Otto-Von-Guericke-University-Magdeburg Department of Mathematics-Institute for Analysis and Numerik Max-Planck-Institute-Magdeburg Computational Methods for Systems and Control Theory Summer Term 2015 Prof. Peter Benner Dr. Lihong Feng Dr. M. Ilyas Ahmad

Model Reduction of Dynamical Systems - 1

Excercise: 1 (Properties of Singular Value Decomposition (SVD))

Let $r = \operatorname{rank}(A)$, $A = U\Sigma V^T$ be the singular value decomposition with orthonormal matrices $U = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \in \mathbb{R}^{m \times m}$ and $V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \in \mathbb{R}^{n \times n}$. Show the following statements:

a) Schmidt-Eckart-Young-Mirsky-Theorem: If k < r and $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, then it holds:

$$\min_{\text{rank}(B)=k} ||A - B||_2 = ||A - A_k||_2 = \sigma_{k+1},$$

that means A_k is the best rank-k approximation of A.

Hint: Realize that $\operatorname{rank}(A_k) = k$. Then select a matrix $B \in \mathbb{R}^{m \times m}$ with $\operatorname{rank}(B) = k$. There exist orthonormal vectors x_1, \ldots, x_{n-k} such that $\ker(B) = \operatorname{span}\{x_1, \ldots, x_{n-k}\}$ and it holds: $\operatorname{span}\{x_1, \ldots, x_{n-k}\} \cap \operatorname{span}\{v_1, \ldots, v_{k+1}\} \neq \{\emptyset\}$. Let z be a vector of this intersection with ||z|| = 1. Then it holds Bz = 0. Making use of the representation of Az one can show the necessary estimate.

b) It holds:

$$\ker(A) = \{v_{r+1}, \dots, v_n\},\$$

 $\operatorname{range}(A) = \{u_1, \dots, u_r\}.$

c) It holds:

$$||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$$

Excercise: 2 (Laplace Transform)

- a) Find Laplace transform of the following functions:
 - (i) $f(t) = 2t^2 3t + 5$.
 - (ii) $f(t) = t^2 e^{-2t}$.
 - (iii) f(t) = sin(2t)cos(2t).
 - (iv) $f(t) = \sin(2t) + e^{-3t}\cos(2t)$.
- b) Invert each of the following Laplace transforms:
 - (i) $F(s) = \frac{4}{s^5}$.
 - (ii) $F(s) = \frac{32}{s(s^2+16)}$.
- c) Using Laplace transform, solve the following ordinary differential equations:
 - (i) $\ddot{x}(t) + x(t) = t$, x(0) = 0, $\dot{x}(0) = 2$.
 - (ii) $\ddot{x}(t) + 2\dot{x}(t) + 5x = 8e^{-3t}$, $x(0) = \dot{x}(0) = 0$.