Model Reduction of Dynamical Systems - 2

Exercise: 1 (Balanced realizations)

Given a minimal LTI system

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0}, \\
& y(t)=C x(t)+D u(t) .
\end{aligned}
$$

Show that a balanced realization is given by the state-space transformation

$$
T:=\Sigma^{-\frac{1}{2}} V^{T} R,
$$

where $P=S^{T} S$ and $Q=R^{T} R$ (e.g., Cholesky decompositions) satisfy the pair of Lyapunov equations

$$
\begin{aligned}
& A P+P A^{T}+B B^{T}=0, \\
& A^{T} Q+Q A+C^{T} C=0
\end{aligned}
$$

and

$$
S R^{T}=U \Sigma V^{T}
$$

is the SVD of $S R^{T}$.
Hint: First note that $T^{-1}=S^{T} U \Sigma^{-\frac{1}{2}}$, then the result follows by simple algebraic manipulations.

Exercise 2 (Output Error Bound)

Given an LTI system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \quad x(0)=x_{0}, \\
y(t) & =C x(t)+D u(t) .
\end{aligned}
$$

with the input output relation in frequency domain, $y(s)=\left(C(s I-A)^{-1} B+D\right) u(s):=G(s) u(s)$. Show that the error bound for a reduced model $\hat{y}(s)=\left(\hat{C}(s I-\hat{A})^{-1} \hat{B}+\hat{D}\right) u(s):=\hat{G}(s) u(s)$, is

$$
\|y-\hat{y}\|_{\infty} \leq\|G(s)-\hat{G}(s)\|_{\mathcal{H}_{2}}\|u\|_{\mathcal{L}_{2}},
$$

where the ∞-norm is the vector norm in the Euclidean space for any fixed t. .

