
Otto-von-Guericke Universität Magdeburg
Faculty of Mathematics

Summer term 2015

Model Reduction
for Dynamical Systems

— Lectures 2/3 —

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory

Magdeburg, Germany

benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de

www.mpi-magdeburg.mpg.de/2909616/mor ss15



Introduction Mathematical Basics

Outline

1 Introduction
Model Reduction for Dynamical Systems
Application Areas
Motivating Examples

2 Mathematical Basics
Numerical Linear Algebra
Systems and Control Theory
Qualitative and Quantitative Study of the Approximation Error

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 2/17



Introduction Mathematical Basics

Numerical Linear Algebra
Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).

Memory (in single precision): 4 · nx · ny bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is ‖X − X̂‖2 = σr+1.

Idea for dimension reduction
Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = 4r × (nx + ny ) bytes.
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Introduction Mathematical Basics

Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kB

rank r = 50, ≈ 104 kB

rank r = 20, ≈ 42 kB
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Introduction Mathematical Basics

Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB
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Introduction Mathematical Basics

Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB

rank r = 100, ≈ 448 kB

rank r = 50, ≈ 224 kB

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 5/17



Introduction Mathematical Basics

Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices
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Introduction Mathematical Basics

A different viewpoint

Linear Mapping

A matrix A ∈ R`×k represents a linear mapping

A : Rk → R` : x → y := Ax .

The truncated SVD ignores small Hankel singular values and thus the
related left and right singular vectors.

Consequence:

Vectors (almost) in the kernel of A do not contribute to range (A)
and can hardly or not at all be reconstructed from the input-output
relation (”A−1”)  ”unobservable” states.

Vectors (almost) in range (A)⊥ cannot be ”reached” from any
x ∈ Rk  ”unreachable/uncontrollable” states.

Hence, the truncated SVD ignores states hard to reconstruct and
hard to reach.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/17



Introduction Mathematical Basics

A different viewpoint

Linear Mapping

A matrix A ∈ R`×k represents a linear mapping

A : Rk → R` : x → y := Ax .

The truncated SVD ignores small Hankel singular values and thus the
related left and right singular vectors.

Consequence:

Vectors (almost) in the kernel of A do not contribute to range (A)
and can hardly or not at all be reconstructed from the input-output
relation (”A−1”)  ”unobservable” states.

Vectors (almost) in range (A)⊥ cannot be ”reached” from any
x ∈ Rk  ”unreachable/uncontrollable” states.

Hence, the truncated SVD ignores states hard to reconstruct and
hard to reach.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/17



Introduction Mathematical Basics

A different viewpoint

Linear Mapping

A matrix A ∈ R`×k represents a linear mapping

A : Rk → R` : x → y := Ax .

The truncated SVD ignores small Hankel singular values and thus the
related left and right singular vectors.

Consequence:

Vectors (almost) in the kernel of A do not contribute to range (A)
and can hardly or not at all be reconstructed from the input-output
relation (”A−1”)  ”unobservable” states.

Vectors (almost) in range (A)⊥ cannot be ”reached” from any
x ∈ Rk  ”unreachable/uncontrollable” states.

Hence, the truncated SVD ignores states hard to reconstruct and
hard to reach.

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 7/17



Introduction Mathematical Basics

Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).
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Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).

Lemma

L{ḟ (t)}(s) = sF (s)− f (0).
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Introduction Mathematical Basics

Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Lemma

L{ḟ (t)}(s) = sF (s)− f (0).

Note: for ease of notation, in the following we will use lower-case letters
for both, a function and its Laplace transform!
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Introduction Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
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Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sE − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.
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Introduction Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sE − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.

Goal: Fast evaluation of mapping u → y .
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Introduction Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Eẋ = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Ê , Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.
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The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Eẋ = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Ê , Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: min
order (Ĝ)≤r

‖G − Ĝ‖.
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Introduction Mathematical Basics

Systems and Control Theory
Properties of linear systems

Definition
A linear system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is stable if its transfer function G (s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C− := {z ∈ C | <(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A− λE , denoted by Λ (A,E ), satisfies
Λ (A,E ) ⊂ C−.

Note that by abuse of notation, often stable system is used for asymptotically

stable systems.
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Introduction Mathematical Basics

Systems and Control Theory
Properties of linear systems

Further properties to be discussed:

Controllability/reachability

Observability

Stabilizability

Detectability
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Introduction Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.
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Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Transfer function is invariant under state-space transformations,

T :

{
x → Tx ,

(A,B,C ,D) → (TAT−1,TB,CT−1,D),
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Introduction Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable
states:

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+ Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+ Du(t),

for arbitrary Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rq×n2 and any n1, n2 ∈ N.
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Introduction Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Hence,

(A,B,C ,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[
C 0

]
,D

)
,

(TAT−1,TB,CT−1,D),

([
A 0

0 A2

]
,

[
B
0

]
,
[
C C2

]
,D

)
,

are all realizations of Σ!
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Introduction Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.
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Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.

Theorem

A realization (A,B,C ,D) of a linear system is minimal ⇐⇒
(A,B) is controllable and (A,C ) is observable.
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. Λ (A) ⊂ C−. Then:

Theorem

Given a stable minimal linear system Σ : (A,B,C ,D), a balanced
realization is obtained by the state-space transformation with

Tb := Σ−
1
2 V TR,

where P = STS , Q = RTR (e.g., Cholesky decompositions) and
SRT = UΣV T is the SVD of SRT .

Proof. Exercise!
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−TATTT + TBBTTT .

This is equivalent to

0 = A(T−1P̂T−T ) + (T−1P̂T−T )AT + BBT .

The uniqueness of the solution of the Lyapunov equation implies that P̂ = TPTT and,
analogously, Q̂ = T−TQT−1. Therefore,

P̂Q̂ = TPQT−1,

showing that Λ (P̂Q̂) = Λ (PQ) = {σ2
1 , . . . , σ

2
n}.
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Introduction Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Remark
For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0).

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
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Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
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u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 14/17



Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 14/17



Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

= M2
∫ ∞
−∞

u(ω)Hu(ω) dω < ∞.

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 14/17



Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
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=

∫ ∞
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‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

= M2
∫ ∞
−∞

u(ω)Hu(ω) dω < ∞.

=⇒ y ∈ Lq
2
∼= Lq2(−∞,∞).
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2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Consequently, the 2-induced operator norm

‖G‖∞ := sup
‖u‖2 6=0

‖Gu‖2

‖u‖2

is well defined. It can be shown that

‖G‖∞ = sup
ω∈R
‖G (ω)‖ = sup

ω∈R
σmax (G (ω)) .

Max Planck Institute Magdeburg Peter Benner, Lihong Feng, MOR for Dynamical Systems 14/17



Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Consequently, the 2-induced operator norm

‖G‖∞ := sup
‖u‖2 6=0

‖Gu‖2

‖u‖2

is well defined. It can be shown that

‖G‖∞ = sup
ω∈R
‖G (ω)‖ = sup

ω∈R
σmax (G (ω)) .

Sketch of proof:

‖G(ω)u(ω)‖ ≤ ‖G(ω)‖‖u(ω)‖ ⇒ ”≤”.
Construct u with ‖Gu‖2 = supω∈R ‖G(ω)‖‖u‖2.
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Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D.

Hardy space H∞
Function space of matrix-/scalar-valued functions that are analytic and
bounded in C+.
The H∞-norm is

‖F‖∞ := sup
re s>0

σmax (F (s)) = sup
ω∈R

σmax (F (ω)) .

Stable transfer functions are in the Hardy spaces

H∞ in the SISO case (single-input, single-output, m = q = 1);

Hq×m
∞ in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!
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G (s) = C (sI − A)−1 B + D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!

H∞ approximation error

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂ + D̂.

‖y − ŷ‖2 = ‖Gu − Ĝu‖2 ≤ ‖G − Ĝ‖∞‖u‖2.

=⇒ compute reduced-order model such that ‖G − Ĝ‖∞ < tol!
Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 :=
1

2π

(
sup

reσ>0

∫ ∞
−∞
‖F (σ + ω)‖2

F dω

) 1
2

=
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Stable transfer functions are in the Hardy spaces

H2 in the SISO case (single-input, single-output, m = q = 1);

Hq×m
2 in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

H2 approximation error for impulse response (u(t) = u0δ(t))

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂.

‖y − ŷ‖2 = ‖Gu0δ − Ĝu0δ‖2 ≤ ‖G − Ĝ‖2‖u0‖.
=⇒ compute reduced-order model such that ‖G − Ĝ‖2 < tol!
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G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Theorem (Practical Computation of the H2-norm)

‖F‖2
2 = tr

(
BTQB

)
= tr

(
CPCT

)
,

where P,Q are the controllability and observability Gramians of the
corresponding LTI system.
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Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol

H∞-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable H∞-norm bound.

H2-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)

Hankel-norm
‖G‖H := σmax

optimal Hankel norm approximation (AAK theory).
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Introduction Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

absolute errors ‖G(ωj)− Ĝ(ωj)‖2, ‖G(ωj)− Ĝ(ωj)‖∞ (j = 1, . . . ,Nω);

relative errors
‖G(ωj )−Ĝ(ωj )‖2

‖G(ωj )‖2
,
‖G(ωj )−Ĝ(ωj )‖∞
‖G(ωj )‖∞

;

”eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:
for SISO system, log-log plot frequency vs. |G(ω)| (or |G(ω)− Ĝ(ω)|)
in decibels, 1 dB ' 20 log10(value).

For MIMO systems, q ×m array of plots Gij .
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