Model Reduction for Dynamical Systems

- Lectures 5/6 -

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany
benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de
www.mpi-magdeburg.mpg.de/2909616/mor_ss15

Outline

(1)

Introduction

- Model Reduction for Dynamical Systems
- Application Areas
- Motivating Examples

Mathematical Basics

- Numerical Linear Algebra
- Systems and Control Theory
- Qualitative and Quantitative Study of the Approximation Error
(3) Model Reduction by Projection
- Introduction
- Projection and Interpolation
(4) Modal Truncation
- Basic Principle
- Extensions
- Dominant Pole Algorithm
(5) Balanced Truncation
- The basic method
- Theoretical Background
- Singular Perturbation Approximation
- Balancing-Related Methods

Outline

(2) Mathematical Basics
(3) Model Reduction by Projection
(4) Modal Truncation
(5) Balanced Truncation

- The basic method
- Theoretical Background
- Singular Perturbation Approximation
- Balancing-Related Methods

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Motivation:

The $\operatorname{HSV}_{\mathrm{s}} \wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are system invariants: they are preserved under

$$
\mathcal{T}:(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

Balanced Truncation

Motivation:

The HSVs $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are system invariants: they are preserved under

$$
\mathcal{T}:(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

in transformed coordinates, the Gramians satisfy

$$
\begin{aligned}
& \qquad \begin{aligned}
\left(T A T^{-1}\right)\left(T P T^{T}\right)+\left(T P T^{T}\right)\left(T A T^{-1}\right)^{T}+(T B)(T B)^{T}=0, \\
\left(T A T^{-1}\right)^{T}\left(T^{-T} Q T^{-1}\right)+\left(T^{-T} Q T^{-1}\right)\left(T A T^{-1}\right)+\left(C T^{-1}\right)^{T}\left(C T^{-1}\right)=0 \\
\Rightarrow\left(T P T^{T}\right)\left(T^{-T} Q T^{-1}\right)=T P Q T^{-1},
\end{aligned} \\
& \text { hence } \Lambda(P Q)=\Lambda\left(\left(T P T^{T}\right)\left(T^{-T} Q T^{-1}\right)\right) .
\end{aligned}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(0) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{l}V_{1}^{\top} \\ V_{2}^{\top}\end{array}\right]$

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}} .
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{\top} A V, W^{\top} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}} .
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
V^{T} W=\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
V^{T} W=\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
\begin{aligned}
V^{\top} W & =\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{\top} V_{1} \Sigma_{1}^{-\frac{1}{2}} \\
& =\Sigma_{1}^{-\frac{1}{2}}\left[I_{r}, 0\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right] \Sigma_{1}^{-\frac{1}{2}}
\end{aligned}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
\begin{aligned}
V^{\top} W & =\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}} \\
& =\Sigma_{1}^{-\frac{1}{2}}\left[I_{r}, 0\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right] \Sigma_{1}^{-\frac{1}{2}}=\Sigma_{1}^{-\frac{1}{2}} \Sigma_{1} \Sigma_{1}^{-\frac{1}{2}}=I_{r}
\end{aligned}
$$

$\Longrightarrow V W^{\top}$ is an oblique projector, hence balanced truncation is a Petrov-Galerkin projection method.

Balanced Truncation

Properties:

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2} .
$$

Balanced Truncation

Properties:

- Reduced-order model is stable with HSVs $\sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

Balanced Truncation

Theoretical Background

| Linear, Time-Invariant (LTI) Systems | |
| :--- | :--- | :--- |
| $\dot{x}=A x+B u$, | $A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}$, |
| $y=C x+D u$, | $C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m}$. |

Balanced Truncation

Theoretical Background

Balanced Truncation

Theoretical Background

$$
\begin{array}{lll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x} & =A x+B u, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

Balanced Truncation

Theoretical Background

$$
\begin{array}{ll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

$$
\begin{array}{ll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

$$
\begin{array}{lll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A !
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{llll}
\dot{x}=A x+B u, & & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A !
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m} \text {, } \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} \text {. }
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

 Instead of$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m} \text {, } \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\rightsquigarrow Hankel singular values $\left\{\sigma_{j}\right\}_{j=1}^{\infty}: \sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m} \text {, } \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\rightsquigarrow Hankel singular values $\left\{\sigma_{j}\right\}_{j=1}^{\infty}: \sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$.
\Longrightarrow SVD-type approximation of \mathcal{H} possible!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{lll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y=C x, & C \in \mathbb{R}^{q \times n} . &
\end{array}
$$

Alternative to State-Space Operator: Hankel Operator

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} \text {. }
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0 .
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed \Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0 .
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
\Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
\Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=: C e^{A t} \underbrace{\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau}_{=: z}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=: C e^{A t} \underbrace{\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau}_{=: z}=C e^{A t} z
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=\int_{0}^{\infty} B^{T} e^{A^{T}(\tau-t)} C^{T} y_{+}(\tau) d \tau
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=\int_{0}^{\infty} B^{T} e^{A^{T}(\tau-t)} C^{T} y_{+}(\tau) d \tau=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} y_{+}(t)= \\
=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau \\
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)==B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau \\
& =B^{T} e^{-A^{T} t} \underbrace{\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau}_{\equiv Q} z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)==B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau \\
& =B^{T} e^{-A^{T} t} Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t)
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$, Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t)
$$

$$
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right)
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\left.\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow \text { (recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z=\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
& \mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
& \Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
& z=\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
&=\frac{1}{\sigma^{2}} \int_{-\infty}^{0} e^{-A \tau} B B^{T} e^{-A^{T} \tau} d \tau Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \left.\Longrightarrow \text { (recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \int_{-\infty}^{0} e^{-A \tau} B B^{T} e^{-A^{T} \tau} d \tau Q z \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \left.\Longrightarrow \text { (recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z \\
& =\frac{1}{\sigma^{2}} P Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z \\
& =\frac{1}{\sigma^{2}} P Q z
\end{aligned}
$$

$$
\Longleftrightarrow \quad P Q z=\sigma^{2} z
$$

\square

Balanced Truncation
 The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Theorem

Let the reduced-order system $\hat{\Sigma}:(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r \leq \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_{1}, \ldots, \sigma_{r}$.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let the reduced-order system $\hat{\Sigma}:(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r \leq \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_{1}, \ldots, \sigma_{r}$.

Proof: Note that in balanced coordinates, the Gramians are diagonal and equal to

$$
\operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, \sigma_{r+1}, \ldots, \sigma_{n}\right)
$$

Hence, the Gramian satisfies
$\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]+\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]^{T}+\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]^{T}=0$,
whence we obtain the "controllability Lyapunov equation" of the reduced-order system,

$$
A_{11} \Sigma_{1}+\Sigma_{1} A_{11}^{T}+B_{1} B_{1}^{T}=0
$$

The result follows from $\hat{A}=A_{11}, \hat{B}=B_{1}, \Sigma_{1}>0$, the solution theory of Lyapunov equations and the analogous considerations for the observability Gramian. (Minimality is a simple consequence of $\hat{P}=\Sigma_{1}=\hat{Q}>0$.)

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.
Balanced truncation would set $x_{2}=0$ and use $\left(A_{11}, B_{1}, C_{1}, D\right)$ as reduced-order model, thereby the information present in the remaining model is ignored!

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.
Balanced truncation would set $x_{2}=0$ and use $\left(A_{11}, B_{1}, C_{1}, D\right)$ as reduced-order model, thereby the information present in the remaining model is ignored!
Particularly, if $G(0)=\hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_{2}=0$, set $\dot{x}_{2}=0$. This yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}+\left(D-C_{2} A_{22}^{-1} B_{2}\right) u
\end{aligned}
$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0)=\hat{G}(0)$ as desired.

Singular Perturbation Approximation (aka Balanced Residualization)

Particularly, if $G(0)=\hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_{2}=0$, set $\dot{x}_{2}=0$. This yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}+\left(D-C_{2} A_{22}^{-1} B_{2}\right) u
\end{aligned}
$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0)=\hat{G}(0)$ as desired.

Note:

- A_{22} invertible as in balanced coordinates, $A_{22} \Sigma_{2}+\Sigma_{2} A_{22}^{T}+B_{2} B_{2}^{T}=0$ and $\left(A_{22}, B_{2}\right)$ controllable, $\Sigma_{2}>0 \Rightarrow A_{22}$ stable.
- If the original system is not balanced, first compute a minimal realization by applying balanced truncation with $r=\hat{n}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{T} S, Q=R^{T} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0,
$$ and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Classical Balanced Truncation (BT)

- $P=$ controllability Gramian of system given by (A, B, C, D).
- $Q=$ observability Gramian of system given by (A, B, C, D).
- P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{T} S, Q=R^{T} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

LQG Balanced Truncation (LQGBT) [Jonckhemer/Silverman '83]

- $P / Q=$ controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=A P+P A^{T}-P C^{T} C P+B^{T} B \\
& 0=A^{T} Q+Q A-Q B B^{T} Q+C^{T} C .
\end{aligned}
$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Balanced Stochastic Truncation (BST) [Desai/Pal '84, Green '88]

- $P=$ controllability Gramian of system given by (A, B, C, D), i.e., solution of Lyapunov equation $A P+P A^{T}+B B^{T}=0$.
- $Q=$ observability Gramian of right spectral factor of power spectrum of system given by (A, B, C, D), i.e., solution of ARE

$$
\hat{A}^{T} Q+Q \hat{A}+Q B_{W}\left(D D^{T}\right)^{-1} B_{W}^{T} Q+C^{T}\left(D D^{T}\right)^{-1} C=0,
$$

where $\hat{A}:=A-B_{W}\left(D D^{T}\right)^{-1} C, B_{W}:=B D^{T}+P C^{T}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- P, Q solve dual AREs

$$
\begin{aligned}
& 0=\bar{A} P+P \bar{A}^{T}+P C^{T} \bar{R}^{-1} C P+B \bar{R}^{-1} B^{T} \\
& 0=\bar{A}^{T} Q+Q \bar{A}+Q B \bar{R}^{-1} B^{T} Q+C^{T} \bar{R}^{-1} C
\end{aligned}
$$

where $\bar{R}=D+D^{T}, \bar{A}=A-B \bar{R}^{-1} C$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{T} S, Q=R^{T} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0,
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) - based on bounded real lemma [Opdenacker/Jonckheere '88];
- H_{∞} balanced truncation (HinfBT) - closed-loop balancing based on H_{∞} compensator [Mustafa/Glover '91].

Both approaches require solution of dual AREs.

- Frequency-weighted versions of the above approaches.

Balancing-Related Methods

Properties

- Guaranteed preservation of physical properties like
- stability (all),
- passivity (PRBT),
- minimum phase (BST).
- Computable error bounds, e.g.,

$$
\begin{aligned}
\text { BT: }\left\|G-G_{r}\right\|_{\infty} & \leq 2 \sum_{j=r+1}^{n} \sigma_{j}^{B T}, \\
\text { LQGBT: }\left\|G-G_{r}\right\|_{\infty} & \leq 2 \sum_{j=r+1}^{n} \frac{\sigma_{j}^{L Q G}}{\sqrt{1+\left(\sigma_{j}^{L Q G}\right)^{2}}} \\
\text { BST: }\left\|G-G_{r}\right\|_{\infty} & \leq\left(\prod_{j=r+1}^{n} \frac{1+\sigma_{j}^{B S T}}{1-\sigma_{j}^{B S T}}-1\right)\|G\|_{\infty},
\end{aligned}
$$

- Can be combined with singular perturbation approximation for steady-state performance.
- Computations can be modularized.

