Otto-von-Guericke Universitat Magdeburg
Faculty of Mathematics
Summer term 2015

Model Reduction

for Dynamical Systems
MAX-PLANCK-GESELLSCHAFT

-Lecture 7-

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory
Magdeburg, Germany \
benner@mpi-magdeburg.mpg.de fenq@mDiA@burq.mpq.de
www.mpi-magdeburg.mpg.de/2909616/mor_ss15

N
=



mailto:benner@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de

Outline

* Preliminaries
» Orthogonality of two vectors

» Orthogonality of a vector to a group of orthogonal vectors

» Gram-Schmidt (modified Gram-Schmidt) process

 Arnoldi algorithm
» Method based on Pade approximation, explicit moment-matching (AWE)
» Method based on Pade, Pade-type approximation, implicit moment-matching

» Method based on rational interpolation



MU EUES

Angle between two vectors:

Two vectors u, v: U-V =cos(@) || u|[,|| V]|,

. T
Inner products inR": U-V =V U

u'v
full, |l v,

=0<u'v=0

Orthogonality of two vectors: cos(d)=0<



Preliminaries

« Orthogonalization of two vectors a,b e R"

If Pb is the projection of b onto a,
then c=b-Pb is orthogonal to a.

How to compute c?

Pb=ma (mis a scalar)

c=b-Pb=b-mala

T
l . a'b
Finally: c=b-——a
a” (b—ma) =0 g al a
‘léT h An important information:
m=—- span{b, a} = span{c, a}

a a



Preliminaries

« Orthogonalization of a vector b to a group of orthogonal vectors a;,a,, -+, q,
c=Db-Pb

Pb=ma, +m,a, +---+m;a, and C L a

a; (b—ma, —m,a, —----ma) =0
T
ai a.J :O
- a'b
i:
ay
b a, b ab a,Tba
- T T T l
a 4 a, dp a; q

span{b,a,,a,,---,a,}=span{c,a;,a,,---,a,}



e Gram-Schmidt process:
It is used to orthogonalize a group of vectors by, b,,---,b,,

direction in
Step 1: b, b,

< //

Step 2. b, 63 =h, -

N

direction in 62

direction inb; 4




Gram-Schmidt process:

for i=2,3,
bTb o7 =T
b, = 'bl— b, b b, — L bab .
~—D;_
bib,  bJb, 0;Z10;_1
end
What is the relation between by, b5,--+,band by, b, -+, b 2

span{b,, b,, -, b, } = span{b;, b,,---,b_}



Gram-Schmidt process:

t Is accurate in

accurate arithmetic,
fori=2,3, ..., m

_ _ brings errors in finite
~ blT bi 2T bi - bi L 0, = arithmetic, not quite
b — b - — =~ —_——rt — b._ rthogOﬂal

| [ bT b 1 T 2 b T b -1
end 1™ 2 2 -1~i-1

Computation with computers is finite arithmetic!

Modified Gram-Schmidt process:

Any difference, and

fori=2,3, ..., m what difference?

bi = bi
for j=1,2, ..., i-1
- -~ b'b ~
b, =b, —=—=-D, Numerically stable.
bj ]
end



Usually the vectors are required to be orthonormalized, so that there will be no
overflow in the computation with computers.

Modified Gram-Schmidt process :

by
b, = —1
SN

fori=2,3, ..., m

for j=1,2, ..., i-1
T What if || b; ||is zero or
i Oj close to zero? What does
b =b; - T bj it mean?
b b;
end
b.
b, = 1
1;



Modified Gram-Schmidt process with deflation :

for i=2,3, ..., m

b, =by /| b |
for j=1,2, ..., i-1
b =b b; b b
i~ M T T j
b; b;
end
&, =1l b, ||
If & =>tol
b, =b /¢, >~ deflation
else
delete b;
end

end



 Arnoldi algorithm:

It computes an orthonormal basis Vy,V;,- -V, for the Krylov subspace:
_ 2 p-1
K, (A r)=span{r, Ar, A’r,---, A""r}
i.e. span{v,,v,,---,v }= K, (AT)

The core in Arnoldi algorithm is the Modified Gram-Schmidt process.



Arnoldi algorithm

It is clear:
vp=r/r]

for 1=2,3, ..., p
w=Av; 4
for j=1,2, ..., i-1

vJTW
V.
T J
ViV

span{v;,V,,---, V3= K (A ),g<p
2 —
Ko (A1) ={r, Ar, A’r,---, AP7r}

W=W-—

end

£y =l W]

If &, = tol
v.=wW/g,

else

stop Why?

end
end



Motivation of AWE method

AWE methodirillage,Rohrer *90] : ASymptotic waveform evaluation method.

Original large-scale system

dx(t)
dt
y(t) = Cx(t), x(0) = 0.

E = Ax(t) + Bu(t),

Transfer function H(s) =C(sE - A) 'B
The transfer function is a function of s.

Does there exist aH(s), such that H(s)» H(s), but H(s)
can be computed fastly?



Padé approximation

e Padé approximation:
Approximates a function f(x) (analytic) by a rational function, and
requires that f(x) and its derivatives be continuous at x=0.

e Rational function:

A rational function is the quotient of two polynomials Py (x) and
Qu(x) of degree N and M respectively:

Py (X)
Qum (X) |

Ry m (X) = for a<x<b

The transfer function can be approximated by Padé approximation!



Padé approximation

« Py(X) and Qy(X):

Py (X) = Pg + pyX+ PoX” 4o+ pyx"

Qu(x)=1+ C11)("‘(12)(2 "‘:IMXM-

* Notice that in Q,,(X), q,=1, which is without loss of generality.
Because, Ry y(X) is not changed when both P (x) and Qy(x) are
divided by the same constant.

Py (X)
Qum (X)

Ry.m (X) =



How to compute Padé approximation

= 2, ... N
Padé approximation: Ry y(x) = Py (%) Py (X) = Po + PyX+ PoX” +-+-+ Py X

Qum (X)

Qu (X) =L+ gy X+ QX+ X

The coefficients in P (x) and Q,,(X) can be computed by requiring :

f(x) and Ry (X) agree at x=0 and at their derivatives (at x=0 ) up to
N-+M degree.

Maclaurin expansion: f (x) =f, + f;x + f,x2 +- - -+f xk +. ..

Maclaurin expansion: Ryu(X) = rg + rix + rx2 +- - -+ xK+. - -

This implicates:

Rew (- F()=e(x) = lex’

J=N+M+1



How to compute Padé approximation

Ry,m (X) = T(x) =Py (X)/Qu (X) = T(x)

Ry (- F()= Yex —

j=N+M+1

PO-Qu (0T (=0, () Yexi= Y&

j=N+M+1 J=N+M+1
x0 : fo—Po =0
1

X . q1f0+fl_p1:O (1)

xN Ov fnom tAmafymag ++ Ty = py =0



x N+ Ov fnoma FAua fnemee o+ 0 fy + fy 1 =0

xN*2 Ouv Fnomsz HOma fnemes +o 0Ty + Ty =0 (2)

VM gy iy F Ao fna oo G Ty + Tyam =0

M unknowns and M equations in (2), g;s can be obtained by solving (2),

p;s can be immediately obtained from (1) without solving equations.



How to compute Padé approximation

An example:

f(x)=4/x+1,0<x<1 1:o=f§0)=1; f,=1(0)=1/2
f,=f(0)=-1/4; f,=f®(0)=3/8.

Rua() = 2 Po* BuX R, (x) = ) __ Pot pux

Q(X)  1+qx | Q,(X)  1+gyx+0,x>
1) g, f,+f,=0=>0q,="f,/f =-1/2 1) 9 fo+a,fy+ f, =0
Qpfy+0.f, + 3=0

fi fo)Yw) (f _’(qu:(—lj

o+ f-p=0= (fz flj[qzj _(fJ q,) \0.25

p,=(-1/2)x1+1/2=0

2) fo—pozo ‘ p0:1
=-1+1/2
Qfo+f—p = P1 *

=-05
3) Ry, (X) =

3) Ryi(x) =



1.9¢
1.8f
1.7¢
1.6f
1.5+
1.4¢
1.3f
1.2¢
1.1¢

—R11

f(x)
----- o R12

0.2

0.4

0.6

0.8

1.9t
1.8¢
1.7¢
161
15¢
1.4¢
1.3}
1.2¢
11r

0.2

0.4

0.6

0.8




compute Pade approximation

40 - - -
— f(X)=exp(X) T
ag| —*R11

30

25¢

80

701

60

50t

40

30}

201

10+

— f()=exp(x)
——R33

[

>>>>>>>>>>>
-

Padé approximation is only accurate around O



MOR: AWE based on Padé approximation

MOR: AWE tries to find a Padé approximation H(s) of H(s).

Py (X)

=g 0 NeM?

e How to choose N and M in Py (x) and Q,,(x)?:

Proposition™:
For a fixed value of N+M, the error is smallest when P (x) and Q,,(X)

have the same degree: N=M or when Py (x) is one degree lower than
Qu(X), i.e.: N=M-1.

*from the book: John H. Mathews and Kurtis K. Fink, Numerical Methods Using Matlab, 4t Edition, Prentice-Hall
Inc. Upper Saddle River, New Jersey, USA 2004.



MOR: AWE based on Padé approximation

Given a system E% = AX(t) + Bu(t)
y =cx(t)

The transfer function is H(s)=c'(SE-A)'b=c' (-sA"E+1)"(-A™b)

Assuming A = AE is diagonalizable: ,&:ZAZ‘l,Azdiag(ﬂl,lz,---,/ln)

H(s)=c" (I —sA) ™ (~A ) s
n cjbj

=CTZ(| —sA)‘lz‘15 —>H(S) = E
=Cc (I-sA)™b : J

 H(s) is a rational function.
 Numerator polynomial is of degree at most n-1, denominator
polynomial is of degree at most n.



MOR: AWE based on Padé approximation

Therefore, it is natural to take M=r, and N=r-1

Pu(x) _ Pi(X)
Qu(0) Q)

Rr—l,r(x) =

(s) = Pea(S) _ Pot pisto--t pr_rlsr‘l
Q, (s) 1+0Q,S+---0Q,S

Computing the coefficients:

Pade approximation requires:

The values of H(s) at s=0, and the derivatives of H(s) at s=0 till r-1+r
degree should be the same as those of H(s).



MOR: AWE based on Padé approximation

Derivatives of H(s) at s=0 are the coefficients of Maclaurin series of H(s):

H(s)=cT(SE— A)*b=cT (1 —sAE) *(—A)b =S cTAlbs
;& 6 i=0

m, =c' AiB‘, I =0,1,:--are the moments of the transfer function.

H(s)=> ITAbs' => m;s" =m; + m;s + m,s? +---
i=0 i=0

-1

- + PSS+ -+ s’ . . .

H(s) =0T P pr‘rl = My + MyS + M,s” +---
1+oq,8+---9,S

r-1
Po + P1S+---+ Pr_4S
1+qg;8s+---q,s"

— eerZr +e2r+152r+1 4.

(my +mM;S +m,s® +--.) —



MOR: AWE based on Padé approximation

As has been introduced above, g;s can be obtained by solving :

q,Mg +0,4My +---+qgm, 4 +m, =0

0 3)
OrMy + My +---+GMp +Mpyy =
OrMy_g +0paMy +-+ GMyp_p + My =0
p;s can be immediately obtained from:
My — Py =0
dr_1Mo + oMy +--+M 3 — Py =0
Ok ?

() = Pea(S) _ Pot pusto-ot pr_rlsr‘l .
Q; (8) 1+0y8+++0,S




MOR: AWE based on Padé approximation

H(s) is inaccurate at high frequency due to floating point overflow.

F(s) = Pl _ ot prset prys™
Qr (s) 1+QS+---0,s"

Any other possible way? Yes!: Parial Fractions Decomposition:

r-1 >
HA(S)Z p0+pls+”'+pr—1s — kl + k2 4ot
1+qS+--q,8" s—& s-4, s—4,

If we know 4;,3,, -+, a, (approximate poles) and (approximate residues)
ki, k,, -+, k, then H(s) is known and is easily computed.

How to compute the poles and the residues?

a,,a,, -+, a, are nothing but the roots of 1+0;S+:--+(q,s'

and we have known how to compute ;s !



~

What is left? computation of the residues: kl,kz,---,lz

r

From Pade approximation:

‘Izl(s ~8) T ky(s-8) T+ k(s —a) T —[mg +mys ek my 8T+ ers2r +]

'l _leS +e2r+152r+1
I (R R (]
a a2 a2 r ar
A 2 - 2
__(1 __|_S__|_ ........ kr (1+i+5_+ )

a, &4, & a, 4, &’



a, &, a, -
ki | K, K, A2 A2 22|
é‘_2+?+...+é_2:_m1 :> a, a,” -+ a k2 —my; |(5)
1 1. r : | T '
QKK o oar oarg
a ar +§—:_ L & @ a; k) \=Mpyy
1 2 r

the residues can be obtained by solving the above euqgations!

N

Once a;,4a,, --,a, and K;,K,,--,K, are computed, we have:




MOR: AWE based on Padé approximation

e Why not approximation by *truncated®* Taylor expansion?

 The Padé approximant often gives better approximation of the
function than truncating its Taylor series, and it may still work
where the Taylor series does not converge.

 Round off error or overflow in truncated Taylor expansion is
avoided .

* Poles and residues of H(s) can be computed more easily by Pade
approximation.

« H(s) itself is a rational function.



MOR: AWE based on Padé approximation

Implementation of AWE:
1. Solve (3) to get g;s.

2. Compute the roots of the polynomial: 1+q;s+---+(q,s"

the roots: 4;,8,, -, 4,

3. Solve (5) toget | ¢ ..

Much Easier to

4. Form the reduced (simpler) transfer function: be computed
than H(s)!
H(s) = klA + sz et krA
s—4, S-4a, s—a,

In MATLAB step 2. and 3. are implemented in the function: residue.m



MOR: AWE based on Padé approximation

In MATLAB:

1. Solve (3) to get g;s.

2. Get p;s from (4).

3. Use *residue(p,q)* in matlab to get the poles and residues:

N

a,,a,,,a.; Ky, Ky,eee K

r

4. Form the Pade approximation (approximate transfer function):

H(s) =




How to compute the output response y(t) in time domain from H (s) ?

Definition of transfer function:

H(s) =Y (s)/U (s) *1
If the input is the unit impulse function:
>
1, t= O t
u(t)=o()=
then U(s) = j: S(t)edt =1

Therefore with impulse input: H(s)=Y(s)/U(s) =Y (s)

V() =— [ (s)eds = — [ H (s)e™ds
272] = joo 2711 7= Jjoo



MOR: AWE based on Padé approximation

We get: 1 i ) Lo )
yt)=— [ TH(s)e%ds~——[ H(s)e%ds
27 Jr-ie 27 dr-ie
Replace H (s) with:
H(s) = i, ke K
S—d; S—d& S—4a,
We obtain: Impulse output
response
y(t) = > k.e® in time domain
Because:



Numerical instability of AWE

Eigenvalue and eigenvectors of a matrix A

A
Alz( 1 Oj =N
-05 05 Aa, = aa Ab b:@
Aa, = _(0) N >
Ab = a,=|_, | "%

An eigenvector either does not change direction by A or is reversed
by A.


http://en.wikipedia.org/wiki/File:Beam_mode_1.gif

Numerical instability of AWE

Eigenvalue and eigenvectors of a matrix Ae R™":

A& = A&, T1=12,+n

&,1=12,---n are eigenvectors of A.

Ai,1=12,---n are eigenvalues of A.

Applications to Engineering:

 Vibration of a beam.
o Stability of a system.



Numerical instability of AWE

1. Solve (3) to get g;s.

q,My +Q,_1My +---+gM_; + M, = 0

_o ©®
My +qp My +---+ M +Mp g =
ArMyg + 0 Mp +---+ My 5 + My = 0 — My b
— My - Al
-m, ~ A%
: =c' :
(my my - m_ V(9 ) [ —-m ) —m, ~ A
m My - m Or _ —Mp —Azzr‘lb

o m2r—1/

Mg Mo My o) LG ) \— My ) A=AEb=-A"



Numerical instability of AWE

Ah (AS =4¢)

X, = A'b, i=1,2,... run parallel to & soon !

Usually, after i=8, all X. = AiBWi" in the same direction with ¢.

l



Numerical instability of AWE

= Cl/qnézl +C2ﬂ“r2n§2 +"'+Cn1?1193n

S AR - e

_Clﬂ’l[é:l_l_cl[/,zl] ot +Cl(ﬂ1j fn]
m—>oo(11>,12>...>,1n)

A"b — (¢, A7)é = o¢,

l

If A, and 4, are not close, round - off error slowly changes A"b to ¢,



Numerical instability of AWE

A" — o, o >0 A"b

o<0 51




Numerical instability of AWE

For many examples, when i > 8, all A'b will be almost on the same line with &,

this means A'b only contain the information of 4, &,, ,&51 =A<,
Notice: m. =c' A'b
Therefore m,,1 > 8 also only contain the information of A,.

However, the original transfer function contains the information
of all the eigenvalues:

n b o &b o k.
(I r D T
J = J

=S~ A) A

Conclusion:

Although theoretically, employing more moments to compute more g. will match

more moments, and will lead to more accurate H (s), numerically, the accuracy of H (s)
cannot be improved by using more moments!



Numerical instability of AWE

—— Exact
of ~—--- AWE, 2 itor. J
----- - AWE, Siter.
_ -50f e AWE, 8 itor. “:;;:__'
m ~,
o
|
‘3
o.-100}
§ -
S
-150}- ~e -
-200 .
-2$ " F " | ' ;i Y L 'y
10° 10° 10" 10° 10° 10'

Frequency (Hz)

Fig. 1. Results for simulation of voltage gain with AWE.

L. T. Pillage, R. A. Rohrer, Asymptotic Waveform Evaluation for Timing Analysis, IEEE Transactions on computer-
aided design, Vol. 9, No. 4, 1990.



Implicit moment—matching(Pade, Pade-type approxima

Recall that for projection based MOR:

dx
EE = Ax(t)+Bu(t) X=Vz WTEVdz/dt =W T AVz(t) +W " Bu(t)

> A
y =Cx(t) y =CVz(t)

By definition: H(s) = y(s)/u(s)=Cx(s)/u(s)

Taylor expansion ats,: H(s)=C(sE-A)"'B
=C(sE-s,E+s,E-A)"'B
=C((s—5,)(S,E-A)*E+1)"(s,E-A)"'B
=C " (A(5))'B(5,)(5 — o)

i=0
where A(s,) = —(s,E — A)E, B(s,) = (5,E — A) B
Definition ( moments are defined for any expansion point Sy, <0 )

M. (s,) = CA'(s,)B(s,) (A (s,)b (s,) for SISO system),i = 0...., are called the moments
of the transfer function.



Implicit moment—matching(Pade, Pade-type approxima

I 4
) ’)ci.!ll'

Recall that in AWE method, the moments

M. =cA' (0)b(0),i=0....,2r -1

are computed explicitly. It is numerically unstable.

Observe that M, = cA' (SO)E(SO), t=0,..., can divided either into :

Al (5,)b (s,),i=0.1.. (4)

and cAl(s,), j=01,... (5)
or into ~ ~

A'(s,)b(s,), t=01... (6)

and c (7)

Instead of explicitly computing the terms in (4)(5) or in (6)(7) as is done
by AWE method, we compute the basis of

range(V) =span{b (s, ), A(S,)b (S,). ... A”(55)b (5,)} (8)
range (W) =span{c’, AT (s,)C. ..., (AT (s,))* *c"} (9)



Implicit moment-matchingpade approximation)

How to compute W, V? [Feldmann, Freund '95]

Recall that
range(V) = span{b (s,), A(S,)D (S,)..... AP (50)b (55)} = K, (A(S,), b (3,)) (8)
range (W) =span{c”, AT (s,)C, ..., (AT (s,)) "¢ } = K, (AT (s,),cT) (9)

W, V span two Krylov subspaces, so that they can be simultaneously computed by
(Band) Lanczos algorithm, such thatw ™V =diag(d1,.-.,dp) — A .

The outputs of Band Lanczos algorithm are [Freund'03]
W,V

T =A"WT(A-s,E)*EV

p=AWT(A=s,E)?b

n=A"V'c



Implicit moment-matching (rade approximation)

Applying Petrov-Galerkin projection (using W,V ) to the transformed system

dx

(A-s,E)"'E Py =(A-s,E) " Ax(t) + (A—s,E) "bu(t),
y = cX(t), (10)
One gets the reduced order model (ROM)

W™ (A-s,E)EV % =W (A=s,E) AVz(t) +W ™ (A-s,E) ™ bu(t),

y =cVz(t), (11)

By studying the ROM in (11) [rreund 03]

one can see that (10) - (11) is equivalent to applying Petrov - Galerkin projection to the
original system withW = (A—s,E) "W, and V.



Implicit moment-matching (rade approximation)

Actually the ROM in (11) can be implicitly derived using the outputs of the Band
Lanczos algorithmirreund 03 :

T % = (1 +s,T)z(t) + pu(t),
y =n'"Az(t), (12)

Theorem 1 [Feldmann, Freund '95]

W, V e R" are the basis of the subspace in (8)(9), and satisnyVTV =diag(d,,...,d,),
and for a SISO systemin (10), the first 2 p moments of the transfer function
of the ROM in (11) match the first 2p momentsof H(s), i.e.
M. (s,) =M, (s,),i =01,...2p—1.
Therefore, H (s) is a Pade approximation of H (s).

Drawbacks of Lanczos method of computing the projection matrices:

« The ROM computed by W, V may be unstable, there are eigenvalues with
positive real parts.



Implicit moment-matchingpade approximation)

Number of moments matched for MIMO systems

In[Freund '00], it is shown that if W, V are any basis of the subspace in (8)(9)
(they are not necessarily generated by Lanczos algorithm), and satisnyVTV =1,
then H (s) matches at least the first|r/n, |+|r/n, |moments of H(s),and itisa
matrix Pade approximant of H(s). Here r is the order of the reduced model, or
equivalently, the number of the columnsinVorW. There are n, inputs and n,
outputs.

It is immediately seen from the above statement that for SISO systems, there are
at least 2r moments matched. It is in agreement with Theorem 1.



Im p| IcCIt moment-matchi NJ(Pade-type approximation)

Pade-type approximation [Odabasioglu,et.al ‘97, Freund ‘03]

A passive (therefore stable) ROM can be obtained by using W=\VW.

range(V ) = span{b (s,), A(S,)0 (S,);..., AP(5,)b (5,)} = Kp('&(so), b(s,))

Therefore it can be computed by Arnoldi algorithm.

Theorem 2 [Odabasioglu, et.al ‘97, Freund ‘03]

If the columnsinV constitute an orthogonal basis of the Krylov subspacein (8),V'V =1,
then for a SISO system in (10), the first p moments of H (s) are matched by H (s),

M. (s,) =M. (s,),i=01..., p-1.
H (s) is a Pade - type approximation of H(s).



Implicit moment—matching(Pade, Pade-type approximat

The ROM is obtained by Galerkin projection onto the original system.

VTEVdz/dt =V T AVz(t) +V Tbu(t)
§ = cVz(t) (11)

Why using x ~Vz, rather than x ~Wz?

Recall:  H(s)=C(SE—A) "= A(s,)b (5,)(5—S,)

ox(5) = H(9)u(9) = X(5) = - A'(5,)B(5,)(5 -5, u(6) = Y. 6, ()& (5,)D 50)

p-1 - -
——>X(s) = Z g; (S)AI (So)b (So)
range(V) = span{ﬁ(so), /&(SO)B(SO) ..... AP(SO)E(SO)}= Kp_l('&(so), 6(So))

K=Vz e x(5) = 50,9 A(s)B (5,



Implicit moment—matching(Pade, Pade-type approxima

Expansion point
The expansion point s, : s = S, + o can be chosen as zero or nonzero.

If the interesting frequency range is far away from zero, then a nonzero
expansion point s, is preferred.



A single expansion point is used in the method based on Pade approximation.
Multiple expansion points are used in rational interpolation method.

Rational interpolation views computing the transfer function as solving linear
systems.

H(s) = c(SE — A) ‘b =c(SE — A) *(SE — A)(SE — A) b = X! (SE — A)x,

where

(SE-A)'x.=c', (SE-A)x, =b
Applying a preconditioner to each of the linear systems,

(A-s,E)T(SE-A)' x. =(A-s,E)'c’, (A-s,E)*(SE-A)x, =(A-s,E)"'b
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If using Krylov-subspace iterative methods to solve the preconditioned linear
systems, we have (this is the property of Krylov-subpace iterative methods, e.g.
CG, GMRES, MINRES. etC..) [Grimme '97] .

X, = X € X + K ((A=S,E) " (SE - A),(A—5s,E)'h)

X, = X§ € X, + K ((A=s,E) " (SE-A)",(A-s,E)"c")

Lemma 2.2 [erimme 971 Krylov subspace shift-invariance

For any matrix G, vector g and nonzero r,
Ko (G +1,9)) =K, (G, 9).

Since (A—s,E) *(A—SE) =1 +(s, —s)(A-s,E)'E
K, ((A=5,E) *(SE — A), (A= 5,E) *b) = K, ((A—S,E) *E, (A—8,E) ')

K, ((A=S,E)" (SE-A)",(A-s,E) " c) =K, ((A-s,E) " E",(A—s,E)"c")



Implicit moment-matchingrational interpolation)

ComputeV, such that

range(V) = K ((A—s,E)"E,(A—s,E)™b) (12)
ComputeW, such that
range(W) = K ((A—s,E) " E",(A-s,E) " c") (13)

Then X, =X, =Vz,, X =X, =Wz,

H(s) ~ H(s) =X (SE—A)%, =z]WT (SE — Az, =z] (SWTEV —-WTAV)z,
Therefore the reduced matrices are;: E =W’ EV, A=WTAV,

Theorem (Grimme 97])
For both SISO and MIMO systems, if the projection matrices V,W satisfy (12)(13),

then 2 p moments of H (s) are matched by H (s),1.e. M. (s,) = I\7|i(so), 1=01,....2p-1.
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Instead of using a single expansion point, multiple expansion points are used in
rational interpolation method, such that

range(V) = LEJO K, ((A-sE)"E,(A-sE)™b) (14)
range(W) = Ll K, ((A-sE)"E',(A-sE)"c') (15)

Theorem (Grimme97))
For both SISO and MIMO systems, if the projection matrices V,W satisfy (14)(15),

then 2 p; moments of H (s) are matched by H (s) at each expansion point s, i.e.
M,(s;)=M,(s,),i=0L....2p, -1 j =0,....k.

Remark
For the moment - matching property of the rational interpolation method,

it is not required thatw 'V = 1.
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Computation of V, Win (14)(15)

 Rational Arnoldi method or rational Lanczos method In [Grimme '97]
* Repeated modified Gram-Schmidt algorithm (Repeated Arnoldi algorithm).

How to decide the expansion points?

e Some heuristic methods
« Using error estimation and a greedy algorithm.
« Locally optimal algorithm: IRKA.
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How to decide the expansion points?

Using error estimation and a greedy algorithm

Error estimation, e.g. A(s) :

Residual || r ||,=]| B—(SE — A)X(S) ||,
Error between x and X :|| x(s) = X(s) |I,<l r |l, / i, (SE — A)

Error between yand y:||y— Y[, < r™ L]l r I, /o (SE—A)

min

min

I X=X l,=ll (sSE = A) "B = X||,=I| (SE — A) "B — (SE — A) "(SE — A)X|,
=[| (SE ~ A)* (B~ (sE - A)X|,

N SE=A) "l L=, / oo (SE = A)

min

r’=r, r =—C'" - (SET — AT) (Proof in [Feng, Benner, Antoulas ’14])
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How to decide the expansion points?

A greedy algorithm: Selection of expansion points

Initial expansion point:s, =S;i=-LV =[[;W =[];

E.qin - alarge set of samplesof s

WHILE ¢ > ¢,

I=i+1

s, =$;

range(V;) = K, ((SE—A)"E,(s;E— A)™"B); range(W;) =K ((SE-A)"E',(SE-A)"C")
V=[VIW =W W]

S=arg max A(S);

S€E ai

e =A(S);
ENDWHILE
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How to decide the expansion points?

Theorem 3.4.[Gugercin et al '08] Given a stable SISO system H (s) = c(sl — A) b, let

H (s) =C(sl — A)‘lﬁbe a local minimizer of dimension r for the optimal H, model reduction
problem

H-H],.= min |H-H
IH = Flly,= min |1 H=HIl,

H:stable

and suppose that H (s) has simple poles at ﬂA,, i=1...r.Then H (s) interpolates both H (5s)
and its first derivative at i, Jd=1...,r:
H(A)=H(4)and H () =H (1) fori=1,... r.
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How to decide the expansion points?
» Locally optimal algorithm: IRKA for both SISO and MIMO system:

An lterative Rational Krylov Algorithm (IRKA)
1. Make an initial selection of o, fori =1,...,r,closed underconjugation ,

fix a tol. Choose initial directions I§1, ...B,,C,,...C..

2.ChooseV, and W, so that Ran(V, ) = span{(c,E — A)'BB,, ..., (c.E — A)'BB,},

Ran(W.) = span{(c,E — A)"C'C,,...,(c,E—A)"C'C . andW. = (W."V.) V.
o —oc™

3.WHILE (Jr_rllaxr{’—J‘} > tol)
(@ E=W'EV,, A=W AV,
(b)Solve (LE — A)y, = Ay, i=1,---,r
(c)Assign o, < —A fori=1...,r;Y =(Y,---, Y,)
(dB=B"Y",C=CY,B=(B,,...B,),C=(C,.....C,)
(e) UpdateV, andW. so Ran(V,) = span{(c,E — A)*BB,, ..., (c,E— A)'BB },

Ran(W.,) = span{(c,E — A)"C'C,,...,(c,E—A)C'C,}

W, =W, 'V,)w,

4.E=W."EV. A=W AV, ,B=W'B,C=CV,
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How to decide the expansion points?
» Locally optimal algorithm: IRKA for both SISO and MIMO system:

An lterative Rational Krylov Algorithm (IRKA)
1. Make an initial selection of o, fori =1,...,r,closed underconjugation

fix a tol. Choose initial directions I§1,... B,,C,,...C,.
2.ChooseV, andW. so that Ran(V, ) = span{(c,E — A)'BB,, ..., (c.E — A)'BB},
Ran(W,) =span{(c,E— A)"C"C,,....(c,E—A)TCTC LandW, = (W.V,) ™V,
o —oc™
3. WHILE (Jr_rllaxr{%} > tol)
Q) E=W'EV,,A=WTAV,
(b) Solve (LE — A)y, = 4y, (AE" = AT)¥, = A Fi =11
(c) Assigno, < —A fori=1...,r;Y =(Y,,---,Y,)
(B=B"Y,C=CY,B=(B,,...B,),.C =(C,,...,C,)
(e) UpdateV, andW. so Ran(V,) = span{(c,E — A)*BB,, ..., (c,E — A)'BB },
Ran(W.,) =span{(c,E — A)"C'C,,...,(c,E-A)"C'C,}
HOW. =W _(V,"W.)?
4.E=W."EV. A=W AV, ,B=W'B,C =CV,
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In(d)B=B"Y,C=CY,B=(B,,...B.),C=(C,,...,C,)
if o, iscomplex, y. inY is the corresponding eigenvector, then y. isin’Y
and corresponds to o, .

Residual o, are closed under conjugation, then W,V can be computed as real matrices.why?
For any complex variable o,, we have

(GE-A)*D =3 (AE)* (-AD)o!

(,E-A)'h =3 (AE) (-A D), )"

k=0
Since (7, ) = a_i", (o,E- A)‘15 and (o; E— A)‘lg have the same real and imaginary parts.
Therefore
span{(c;E — A) b, (o, E — A) b "} = span{Re[(c.E — A)'b], Im[(c.E — A) b}
So that
span{(c,E—A)'b,....(c.E- A b, (e E-A)'b",...,(c.E- A 'b}=
span{(c,E — A)b,...,Re[(c;E— A)*b], Im[(c:E— A)*b],...,(c,E— A)*b}
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» Locally optimal algorithm: IRKA for SISO system

Upon convergence, Algorithm IRKA leads to:

HA(—i.) = H(—/ii)and I-AI'(—iI) = H'(—;Zi)fori =1...,r.

 From Theorem 3.4, IRKA obtains a reduced model satisfies the local optimal
necessary conditions in Theorem 3.4 in [Gugercin et al. *08].

e Why weuse - ii rather than ﬂ:,?

To ensure that matrix o,E — Ais nonsingular. Using E = | as an example,
if o, =1, theno,l —A=11-QAQ =Q(AI -A)'Q?,

then the one element on the diagonal of the matrix ii | - Al }C A
If the reduced - order model is more and more accurate, /1, A becomes

closer to O, then i, | — Aisclose to singular, so that ;1 — Ais close to singular,
then (o, 1 — A)™ cannot be used to computeV, andW. .
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