# Otto-von-Guericke Universität Magdeburg Faculty of Mathematics 

## Model Reduction for Dynamical Systems

- Lecture 4 -


## Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

Magdeburg, Germany
benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de
www.mpi-magdeburg.mpg.de/2909616/mor_ss15

## Outline

Introduction

- Model Reduction for Dynamical Systems
- Application Areas
- Motivating Examples
(2) Mathematical Basics
- Numerical Linear Algebra
- Systems and Control Theory
- Qualitative and Quantitative Study of the Approximation Error
(3) Model Reduction by Projection
- Introduction
- Projection and Interpolation
(4) Modal Truncation
- Basic Principle
- Dominant Pole Algorithm


## Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by Projection

- Introduction
- Projection and Interpolation
(4) Modal Truncation


## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:


## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:


## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:


## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of $G$ in $\mathbb{C}^{-}$),
- minimum phase (zeroes of $G$ in $\mathbb{C}^{-}$),
- passivity

$$
\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d \tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

("system does not generate energy").

## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of $G$ in $\mathbb{C}^{-}$),
- minimum phase (zeroes of $G$ in $\mathbb{C}^{-}$),


## - passivity


("system does not generate energy").

## Model Reduction by Projection

## Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

$\Longrightarrow$ Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of $G$ in $\mathbb{C}^{-}$),
- minimum phase (zeroes of $G$ in $\mathbb{C}^{-}$),
- passivity

$$
\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d \tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

("system does not generate energy").

## Model Reduction by Projection

## Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=$ range $(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Model Reduction by Projection <br> Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=$ range $(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Lemma 3.2 (Projector Properties)

- If $P=P^{T}$, then $P$ is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- $P$ is the identity operator on $\mathcal{V}$, i.e., $P v=v \forall v \in \mathcal{V}$
- $I-P$ is the complementary projector onto $\operatorname{ker} P$
- If $\mathcal{V}$ is an $A$-invariant subspace corresponding to a subset of $A^{\prime}$ 's spectrum, then we call $P$ a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another $r$-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for $\mathcal{W}$, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto $\mathcal{V}$ along $\mathcal{W}$.


## Model Reduction by Projection <br> Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Lemma 3.2 (Projector Properties)

- If $P=P^{T}$, then $P$ is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- $P$ is the identity operator on $\mathcal{V}$, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto $\operatorname{ker} P$.
- If $\mathcal{V}$ is an $A$-invariant subspace corresponding to a subset of $A$ 's spectrum, then we call $P$ a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another $r$-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for $\mathcal{W}$, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto $\mathcal{V}$ along $\mathcal{W}$.


## Model Reduction by Projection <br> Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Lemma 3.2 (Projector Properties)

- If $P=P^{T}$, then $P$ is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- $P$ is the identity operator on $\mathcal{V}$, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto $\operatorname{ker} P$.
- If $\mathcal{V}$ is an $A$-invariant subspace corresponding to a subset of $A$ 's spectrum, then we call $P$ a spectral projector
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another $r$-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for $\mathcal{W}$, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto $\mathcal{V}$ along $\mathcal{W}$.


## Model Reduction by Projection <br> Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Lemma 3.2 (Projector Properties)

- If $P=P^{T}$, then $P$ is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- $P$ is the identity operator on $\mathcal{V}$, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto ker $P$.
- If $\mathcal{V}$ is an $A$-invariant subspace corresponding to a subset of $A$ 's spectrum, then we call $P$ a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another $r$-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for $\mathcal{W}$, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto $\mathcal{V}$ along $\mathcal{W}$.


## Model Reduction by Projection

## Projection Basics

## Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then $P$ is projector onto $\mathcal{V}$. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of $\mathcal{V}$ and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto $\mathcal{V}$.

## Lemma 3.2 (Projector Properties)

- If $P=P^{T}$, then $P$ is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- $P$ is the identity operator on $\mathcal{V}$, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto ker $P$.
- If $\mathcal{V}$ is an $A$-invariant subspace corresponding to a subset of $A$ 's spectrum, then we call $P$ a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another $r$-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for $\mathcal{W}$, then $P=V\left(W^{T} V\right)^{-1} W^{T}$ is an oblique projector onto $\mathcal{V}$ along $\mathcal{W}$.


## Model Reduction by Projection

## Projection and Interpolation

## Methods:

(1) Modal Truncation
(2) Balanced Truncation
(3) Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
( ( many more...
Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

## Model Reduction by Projection

## Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace $\mathcal{V}$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal{V}$ along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, where

$$
\operatorname{range}(V)=\mathcal{V}, \quad \text { range }(W)=\mathcal{W}, \quad W^{T} V=I_{r}
$$

Then, with $\hat{x}=W^{T} x$, we obtain $x \approx V \hat{x}$ so that

$$
\|x-\tilde{x}\|=\|x-V \hat{x}\|,
$$

and the reduced-order model is

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D)
$$

## Model Reduction by Projection

## Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace $\mathcal{V}$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal{V}$ along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u)=W^{T}\left(V W^{T} \dot{x}-A V W^{T} x-B u\right)
$$

## Model Reduction by Projection

## Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace $\mathcal{V}$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal{V}$ along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
\begin{aligned}
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u) & =W^{T}\left(V W^{\top} \dot{x}-A V W^{T} x-B u\right) \\
& =\underbrace{W^{T} \dot{x}}_{\dot{\hat{x}}}-\underbrace{W^{\top} A V}_{=\hat{A}} \underbrace{W^{T} x}_{=\hat{x}}-\underbrace{W^{\top} B}_{=\hat{B}} u
\end{aligned}
$$

## Model Reduction by Projection

## Projection and Interpolation

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace $\mathcal{V}$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal{V}$ along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
\begin{aligned}
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u) & =W^{T}\left(V W^{T} \dot{x}-A V W^{T} x-B u\right) \\
& =\underbrace{W^{T} \dot{x}}_{\dot{\hat{x}}}-\underbrace{W^{T} A V}_{=\hat{A}} \underbrace{W^{T} x}_{=\hat{x}}-\underbrace{W^{T} B}_{=\hat{B}} u \\
& =\dot{\hat{x}}-\hat{A} \hat{x}-\hat{B} u=0
\end{aligned}
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
G(s)-\hat{G}(s)=\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right)
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{T} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C\left(\left(s I_{n}-A\right)^{-1}-V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\right) B
\end{aligned}
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{T} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C\left(\left(s I_{n}-A\right)^{-1}-V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\right) B \\
& =C(I_{n}-\underbrace{V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\left(s I_{n}-A\right)}_{=: P(s)})\left(s I_{n}-A\right)^{-1} B .
\end{aligned}
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{T} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C(I_{n}-\underbrace{V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\left(s I_{n}-A\right)}_{=: P(s)})\left(s I_{n}-A\right)^{-1} B .
\end{aligned}
$$

If $s_{*} \in \mathbb{C} \backslash(\wedge(A) \cup \wedge(\hat{A}))$, then $P\left(s_{*}\right)$ is a projector onto $\mathcal{V}$ :
range $\left(P\left(s_{*}\right)\right) \subset$ range $(V)$, all matrices have full rank $\Rightarrow "="$,

$$
P\left(s_{*}\right)^{2}=V\left(s_{*} I_{r}-\hat{A}\right)^{-1} W^{T}\left(s_{*} I_{n}-A\right) V\left(s_{*} I_{r}-\hat{A}\right)^{-1} W^{T}\left(s_{*} I_{n}-A\right)
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C(I_{n}-\underbrace{V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\left(s I_{n}-A\right)}_{=: P(s)})\left(s I_{n}-A\right)^{-1} B .
\end{aligned}
$$

If $s_{*} \in \mathbb{C} \backslash(\wedge(A) \cup \wedge(\hat{A}))$, then $P\left(s_{*}\right)$ is a projector onto $\mathcal{V}$ :
range $\left(P\left(s_{*}\right)\right) \subset$ range $(V)$, all matrices have full rank $\Rightarrow "="$,

$$
\begin{aligned}
P\left(s_{*}\right)^{2} & =V\left(s_{*} I_{r}-\hat{A}\right)^{-1} W^{\top}\left(s_{*} I_{n}-A\right) V\left(s_{*} I_{r}-\hat{A}\right)^{-1} W^{T}\left(s_{*} I_{n}-A\right) \\
& =V\left(s_{*} I_{r}-\hat{A}\right)^{-1} \underbrace{\left(s_{*} I_{r}-\hat{A}\right)\left(s_{*} I_{r}-\hat{A}\right)^{-1}}_{=I_{r}} W^{T}\left(s_{*} I_{n}-A\right)=P\left(s_{*}\right) .
\end{aligned}
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C(I_{n}-\underbrace{V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\left(s I_{n}-A\right)}_{=: P(s)})\left(s I_{n}-A\right)^{-1} B .
\end{aligned}
$$

## If $s_{*} \in \mathbb{C} \backslash(\Lambda(A) \cup \Lambda(\hat{A}))$, then $P\left(s_{*}\right)$ is a projector onto $\mathcal{V} \Longrightarrow$

$$
\text { if }\left(s_{*} I_{n}-A\right)^{-1} B \in \mathcal{V}, \text { then }\left(I_{n}-P\left(s_{*}\right)\right)\left(s_{*} I_{n}-A\right)^{-1} B=0 \text {, }
$$

hence

$$
G\left(s_{*}\right)-\hat{G}\left(s_{*}\right)=0 \Rightarrow G\left(s_{*}\right)=\hat{G}\left(s_{*}\right) \text {, i.e., } \hat{G} \text { interpolates } G \text { in } s_{*}!
$$

## Model Reduction by Projection

## Projection and Interpolation

## Projection $\rightsquigarrow$ Rational Interpolation

Given the ROM

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

the error transfer function can be written as

$$
\begin{aligned}
G(s)-\hat{G}(s) & =\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right) \\
& =C(I_{n}-\underbrace{V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}\left(s I_{n}-A\right)}_{=: P(s)})\left(s I_{n}-A\right)^{-1} B . \\
\text { Analogously, } & =C\left(s I_{n}-A\right)^{-1}(I_{n}-\underbrace{\left(s I_{n}-A\right) V\left(s I_{r}-\hat{A}\right)^{-1} W^{T}}_{=: Q(s)}) B .
\end{aligned}
$$

If $s_{*} \in \mathbb{C} \backslash(\Lambda(A) \cup \Lambda(\hat{A}))$, then $Q(s)^{H}$ is a projector onto $\mathcal{W} \Longrightarrow$

$$
\text { if }\left(s_{*} I_{n}-A\right)^{-*} C^{T} \in \mathcal{W} \text {, then } C\left(s_{*} I_{n}-A\right)^{-1}\left(I_{n}-Q\left(s_{*}\right)\right)=0 \text {, }
$$

hence

$$
G\left(s_{*}\right)-\hat{G}\left(s_{*}\right)=0 \Rightarrow G\left(s_{*}\right)=\hat{G}\left(s_{*}\right) \text {, i.e., } \hat{G} \text { interpolates } G \text { in } s_{*}!
$$

## Model Reduction by Projection

## Projection and Interpolation

## Theorem

## [Grimme '97, Villemagne/Skelton '87]

Given the ROM

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{\top} B, \quad \hat{C}=C V, \quad(\hat{D}=D)
$$

and $s_{*} \in \mathbb{C} \backslash(\Lambda(A) \cup \Lambda(\hat{A}))$, if either

$$
\begin{aligned}
& -\left(s_{*} I_{n}-A\right)^{-1} B \in \operatorname{range}(V), \text { or } \\
& -\left(s_{*} I_{n}-A\right)^{-*} C^{T} \in \operatorname{range}(W),
\end{aligned}
$$

then the interpolation condition

$$
G\left(s_{*}\right)=\hat{G}\left(s_{*}\right) .
$$

in $s_{*}$ holds.

Note: extension to Hermite interpolation conditions later!

## Outline

(2) Mathematical Basics
(3) Model Reduction by Projection
(4) Modal Truncation

- Basic Principle
- Dominant Pole Algorithm


## Modal Truncation

## Basic method:

Assume $A$ is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto $A$-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of $A$. Then with

$$
V=T(:, 1: r)=\left[t_{1}, \ldots, t_{r}\right], \quad \tilde{W}^{H}=T^{-1}(1: r,:), \quad W=\tilde{W}\left(V^{H} \tilde{W}\right)^{-1}
$$

reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

## Modal Truncation

## Basic method:

Assume $A$ is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto $A$-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of $A$. Then with

$$
V=T(:, 1: r)=\left[t_{1}, \ldots, t_{r}\right], \quad \tilde{W}^{H}=T^{-1}(1: r,:), \quad W=\tilde{W}\left(V^{H} \tilde{W}\right)^{-1}
$$

reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

## Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

## Modal Truncation

## Basic method:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, \quad C_{2}\right], \quad \hat{D}=D .
$$

## Properties:

## Error bound:

$$
\|G-\hat{G}\|_{\infty} \leq\left\|C_{2}\right\|\left\|B_{2}\right\| \frac{1}{\min _{\lambda \in \Lambda\left(A_{2}\right)}|\operatorname{Re}(\lambda)|}
$$

Proof:

$$
\begin{aligned}
G(s) & =C(s I-A)^{-1} B+D=C T T^{-1}(s I-A)^{-1} T T^{-1} B+D \\
& =C T\left(s I-T^{-1} A T\right)^{-1} T^{-1} B+D \\
& =\left[\hat{C}, C_{2}\right]\left[\begin{array}{c}
\left(s I_{r}-\hat{A}\right)^{-1} \\
\\
\end{array} \quad \begin{array}{c}
\hat{B}\left(s I_{n-r}-A_{2}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right]+D \\
& =\hat{C}\left(s I_{n-r}-A_{2}\right)^{-1} B_{2},
\end{aligned}
$$

## Modal Truncation

## Basic method:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

## Properties:

## Error bound:

$$
\|G-\hat{G}\|_{\infty} \leq\left\|C_{2}\right\|\left\|B_{2}\right\| \frac{1}{\min _{\lambda \in \Lambda\left(A_{2}\right)}|\operatorname{Re}(\lambda)|}
$$

Proof:

$$
G(s)=\hat{G}(s)+C_{2}\left(s I_{n-r}-A_{2}\right)^{-1} B_{2},
$$

observing that $\|G-\hat{G}\|_{\infty}=\sup _{\omega \in \mathbb{R}} \sigma_{\max }\left(C_{2}\left(\jmath \omega I_{n-r}-A_{2}\right)^{-1} B_{2}\right)$, and

$$
C_{2}\left(\jmath \omega I_{n-r}-A_{2}\right)^{-1} B_{2}=C_{2} \operatorname{diag}\left(\frac{1}{\jmath \omega-\lambda_{r+1}}, \ldots, \frac{1}{\jmath \omega-\lambda_{n}}\right) B_{2} .
$$

## Modal Truncation

## Basic method:

Assume $A$ is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto $A$-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of $A$. Then reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

## Difficulties:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute.
([Litz '79] use Jordan canoncial form; otherwise merely heuristic criteria, e.g., [VARGA '95]. Recent improvement: dominant pole algorithm.)
- Error bound not computable for really large-scale problems.


## Basic Principle

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, $n=348, m=q=1$, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G-\hat{G}\|_{\infty} \leq 1.21 \cdot 10^{3}$

## Bode plots of transfer functions and error function




MATLAB ${ }^{\circledR}$ demo

## Basic Principle

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, $n=348, m=q=1$, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G-\hat{G}\|_{\infty} \leq 1.21 \cdot 10^{3}$

## Bode plots of transfer functions and error function




MATLAB ${ }^{\circledR}$ demo.

## Basic Principle

## Extensions

## Base enrichment

Static modes are defined by setting $\dot{x}=0$ and assuming unit loads, i.e., $u(t) \equiv e_{j}, j=1, \ldots, m$ :

$$
0=A x(t)+B e_{j} \quad \Longrightarrow \quad x(t) \equiv-A^{-1} b_{j} .
$$

Projection subspace $\mathcal{V}$ is then augmented by $A^{-1}\left[b_{1}, \ldots, b_{m}\right]=A^{-1} B$. Interpolation-projection framework $\Longrightarrow G(0)=\hat{G}(0)$ !
If two sided projection is used, complimentary subspace can be augmented by $A^{-T} C^{T} \Longrightarrow G^{\prime}(0)=\hat{G}^{\prime}(0)$ !
Note: if $m \neq q$, add random vectors or delete some of the columns in $A^{-T} C^{\top}$.

## Basic Principle

## Extensions

## Guyan reduction (static condensation)

Partition states in masters $x_{1} \in \mathbb{R}^{r}$ and slaves $x_{2} \in \mathbb{R}^{n-r}$ (FEM terminology) Assume stationarity, i.e., $\dot{x}=0$ and solve for $x_{2}$ in

$$
\begin{aligned}
0 & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right] u \\
\Rightarrow \quad x_{2} & =-A_{22}^{-1} A_{21} x_{1}-A_{22}^{-1} B_{2} u .
\end{aligned}
$$

Inserting this into the first part of the dynamic system

$$
\dot{x}_{1}=A_{11} x_{1}+A_{12} x_{2}+B_{1} u, \quad y=C_{1} x_{1}+C_{2} x_{2}
$$

then yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}-C_{2} A_{22}^{-1} B_{2} u .
\end{aligned}
$$

## Modal Truncation

Dominant Pole Algorithm

## Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$ :

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.

## Modal Truncation

## Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$ :

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
Note: this follows using the spectral decomposition $A=X D X^{-1}$, with $X=\left[x_{1}, \ldots, x_{n}\right]$ the right and $X^{-1}=: Y=\left[y_{1}, \ldots, y_{n}\right]^{H}$ the left eigenvector matrices:

$$
\begin{aligned}
G(s) & =C\left(s l-X D X^{-1}\right)^{-1} B=C X\left(s l-\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right)^{-1} Y B \\
& =\left[C x_{1}, \ldots, C x_{n}\right]\left[\begin{array}{ccc}
\frac{1}{s-\lambda_{1}} & & \\
& \ddots & \\
& & \left.\frac{1}{s-\lambda_{n}}\right]\left[\begin{array}{l}
y_{1}^{H} B \\
\vdots \\
y_{n}^{H} B
\end{array}\right] \\
& =\sum_{k=1}^{n} \frac{\left(C x_{k}\right)\left(y_{k}^{H} B\right)}{s-\lambda_{k}} .
\end{array} .\right.
\end{aligned}
$$

## Modal Truncation

## Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$ :

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
Note: $R_{k}=\left(C x_{k}\right)\left(y_{k}^{H} B\right)$ are the residues of $G$ in the sense of the residue theorem of complex analysis:

$$
\begin{aligned}
\operatorname{res}\left(G, \lambda_{\ell}\right)=\lim _{s \rightarrow \lambda_{\ell}}\left(s-\lambda_{\ell}\right) G(s)=\sum_{k=1}^{n} & \underbrace{\lim _{s \rightarrow \lambda_{\ell}} \frac{s-\lambda_{\ell}}{s-\lambda_{k}}} \quad R_{k}=R_{\ell} \\
= & \left\{\begin{array}{l}
0 \text { for } k \neq \ell \\
1 \text { for } k=\ell
\end{array}\right.
\end{aligned}
$$

## Modal Truncation

## Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$ :

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e.. $\left(\lambda_{j}, x_{j}, y_{j}\right)$ with largest

$$
\left\|R_{k}\right\| /\left|\operatorname{re}\left(\lambda_{k}\right)\right| .
$$

## Modal Truncation

Dominant Pole Algorithm

## Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$ :

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e.. $\left(\lambda_{j}, x_{j}, y_{j}\right)$ with largest

$$
\left\|R_{k}\right\| / \mid \text { re }\left(\lambda_{k}\right) \mid .
$$

## Remark

The dominant modes have most important influence on the input-output behavior of the system and are responsible for the "peaks"' in the frequency response.

## Dominant Poles

Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )


## Dominant Poles

Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )


## Dominant Poles

Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )


## Dominant Poles

Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )


## Dominant Poles

Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )


## Dominant Poles <br> Random SISO Example ( $B, C^{T} \in \mathbb{R}^{n}$ )

Algorithms for computing dominant poles and eigenvectors:

- Subspace Accelerated Dominante Pole Algorithm (SADPA),
- Rayleigh-Quotient-Iteration (RQI),
- Jacobi-Davidson-Method.


