Otto-Von-Guericke-University-Magdeburg
Department of Mathematics-Institute for Analysis and Numerik
Max-Planck-Institute-Magdeburg
Computational Methods for Systems and Control Theory

Summer Term 2015
Prof. Peter Benner
Dr. Lihong Feng
Dr. M. Ilyas Ahmad

Model Reduction of Dynamical Systems - 2

Deadline for homework: 12/05/2015

Task: 1 (Computation of system norms)

a) Consider the LTI system from Homework 1:

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -4 & -2 \\
0 & 2 & 0
\end{array}\right], b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], c=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], d=0
$$

Analytically compute the \mathcal{H}_{∞}-norm of the system.
b) Consider the following LTI system:

$$
A=\left[\begin{array}{cc}
-8 & 8 \\
-8 & -42
\end{array}\right], b=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], c=\left[\begin{array}{l}
1 \\
2
\end{array}\right], d=0 .
$$

Analytically compute the \mathcal{H}_{2}-norm of the system.
Hint: Make use of the eigenvalue decomposition of $A=Q \Lambda Q^{-1}$ and the fact that the \mathcal{H}_{2}-norm is invariant under state-space transformations. Further use that the \mathcal{H}_{2}-norm is given as $\sqrt{c^{T} P c}$, where P satisfies the Lyapunov equation.

Task: 2 (The Lyapunov equation)

Consider the (infinite) controllability Gramian $P:=\int_{0}^{\infty} e^{A s} B B^{T} e^{A^{T} s} d s$. Assume that (A, B) is controllable. Show that the following two statements are equivalent:
a) The system $\dot{x}(t)=A x(t)+B u(t)$ is asymptotically stable.
b) It holds $P>0$ and $A P+P A^{T}+B B^{T}=0$.

Hint $\mathbf{b}) \Rightarrow \mathbf{a}$): Consider an eigenvalue λ of A together with its corresponding eigenvector x. Then pre- and postmultiply the above equation by x^{*} and x, respectively.

Task: 3 (Minimal balanced realization)

Consider the following LTI system

$$
\begin{aligned}
& \dot{x}(t)=\underbrace{\left[\begin{array}{cccc}
5 & -7 & 0 & -2 \\
6 & -8 & 0 & -2 \\
0 & 0 & -3 & 0 \\
9 & -9 & 0 & -4
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]}_{b} u(t), \\
& y(t)=\underbrace{\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]}_{c} x(t) .
\end{aligned}
$$

Use the MATLAB command lyapchol to compute the Cholesky factors S and R of the solutions to the Lyapunov equations

$$
A P+P A^{T}+b b^{T}=0, \quad A^{T} Q+Q A+c^{T} c=0
$$

In case that you do not have access to the Control System toolbox, you can find the results in the file LyapSol.mat on the course homepage. Compute the singular value decomposition $U \Sigma V^{T}=S R^{T}$ of the product of the Cholesy factors S and R^{T}. What can you say about the minimality of the system? Modify the procedure from Exercise 2 and adjust the transformation matrices $T=\Sigma^{-\frac{1}{2}} V^{T} R$ and $T^{-1}=S^{T} U \Sigma^{-\frac{1}{2}}$. Use your results to construct a minimal reduced-order model by an oblique projection which exactly reproduces the transfer function of the original model, i.e., for the reduced system it should hold $\hat{H}(i w)=H(i w), \forall w$. Validate your results by means of plotting the gain of the original and the reduced transfer function with the frequency interval $w \in\left[10^{-1}, 10^{5}\right]$. Use 1000 logarithmically distributed sample points and plot the gain $20 \cdot \log _{10}|H(j w)|$ on a logarithmic x -scale by using MATLAB command $\operatorname{semilogx}\left(w, H_{w}\right)$.

Send your routines to imahmad@mpi-magdeburg.mpg.de. The filename should include your name and the corresponding exercise sheet number as well as the exercise number, e.g., name-hw1t3. In case of several files please hand in a compressed file. Moreover, please print the source code of your routine and hand it in together with the other exercises.

