Model Reduction of Dynamical Systems - 3

Exercise: 3.1 (Balancing-free square root (BFSR) method)

We have already discussed the square-root balanced truncation technique for model reduction in Excercise 2.1. Another way of model reduction is to use the balancing-free square root (BFSR) algorithm. Analogue to the standard square-root balanced truncation approach, one has to compute the Cholesky factors S and R of the solutions of the Lyapunov equations and the corresponding SVD of those factors, i.e.,

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0, \quad S R^{T}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

The left and right projection matrices for the computation of a reduced-order model of dimension r now are given as $T_{l}=\left(Q_{1}^{T} P_{1}\right)^{-1} Q_{1}^{T}$ and $T_{r}=P_{1}$, with

$$
S^{T} U_{1}=\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]\left[\begin{array}{c}
\hat{R} \\
0
\end{array}\right], \quad R^{T} V_{1}=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
\bar{R} \\
0
\end{array}\right],
$$

and $P_{1}, Q_{1} \in \mathbb{R}^{n \times r}$ have orthonormal columns and $\hat{R}, \bar{R} \in \mathbb{R}^{r \times r}$ are upper triangular.
Show that the reduced-order system is equivalent to a balanced system and that it satisfies the same error bound as the one obtained by the standard square root BT method.

Exercise: 3.2 (Balanced model reduction for non-minimal systems)

Consider a system which is neither controllable nor observable, i.e.,

$$
\mathcal{K}=\operatorname{rank}\left(\left[\begin{array}{llll}
B & A B & \ldots & A^{n-1} B
\end{array}\right]\right)=k_{1}<n \quad \text { and } \quad \mathcal{O}=\operatorname{rank}\left(\left[\begin{array}{c}
C \\
C A^{T} \\
\vdots \\
C\left(A^{T}\right)^{n-1}
\end{array}\right]\right)=k_{2}<n .
$$

Show that if $Y \in \mathbb{R}^{n \times k_{1}}$ and $Z \in \mathbb{R}^{n \times k_{2}}$ are low rank factors that satisfy $P=Y Y^{T}$ and $Q=Z Z^{T}$, a balanced reduced-order model can be obtained by projection matrices $T_{l}=\Sigma_{1}^{-\frac{1}{2}} V_{1} Z^{T}$ and $T_{r}=Y U_{1} \Sigma_{1}^{-\frac{1}{2}}$, where $Y^{T} Z=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{cc}\Sigma_{1} & 0 \\ 0 & \Sigma_{2}\end{array}\right]\left[\begin{array}{l}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

