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Introduction Mathematical Basics MOR by Projection Modal Truncation

Model Reduction by Projection
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e.,
want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity∫ t

−∞
u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R, ∀u ∈ L2(R,Rm).

(“system does not generate energy”).

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 4/12



Introduction Mathematical Basics MOR by Projection Modal Truncation

Model Reduction by Projection
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e.,
want
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Model Reduction by Projection
Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range (P), then P is
projector onto V. On the other hand, if {v1, . . . , vr} is a basis of V and
V = [ v1, . . . , vr ], then P = V (V TV )−1V T is a projector onto V.
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Lemma 3.2 (Projector Properties)

If P = PT , then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

P is the identity operator on V, i.e., Pv = v ∀v ∈ V.

I − P is the complementary projector onto kerP.

If V is an A-invariant subspace corresponding to a subset of A’s spectrum,
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Model Reduction by Projection
Projection and Interpolation

Methods:

1 Modal Truncation

2 Balanced Truncation

3 Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)

4 many more. . .

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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Model Reduction by Projection
Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ so that

‖x − x̃‖ = ‖x − V x̂‖,

and the reduced-order model is

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).
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Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since
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=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 6/12



Introduction Mathematical Basics MOR by Projection Modal Truncation

Model Reduction by Projection
Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x
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=Â
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Model Reduction by Projection
Projection and Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
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Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),
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the error transfer function can be written as

G(s)− Ĝ(s) =
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Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
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)
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)
= C

(
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=:P(s)

)
(sIn − A)−1B.

If s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), then P(s∗) is a projector onto V =⇒

if (s∗In − A)−1B ∈ V, then (In − P(s∗))(s∗In − A)−1B = 0,

hence

G(s∗)− Ĝ(s∗) = 0 ⇒ G(s∗) = Ĝ(s∗), i.e., Ĝ interpolates G in s∗!
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If s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), then Q(s)H is a projector onto W =⇒

if (s∗In − A)−∗CT ∈ W, then C(s∗In − A)−1(In − Q(s∗)) = 0,

hence
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Model Reduction by Projection
Projection and Interpolation

Theorem [Grimme ’97, Villemagne/Skelton ’87]

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

and s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), if either

(s∗In − A)−1B ∈ range (V ), or

(s∗In − A)−∗CT ∈ range (W ),

then the interpolation condition

G (s∗) = Ĝ (s∗).

in s∗ holds.

Note: extension to Hermite interpolation conditions later!
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.
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subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Simple computation for large-scale systems, using, e.g., Krylov subspace
methods (Lanczos, Arnoldi), Jacobi-Davidson method.
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Modal Truncation

Basic method:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = C(sI − A)−1B + D = CTT−1(sI − A)−1TT−1B + D

= CT (sI − T−1AT )−1T−1B + D

= [ Ĉ , C2 ]

[
(sIr − Â)−1

(sIn−r − A2)−1

][
B̂
B2

]
+ D

= Ĝ(s) + C2(sIn−r − A2)−1B2,
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T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = Ĝ(s) + C2(sIn−r − A2)−1B2,

observing that ‖G − Ĝ‖∞ = supω∈R σmax(C2(ωIn−r − A2)−1B2), and

C2(ωIn−r − A2)−1B2 = C2diag

(
1

ω − λr+1
, . . . ,

1

ω − λn

)
B2.
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Difficulties:

Eigenvalues contain only limited system information.

Dominance measures are difficult to compute.
([Litz ’79] use Jordan canoncial form; otherwise merely heuristic criteria,
e.g., [Varga ’95]. Recent improvement: dominant pole algorithm.)

Error bound not computable for really large-scale problems.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 8/12



Introduction Mathematical Basics MOR by Projection Modal Truncation

Basic Principle
Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n = 348, m = q = 1, reduced using 13 dominant complex
conjugate eigenpairs, error bound yields ‖G − Ĝ‖∞ ≤ 1.21 · 103

Bode plots of transfer functions and error function

MATLAB R© demo.
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Basic Principle
Extensions

Base enrichment
Static modes are defined by setting ẋ = 0 and assuming unit loads, i.e.,
u(t) ≡ ej , j = 1, . . . ,m:

0 = Ax(t) + Bej =⇒ x(t) ≡ −A−1bj .

Projection subspace V is then augmented by A−1[ b1, . . . , bm ] = A−1B.

Interpolation-projection framework =⇒ G (0) = Ĝ (0)!

If two sided projection is used, complimentary subspace can be
augmented by A−TCT =⇒ G ′(0) = Ĝ ′(0)!

Note: if m 6= q, add random vectors or delete some of the columns in A−TCT .
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Basic Principle
Extensions

Guyan reduction (static condensation)

Partition states in masters x1 ∈ Rr and slaves x2 ∈ Rn−r (FEM terminology)
Assume stationarity, i.e., ẋ = 0 and solve for x2 in

0 =

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u

⇒ x2 = −A−1
22 A21x1 − A−1

22 B2u.

Inserting this into the first part of the dynamic system

ẋ1 = A11x1 + A12x2 + B1u, y = C1x1 + C2x2

then yields the reduced-order model

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u

y = (C1 − C2A
−1
22 A21)x1 − C2A

−1
22 B2u.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: this follows using the spectral decomposition A = XDX−1, with
X = [ x1, . . . , xn] the right and X−1 =: Y = [y1, . . . , yn]H the left eigenvector matrices:

G(s) = C(sI − XDX−1)−1B = CX (sI − diag {λ1, . . . , λn})−1YB

= [Cx1, . . . ,Cxn ]


1

s−λ1

. . .
1

s−λn


 yH

1 B
...
yH
n B


=

n∑
k=1

(Cxk )(yH
k B)

s − λk
.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: Rk = (Cxk)(yH
k B) are the residues of G in the sense of the residue

theorem of complex analysis:

res (G , λ`) = lim
s→λ`

(s − λ`)G(s) =
n∑

k=1

lim
s→λ`

s − λ`
s − λk︸ ︷︷ ︸

=

{
0 for k 6= `
1 for k = `

Rk = R`.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.

Remark
The dominant modes have most important influence on the input-output
behavior of the system and are responsible for the ”peaks”’ in the frequency
response.
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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0
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exact model, n = 217
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

ω

‖G
(
ω

)‖
2

exact model, n = 217

=(λ) of dominant poles
k = 46 dominant poles

k = 46, smallest <(λ) + static modes

Algorithms for computing dominant poles and eigenvectors:

Subspace Accelerated Dominante Pole Algorithm
(SADPA),

Rayleigh-Quotient-Iteration (RQI),

Jacobi-Davidson-Method.
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