite as one step iteration and factorize Xk = ZkZ
T
k , k = 0, . . . , kmax

Z0Z
T
0 = 0

ZkZ
T
k = −2pk(A + pk I )

−1BBT (A + pk I )
−T

+(A + pk I )
−1(A− pk I )Zk−1Z

T
k−1(A− pk I )

T (A + pk I )
−T

. . . low-rank Cholesky factor ADI
[Penzl ’97/’00, Li/White ’99/’02, B./Li/Penzl ‘99/’08, Gugercin/Sorensen/Antoulas ’03]
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Solving Large-Scale Matrix Equations
Numerical Methods for Solving Lyapunov Equations

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1]

[Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

[Li/White ’02]

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.
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Numerical Methods for Solving Lyapunov Equations
Lyapunov equation 0 = AX + XAT + BBT .

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
√
−2 re p1(A + p1I )

−1B, Z1 ← V1

FOR k = 2, 3, . . .

Vk ←
√

re pk
re pk−1

(
Vk−1 − (pk + pk−1)(A + pk I )

−1Vk−1

)
Zk ←

[
Zk−1 Vk

]
Zk ← rrlq(Zk , τ) column compression

At convergence, ZkmaxZ
T
kmax
≈ X , where (without column compression)

Zkmax =
[
V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps

[B./Li/Penzl ’99/’08] or using new idea employing the relation of 2 consecutive

complex factors [B./Kürschner/Saak ’11].
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Mathematical model: boundary control for
linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, q = 6.

FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841. 2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Solve dual Lyapunov equations needed for balanced truncation, i.e.,

APMT + MPAT + BBT = 0, ATQM + MTQA + CTC = 0,

for n = 79, 841.
25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.
No factorization of mass matrix required.
Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-MATLAB.

CPU times: 626 / 356 sec.
Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 20/39
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Numerical Results for ADI
Scaling / Mesh Independence Computations by Martin Köhler ’10

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 21/39
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16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

CPU Times
n M.E.S.S.1 (C) LyaPack M.E.S.S. (MATLAB)

100 0.023 0.124 0.158
625 0.042 0.104 0.227

2,500 0.159 0.702 0.989
10,000 0.965 6.22 5.644
40,000 11.09 71.48 34.55
90,000 34.67 418.5 90.49

160,000 109.3 out of memory 219.9
250,000 193.7 out of memory 403.8
562,500 930.1 out of memory 1216.7

1,000,000 2220.0 out of memory 2428.6

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 21/39
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Numerical Results for ADI
Scaling / Mesh Independence Computations by Martin Köhler ’10

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Note: for n = 1, 000, 000, first sparse LU needs ∼ 1, 100 sec., using
UMFPACK this reduces to 30 sec.
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad ’90, Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).

Rational Krylov [Druskin/Simoncini ’11] ( exercises).

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 22/39
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[
V1, . . . , Vr

]
.

Note:
1 ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
2 Similar approach: ADI-preconditioned global Arnoldi method

[Jbilou ’08].

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 22/39
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, q = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak ’10.
Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 23/39
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, q = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak ’10.
Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 23/39
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79, 841.

M.E.S.S. w/o Galerkin projection and column compression

Rank of solution factors: 532 / 426

M.E.S.S. with Galerkin projection and column compression

Rank of solution factors: 269 / 205

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 24/39
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Solving Large-Scale Matrix Equations
Numerical example for BT: Optimal Cooling of Steel Profiles

n = 1, 357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79, 841, Absolute Error

– BT model computed using
M.E.S.S. in MATLAB,

– dualcore, computation time:
<10 min.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 25/39
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Solving Large-Scale Matrix Equations
Numerical example for BT: Microgyroscope (Butterfly Gyro)

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, q = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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Solving Large-Scale Algebraic Riccati Equations
Theory [Lancaster/Rodman ’95]

Theorem
Consider the (continuous-time) algebraic Riccati equation (ARE)

0 = R(X ) = CTC + ATX + XA− XBBTX ,

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, (A,B) stabilizable, (A,C) detectable.
Then:

(a) There exists a unique stabilizing X∗ ∈ {X ∈ Rn×n |R(X ) = 0 }, i.e.,
Λ (A− BBTX∗) ∈ C−.

(b) X∗ = XT
∗ ≥ 0 and X∗ ≥ X for all X ∈ {X ∈ Rn×n |R(X ) = 0 }.

(c) If (A,C) observable, then X∗ > 0.

(d) span

{[
In
−X∗

]}
is the unique invariant subspace of the Hamiltonian

matrix

H =

[
A BBT

CTC −AT

]
corresponding to Λ (H) ∩ C−.
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Solving Large-Scale Algebraic Riccati Equations
Numerical Methods [Bini/Iannazzo/Meini ’12]

Numerical Methods (incomplete list)

Invariant subspace methods ( eigenproblem for Hamiltonian matrix):

– Schur vector method (care) [Laub ’79]

– Hamiltonian SR algorithm [Bunse-Gerstner/Mehrmann ’86]

– Symplectic URV-based method
[B./Mehrmann/Xu ’97/’98, Chu/Liu/Mehrmann ’07]

Spectral projection methods

– Sign function method [Roberts ’71, Byers ’87]

– Disk function method [Bai/Demmel/Gu ’94, B. ’97]

(rational, global) Krylov subspace techniques
[Jaimoukha/Kasenally ’94, Jbilou ’03/’06, Heyouni/Jbilou ’09]

Newton’s method

– Kleinman iteration [Kleinman ’68]

– Line search acceleration [B./Byers ’98]

– Newton-ADI [B./J.-R. Li/Penzl ’99/’08]

– Inexact Newton [Feitzinger/Hylla/Sachs ’09]
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Solving Large-Scale Algebraic Riccati Equations
Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95, B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :

R′X : Z → (A− BBTX )TZ + Z (A− BBTX ).

Newton-Kantorovich method:

Xj+1 = Xj −
(
R′Xj

)−1

R(Xj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTXj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Xj).

3 Xj+1 ← Xj + tjNj .

END FOR j
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Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient matrix
Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using Sherman-Morrison-Woodbury
formula:

(A− BKj + p
(j)
k I )−1 = (In + (A + p

(j)
k I )−1B(Im − Kj (A + p

(j)
k I )−1B)−1Kj )(A + p

(j)
k I )−1

.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 30/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient matrix
Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using Sherman-Morrison-Woodbury
formula:

(A− BKj + p
(j)
k I )−1 = (In + (A + p

(j)
k I )−1B(Im − Kj (A + p

(j)
k I )−1B)−1Kj )(A + p

(j)
k I )−1

.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 30/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient matrix
Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using Sherman-Morrison-Woodbury
formula:

(A− BKj + p
(j)
k I )−1 = (In + (A + p

(j)
k I )−1B(Im − Kj (A + p

(j)
k I )−1B)−1Kj )(A + p

(j)
k I )−1

.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 30/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient matrix
Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using Sherman-Morrison-Woodbury
formula:

(A− BKj + p
(j)
k I )−1 = (In + (A + p

(j)
k I )−1B(Im − Kj (A + p

(j)
k I )−1B)−1Kj )(A + p

(j)
k I )−1

.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 30/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Xj)

⇐⇒

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBB
TXj︸ ︷︷ ︸

=:−WjW T
j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration and
use ‘sparse + low-rank’ structure of Aj .
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Low-Rank Newton-ADI for AREs
Feedback Iteration

Optimal feedback
K∗ = BTX∗ = BTZ∗Z

T
∗

can be computed by direct feedback iteration:

jth Newton iteration:

Kj = BTZjZ
T
j =

kmax∑
k=1

(BTVj,k)V T
j,k

j→∞
−−−−→ K∗ = BTZ∗Z

T
∗

Kj can be updated in ADI iteration, no need to even form Zj , need
only fixed workspace for Kj ∈ Rm×n!

Related to earlier work by [Banks/Ito 1991].
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Solving Large-Scale Matrix Equations
Galerkin-Newton-ADI

Basic ideas
Hybrid method of Galerkin projection methods for AREs
[Jaimoukha/Kasenally ’94, Jbilou ’06, Heyouni/Jbilou ’09]

and Newton-ADI, i.e., use column space of current Newton iterate
for projection, solve projected ARE, and prolongate.

Independence of good parameters observed for Galerkin-ADI applied
to Lyapunov equations  fix ADI parameters for all Newton
iterations.
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Numerical Results
LQR Problem for 2D Geometry

Linear 2D heat equation with homogeneous Dirichlet boundary and
point control/observation.
FD discretization on uniform 150× 150 grid.
n = 22.500, m = p = 1, 10 shifts for ADI iterations.
Convergence of large-scale matrix equation solvers:
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Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 35/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI
step rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.41e+01 23
3 5.25e–01 6.37e+00 20
4 5.37e–01 1.52e+00 20
5 7.03e–01 2.64e–01 23
6 5.57e–01 1.56e–02 23
7 6.59e–02 6.30e–05 23
8 4.02e–04 9.68e–10 23
9 8.45e–09 1.09e–11 23

10 1.52e–14 1.09e–11 23

CPU time: 76.9 sec.
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Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI
step rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.41e+01 23
3 5.25e–01 6.37e+00 20
4 5.37e–01 1.52e+00 20
5 7.03e–01 2.64e–01 23
6 5.57e–01 1.56e–02 23
7 6.59e–02 6.30e–05 23
8 4.02e–04 9.68e–10 23
9 8.45e–09 1.09e–11 23

10 1.52e–14 1.09e–11 23

CPU time: 76.9 sec.

Newton-Galerkin-ADI
step rel. change rel. residual ADI

1 1 3.56e–04 20
2 5.25e–01 6.37e+00 10
3 5.37e–01 1.52e+00 6
4 7.03e–01 2.64e–01 10
5 5.57e–01 1.57e–02 10
6 6.59e–02 6.30e–05 10
7 4.03e–04 9.79e–10 10
8 8.45e–09 1.43e–15 10

CPU time: 38.0 sec.
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Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

0 2 4 6 8 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

re
la

ti
v
e

 c
h

a
n

g
e

 i
n

 L
R

C
F

iteration index

 

 

no projection

ever step

every 5th step

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

re
la

ti
v
e

 r
e

s
id

u
a

l 
n

o
rm

iteration index

 

 

no projection

ever step

every 5th step

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 35/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI
step rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.56e+01 60
3 3.11e–01 3.72e+00 39
4 2.88e–01 9.62e–01 40
5 3.41e–01 1.68e–01 45
6 1.22e–01 5.25e–03 42
7 3.88e–03 2.96e–06 47
8 2.30e–06 6.09e–13 47

CPU time: 185.9 sec.
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Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI
step rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.56e+01 60
3 3.11e–01 3.72e+00 39
4 2.88e–01 9.62e–01 40
5 3.41e–01 1.68e–01 45
6 1.22e–01 5.25e–03 42
7 3.88e–03 2.96e–06 47
8 2.30e–06 6.09e–13 47

CPU time: 185.9 sec.

Newton-Galerkin-ADI
step rel. change rel. residual ADI it.

1 1 1.78e–02 35
2 3.11e–01 3.72e+00 15
3 2.88e–01 9.62e–01 20
4 3.41e–01 1.68e–01 15
5 1.22e–01 5.25e–03 20
6 3.89e–03 2.96e–06 15
7 2.30e–06 6.14e–13 20

CPU time: 75.7 sec.
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Numerical Results
Newton-ADI vs. Newton-ADI-Gelerkin

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz
with 4 GB RAM and 64Bit-MATLAB.
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Numerical Results
Example: LQR Problem for 3D Geometry

Control problem for 3d Convection-Diffusion Equation

FDM for 3D convection-diffusion equation on [0, 1]3

proposed in [Simoncini ’07], q = p = 1

non-symmetric A ∈ Rn×n , n = 10 648

Test system:

INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded
BLAS; stopping tolerance: 10−10
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Numerical Results
Example: LQR Problem for 3D Geometry

Newton-ADI
NWT rel. change rel. residual ADI

1 1.0 · 100 9.3 · 10−01 100

2 3.7 · 10−02 9.6 · 10−02 94

3 1.4 · 10−02 1.1 · 10−03 98

4 3.5 · 10−04 1.0 · 10−07 97

5 6.4 · 10−08 1.3 · 10−10 97

6 7.5 · 10−16 1.3 · 10−10 97

CPU time: 4 805.8 sec.

NG-ADI inner= 5, outer= 1
NWT rel. change rel. residual ADI

1 1.0 · 100 5.0 · 10−11 80

CPU time: 497.6 sec.

NG-ADI inner= 1, outer= 1
NWT rel. change rel. residual ADI

1 1.0 · 100 7.4 · 10−11 71

CPU time: 856.6 sec.

NG-ADI inner= 0, outer= 1
NWT rel. change rel. residual ADI

1 1.0 · 100 6.5 · 10−13 100

CPU time: 506.6 sec.

Test system:

INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded
BLAS; stopping tolerance: 10−10

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 36/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Numerical Results
Scaling of CPU times / Mesh Independence

Ω

(0, 1)

(0, 0)

(1, 1)

(1, 0)

Γc

∂tx(ξ, t) = ∆x(ξ, t) in Ω

∂νx = b(ξ) · u(t)− x on Γc

∂νx = −x on ∂Ω \ Γc

x(ξ, 0) = 1

Note:
Here b(ξ) = 4 (1− ξ2) ξ2 for ξ ∈ Γc and 0 otherwise, thus ∀t ∈ R>0, we
have u(t) ∈ R.

⇒ Bh = MΓ,h · b.
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Numerical Results
Scaling of CPU times / Mesh Independence

Ω

(0, 1)

(0, 0)

(1, 1)

(1, 0)

Γc

∂tx(ξ, t) = ∆x(ξ, t) in Ω

∂νx = b(ξ) · u(t)− x on Γc

∂νx = −x on ∂Ω \ Γc

x(ξ, 0) = 1

Consider: output equation y = Cx , where

C : L2(Ω) → R
x(ξ, t) 7→ y(t) =

∫
Ω
x(ξ, t) dξ

⇒ Ch = 1 ·Mh.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 37/39



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Moment-Matching Matrix Equations

Numerical Results
Scaling of CPU times / Mesh Independence

Simplified Low Rank Newton-Galerkin ADI

generalized state space form implementation

Penzl shifts (16/50/25) with respect to initial matrices

projection acceleration in every outer iteration step

projection acceleration in every 5-th inner iteration step

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a)
using threaded BLAS,
stopping criterion tolerances: 10−10
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Numerical Results
Scaling of CPU times / Mesh Independence

Computation Times

discretization level problem size time in seconds
3 81 4.87 · 10−2

4 289 2.81 · 10−1

5 1 089 5.87 · 10−1

6 4 225 2.63
7 16 641 2.03 · 10+1

8 66 049 1.22 · 10+2

9 263 169 1.05 · 10+3

10 1 050 625 1.65 · 10+4

11 4 198 401 1.35 · 10+5

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a)
using threaded BLAS,
stopping criterion tolerances: 10−10
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Solving Large-Scale Matrix Equations
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.
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Solving Large-Scale Matrix Equations
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers
[B./Köhler/Saak ’08–]

Extended and revised version of Lyapack.

Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).

Many algorithmic improvements:

– new ADI parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix,
– new ADI versions avoiding complex arithmetic etc.

C and MATLAB versions.
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