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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, @ of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) With oy > 00> ... > 0, > 0.
/\(PQ)% = {oy,..., on} are the Hankel singular values (HSVs) of X.
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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, @ of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... >0, > 0.
o A(PQ)z = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ' TB,CT ', D)

_ Aun A By
= <[A21 A22:|’|:32:|’[C1 C2],D)
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balanced, if the Gramians, i.e., solutions P, @ of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... >0, > 0.
o A(PQ)z = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.
o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ' TB,CT ', D)
_ Aun A By
= <[A21 A22:|,|:B2:|,[C1 CQ],D)

A A A A

@ Truncation ~ (A, B, C, D) := (A1, B1, C1, D).

4
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Balanced Truncation

The HSVs A (PQ)? = {o1,...,0,} are system invariants: they are
preserved under

T : (A B,C,D)— (TAT Y, TB,CT %, D)
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Balanced Truncation

The HSVs A (PQ)z = {01,...,0,} are system invariants: they are
preserved under

T : (A B,C,D)— (TAT Y, TB,CT %, D)

in transformed coordinates, the Gramians satisfy

Il
()

(TAT )(TPTT) + (TPTT)(TAT ) +(TB)(TB)”
(TAT Y (TTQT )+ (T "QT ' WTAT H)+(cT H(cT™) = 0

= (TPT'YT TQT 1) =TPQT},

hence A (PQ) = A((TPTT)(T-TQT1)).
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.
Compute SVD

ROM is (WT AV, WT B, CV, D), where

(NI

W=RTWVY,?, V=S"u,%;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
> T

@ Compute SVD SRT = [ Uy, U] | [ v ] .

| LV

ROM is (WT AV, WT B, CV, D), where

W=RTWVY,?, V=S"u,%;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

T Zi Vi’
@ Compute SVD SR' =[U;, U] |-
22 V2
Q@ ROMis (WTAV, WTB, CV, D), where

W=RTVT?, V=sTus; .
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %, V=STuz; "
Note:

VIw = (5 EU7S)(RTVE, )
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Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
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Note:
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ Uy, Uy] { L ] )
Y, V)
© ROM is (WTAV, WTB, CV, D), where
W=RTVT,?,  V=STUT, "

Note:

(NI

a 4 1
VIw = (I, 20/ S)(RTWiZ, 2) = %, 20/ UxVT vz, 2

1
-1 21 I, _
¥, 2[1,, 0] ~|lo|=
2

Nl
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

> T

@ Compute SVD SRT = [ Uy, Uy] ! { V1T ] )
Y v,

Q@ ROMis (WTAV, WTB, CV, D), where
W=RTVis[?, V=5Tux %
Note:

a 1 4 4
(L, 2U) S)(R™ Wiz, ?) = ¥, 20/ usvT vz, ?

_1 > I, _1 _1 _1
T, ?[ I, 0] - [O]zlzzzlzzlzlzzl,
2

<
=

S

[

= VWY is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
v

4/10
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Balanced Truncation

@ Reduced-order model is stable with HSVs o7, ..., 0,.

Adaptive choice of r via computable error bound:

ly=9l2< (232 o) llullo
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Balanced Truncation

o Reduced-order model is stable with HSVs o1, ..., 0,.

@ Adaptive choice of r via computable error bound:

n
ly=9l2< (2527 o) llull

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 4/10



Balanced Truncation
@00

Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

Ax + Bu, AeRM™" BeR™™
y = Cx+ Du, C eRI*" D e RI*M

-
I
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

X Ax + Bu, Ae R BeR™™
y = Cx+ Du, CeRI*" D e RI*M

Assumptions (for now): tp = 0, xo = x(0) =0, D = 0.
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+ Buy, AeRM™" BeR™™
y = Cx+ Du, C eRI*" D e RI*M

State-Space Description for |/O-Relation

Variation-of-constants —-

t
S:u—y, y(t)= / CeAt=")Bu(r) dr for all t € R.

—00
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+ Buy, AeRM™" BeR™™
y = Cx+ Du, C eRI*" D e RI*M

State-Space Description for |/O-Relation

Variation-of-constants —-

t
S:u—y, y(t)= / CeAt=")Bu(r) dr for all t € R.

—0o0
o S:U — Y is a linear operator between (function) spaces.
Recall: A€ R"™ ™ is a , A R™ — R
use SVD approximation as for matrix Al

in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+ Buy, AeRM™" BeR™™
y = Cx+ Du, C eRI*" D e RI*M

v

State-Space Description for |/O-Relation

Variation-of-constants —-

t
S:u—y, y(t)= / CeAt=")Bu(r) dr for all t € R.

—00

o S:U — Y is a linear operator between (function) spaces.
@ Recall: A€ R"*™ is a linear operator, A: R™ — R"!
o Basic Idea: use SVD approximation as for matrix Al

in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+ Bu, AeRM™=r B e R™M
y = Cx+ Du, CeRI*", D e RI*M,

W

State-Space Description for |/O-Relation

Variation-of-constants =—

t
S:u—y, y(t)= / CeAt=")Bu(r) dr for all t € R.

—00

o S:U — Y is a linear operator between (function) spaces.
o Recall: A€ R"™ "™ is a linear operator, A: R™ — R"!
o Basic Idea: use SVD approximation as for matrix Al

@ Problem: in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!

v
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Balanced Truncation
Theoretical Background
Linear, Time-Invariant (LTI) Systems

X = Ax+Bu, AER™" BecR™m
y = Cx, C € RI¥",

Alternative to State-Space Operator: Hankel Operator

Instead of
t
S:u—y, y()= / CeAt=Bu(r) dr for all t € R.
use Hankel operator

0
H:iu_ =y, yi(t)= / Ce”t=T)Bu(r) dr for all t > 0.
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Balanced Truncation
Theoretical Background
Linear, Time-Invariant (LTI) Systems

X = Ax+Bu, AER™" BecR™m
y = Cx, C € RI¥",

Alternative to State-Space Operator: Hankel Operator

Instead of
S:umy, y(t)= /t CeAt=IBu(r) dr for all t € R.
use Hankel operator
H:iu_—yr, yi(t)= /0 Ce”t=T)Bu(r) dr for all t > 0.

H compact = H has discrete SVD
~~ Hankel singular values {0;}°;: 01> 02> ... > 0.
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Balanced Truncation
Theoretical Background
Linear, Time-Invariant (LTI) Systems

X = Ax+Bu, AER™" BecR™m
y = Cx, C € RI¥",

|

Alternative to State-Space Operator: Hankel Operator

Instead of
S:umy, y(t)= /t CeAt=IBu(r) dr for all t € R.
use Hankel operator
H:iu_—yr, yi(t)= /0 Ce”t=T)Bu(r) dr for all t > 0.

H compact = H has discrete SVD
~> Hankel singular values {Uj}f.i1 o1 >0>...>0.
— SVD-type approximation of H possible!

v

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/10




Balanced Truncation
(o] le}

Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+Bu, AER™" BecR™m
y = Cx, C € RI¥",

Alternative to State-Space Operator: Hankel Operator

Hankel Singular Values for Atmospheric Storm Model

10?

——H8Vs
H com pact — machine precision
10° \ ‘ : |

H has discrete SVD o 107
U

Hankel singular values

60
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0 100 200 300 400 500 600
k
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Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

X = Ax+Bu, AER™" BecR™m
y = Cx, C € RI¥",

Alternative to State-Space Operator: Hankel Operator

0
H:iu_ = yr, yi(t) :/ CeAt=T)Bu(r) dr for all t > 0.

H compact = H has discrete SVD

= Best approximation problem w.r.t. 2-induced operator norm well-posed
= solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gralmians of an LTI
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator

y+(t):’)-Lu_(t):/70 ce*t="By_(r)dr
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator

0 0
y(t) =Hu_(t) = / CceAt="By_(r)dr =: CeAt/ e A" Bu_(7)dr

—o0

I
N

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems

7/10



Balanced Truncation
ooe

Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator

0 0
yi(t) =Hu_(t) = / Ccer =" By_(r)dr =: CeAt/ e AT Bu_(1)dr = CeMtz.

[ee]

I
N
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
yi(t) = Hu_(t) = / CeAt=7)Bu_(r) dr = Celz.

Singular values of H = square roots of eigenvalues of H*H,
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0
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—oo
Singular values of H = square roots of eigenvalues of H*H,

x BT AT(r—t) T
Moyl = [ BTN C0CTy () ar
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Singular values of H = square roots of eigenvalues of H*H,

* LT AT (r—t) ~T T ATt [ ATr T
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
yi(t) = Hu_(t) = / CeAt=7)Bu_(r) dr = Celz.
—oo
Singular values of H = square roots of eigenvalues of H*H,

oo
Hyi(t) = = BTe’ATt/ eAT"CTy+(T) dr.
0

oo
H Hu_(t) = BTe_ATt/ A TCTCA 2 dr
0

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/10



Balanced Truncation
ooe

Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
yi(t) = Hu_(t) = / CeAt=7)Bu_(r) dr = Celz.
— 00
Singular values of H = square roots of eigenvalues of H*H,
T ATt [ ATr T
H'yi(t)= =B'e / e’ TCly (r)dT.
0
Hence,
oo
H Hu (t) = BTe—ATf/ A TCTCM 2 dr
0

T ATt [ AT+ T~ Ar
= B'e e C'Ce™""dr z
0

Q
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The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
yi(t) = Hu_(t) = / CeAt=7)Bu_(r) dr = Celz.

— 00
Singular values of H = square roots of eigenvalues of H*H,

T ATt [ ATr T

H'yi(t)= =B'e / e’ TCly (r)dT.
0

Hence,

oo
HHu_(t) = BTe—ATf/ A TCTCeAz dr
0

;
BTe A tQz
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The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
ya(t) = Hu_(t) = / CeAt=) Bu_ (1) dr = CeAtz.
Singular values of H = square roots of eigenvalues of H*H,
* T ATt [ AT7 T
H*yi(t)= =B'e / A TCTy (1) dr.
0

Hence,

H*Hu_(t) = BTe ATtQz

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/10



Balanced Truncation
ooe

Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof:  Hankel operator
0
yi(t) = Hu_(t) = / CeAt=7)Bu_(r) dr = Celz.
Singular values of H = square roots of eigenvalues of H*H,
* T ATt [ AT7 T
H*yi(t)= =B'e / A TCTy (1) dr.
0

Hence,

H*Hu_(t) = BTeATtQz = o?u_(t).

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/10



Balanced Truncation
ooe

Balanced Truncation

The Hankel Singular Values are Singular Values!

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof: Singular values of H = square roots of eigenvalues of H*H, Hence,

H*Hu_(t) = BTe AtQz = o2u_(t).

= u_(t)= ﬁBTe_ATth

7/10
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system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Proof: Singular values of H = square roots of eigenvalues of H*H,

H*Hu_(t) = BTe AtQz = o2u_(t).
= u_(t) = ﬁBTe_ATth = (recalling z = ffoo e ATBu_ (1) dT)
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the singular values of the Hankel operator associated to X.

Proof: Singular values of H = square roots of eigenvalues of H*H,
H*Hu_(t) = BTe AtQz = o2u_(t).
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Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, @ be the controllability and observability Gramians of an LTI

. 1
system X. Then the Hankel singular values A (PQ)z = {o1,...,0,} are
the singular values of the Hankel operator associated to X.

Theorem

Let the reduced-order system 3. : (A, B, C, D) with r < A be computed
by balanced truncation. Then the reduced-order model X is balanced,
stable, minimal, and its HSVs are o1,...,0,.
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The Hankel Singular Values are Singular Values!

Let the reduced-order system ¥ : (A, B, C, D) with r < i be computed
by balanced truncation. Then the reduced-order model ¥ is balanced,
stable, minimal, and its HSVs are o4, ..., 0,.

Proof: Note that in balanced coordinates, the Gramians are diagonal and equal to
diag(Xi,X0) = diag(o1,...,0r, Orp1s- .-, 0n)-

Hence, the Gramian satisfies

2" b w (R 2] 3][8]
A Ax pX} P} A Ax B, B ’

whence we obtain the " controllability Lyapunov equation” of the reduced-order system,

AnY 4+ T1Af + BB =0.
The result follows from A = A11, B= Bi1, X1 > 0, the solution theory of Lyapunov

equations and the analogous considerations for the observability Gramian. (Minimality

is a simple consequence of p= Y, = C) >0.)
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Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system
' Al A
[f‘l]: [Xl}ju[&}u, y:[cl,cz][xl}juou
X2 Ax Ax X2 B, X2

is in balanced coordinates.
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Assume the system
X All A12
[fq]: [Xl}ju[&}u, y:[cl,cz][xl}juou
X2 An  Axm X2 B, X2
is in balanced coordinates.

Balanced truncation would set xo = 0 and use (A1, Bi, Ci, D) as reduced-order
model, thereby the information present in the remaining model is ignored!
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Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system
x Al A
2]l ][z )R ]e rmaal ]
X2 A Az X2 B, X2

is in balanced coordinates.
Balanced truncation would set xo = 0 and use (A1, Bi, Ci, D) as reduced-order
model, thereby the information present in the remaining model is ignored!

Particularly, if G(0) = G(0) ("zero steady-state error”) is required, one can
apply the same condensation technique as in Guyan reduction: instead of
x2 = 0, set Xo = 0. This yields the reduced-order model

x = (An— A12A;21A21)X1 + (B — ApAy B)u,
y = (G — GAS An)x + (D — GAY' B)u,
with
o the same properties as the reduced-order model w.r.t. stability, minimality,
error bound, but D # D;

@ zero steady-state error, G(0) = G(0) as desired.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 8/10



Introduction lathematical Basic MOR by Projection Modal Truncation Balanced Ti

Singular Perturbation Approximation (aka Balanced Residualization)

Particularly, if G(0) = G(0) ("zero steady-state error”) is required, one can
apply the same condensation technique as in Guyan reduction: instead of
x2 = 0, set X» = 0. This yields the reduced-order model

X = (Au-— A12A2_21A21)X1 + (B — A12A2_2132)U,
y = (C1 — C2A2_21A21)X1 + (D — C2A2_2132)u,
with

@ the same properties as the reduced-order model w.r.t. stability, minimality,
error bound, but D # D;

@ zero steady-state error, G(0) = G(0) as desired.
Note:

@ Az invertible as in balanced coordinates, AxnY¥s + Y2A) + BBy = 0 and
(A2, B2) controllable, ¥ > 0 = Ay stable.

@ If the original system is not balanced, first compute a minimal realization
by applying balanced truncation with r = 7.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(al,...,an)Zz, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 9/10



Balanced Truncation
{ ]}
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Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(ol,...,an)zz, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

Classical Balanced Truncation (BT) [MULLIS/ROBERTS ’76, MOORE ’81]

o P = controllability Gramian of system given by (A, B, C, D).
@ @ = observability Gramian of system given by (A, B, C, D).

@ P, Q solve dual Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C = 0.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(ol,...,an)zz, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

LQG Balanced Truncation (LQGBT) [JONCKHEERE/SILVERMAN ’'83]

e P/Q = controllability/observability Gramian of closed-loop system
based on LQG compensator.

e P, @ solve dual algebraic Riccati equations (AREs)

= AP+ PAT —PC"CP+B'B,
0 = ATQ+QA-QBBTQ+C'C.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(ol,...,an):z, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

Balanced Stochastic Truncation (BST) [Desar/Par '84, Greex '88]

@ P = controllability Gramian of system given by (A, B, C, D), i.e.,
solution of Lyapunov equation AP 4+ PAT + BB = 0.

@ @ = observability Gramian of right spectral factor of power
spectrum of system given by (A, B, C, D), i.e., solution of ARE

ATQ+ QA+ QBw(DD™) By Q+ CT(DD")'C =0,

where A:= A — By(DD")™*C, By := BD" + PC".
v
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(ol,...,an)zz, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

Positive-Real Balanced Truncation (PRBT) [GREEN '88]

o Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.
e P, Q solve dual AREs
0 = AP+PA" +PC"R'CP+BR'BT,
0 = ATQ+QA+QBR'B"Q+ C"R'c,
where R=D+ D", A=A— BR™'C.

v
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P:Q:diag(ol,...,an):z, o1>...>20,>0,

and truncate corresponding realization at size r with o, > 0,41.

| A\

Other Balancing-Based Methods
@ Bounded-real balanced truncation (BRBT) — based on bounded real
lemma [OPDENACKER/JONCKHEERE '88];
o H,., balanced truncation (HinfBT) — closed-loop balancing based on
Hs compensator [Mustara/GLOVER *91].
Both approaches require solution of dual AREs.
o Frequency-weighted versions of the above approaches.
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Balancing-Related Methods

Properties

o Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).

o Computable error bounds, e.g.,

BT: ||G—Gilloa <2 of’,

j=r+1

LQGBT: [[G—Glls < 2 )

G}_Loc
\/1H(ote0)2
j=r+1 ™)

n 140 B5T
BST: [|G— Gl < sy — 1| Gl

1—o0;
j=rt1 '
o Can be combined with singular perturbation approximation for
steady-state performance.
@ Computations can be modularized.
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