Model Reduction for Dynamical Systems

— Lectures 2/3 -

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany
benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de
www.mpi-magdeburg.mpg.de/2909616/mor_ss15

Outline

Introduction

- Model Reduction for Dynamical Systems
- Application Areas
- Motivating Examples
(2) Mathematical Basics
- Numerical Linear Algebra
- Systems and Control Theory
- Qualitative and Quantitative Study of the Approximation Error

Numerical Linear Algebra
 Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

```
Theorem (Schmidt-Mirsky/Eckart-Young)
Best rank-r approximation to }X\in\mp@subsup{\mathbb{R}}{}{\mp@subsup{n}{x}{}\times\mp@subsup{n}{y}{}}\mathrm{ w.r.t. spectral norm:
X = \sum < rj=1
where }X=U\Sigma\mp@subsup{V}{}{\top}\mathrm{ is the singular value decomposition (SVD) of X.
The approximation error is |X-X|| }=\mp@subsup{|}{r+1}{}\mathrm{ .
```

Idea for dimension reduction

```
Instead of X save }\mp@subsup{u}{1}{},\ldots,\mp@subsup{u}{r}{},\mp@subsup{\sigma}{1}{}\mp@subsup{v}{1}{},\ldots,\mp@subsup{\sigma}{r}{}\mp@subsup{v}{r}{
```

\rightsquigarrow memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Numerical Linear Algebra
 Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_{x} \times n_{y}}$ w.r.t. spectral norm:

$$
\widehat{X}=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T},
$$

where $X=U \Sigma V^{\top}$ is the singular value decomposition (SVD) of X. The approximation error is $\|X-\widehat{X}\|_{2}=\sigma_{r+1}$.

Idea for dimension reduction
Instead of X save $u_{1}, \ldots, u_{r}, \sigma_{1} v_{1}, \ldots, \sigma_{r} v_{r}$.
\rightsquigarrow memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Numerical Linear Algebra
 Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_{x} \times n_{y}}$ w.r.t. spectral norm:

$$
\widehat{X}=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}
$$

where $X=U \Sigma V^{\top}$ is the singular value decomposition (SVD) of X. The approximation error is $\|X-\widehat{X}\|_{2}=\sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_{1}, \ldots, u_{r}, \sigma_{1} v_{1}, \ldots, \sigma_{r} v_{r}$.
\rightsquigarrow memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Example: Image Compression by Truncated SVD

Example: Clown

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

Example: Image Compression by Truncated SVD

Example: Clown

- rank $r=50, \approx 104 \mathrm{kB}$

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

Example: Image Compression by Truncated SVD

Example: Clown

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

- rank $r=50$, $\approx 104 \mathrm{kB}$

- rank $r=20, \approx 42 \mathrm{kB}$

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

640×480 pixel, ≈ 1229 kB

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

640×480 pixel, $\approx 1229 \mathrm{kB}$

Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay (exponentially).

Singular Values of the Image Data Matrices

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small Hankel singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small Hankel singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small Hankel singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

Systems and Control Theory
 The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C} .
$$

F is a function in the (Laplace or) frequency domain.
Note: for frequency domain evaluations ("frequency response analysis"), one takes re $s=0$ and $\mathrm{im} s \geq 0$. Then $\omega:=\mathrm{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2 \pi v$ with v measured in [Hz]).

Systems and Control Theory The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C} .
$$

F is a function in the (Laplace or) frequency domain.
Note: for frequency domain evaluations ("frequency response analysis"), one takes re $s=0$ and $\mathrm{im} s \geq 0$. Then $\omega:=\mathrm{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2 \pi v$ with v measured in $[\mathrm{Hz}]$).

Lemma

$$
\mathcal{L}\{\dot{f}(t)\}(s)=s F(s)-f(0)
$$

Systems and Control Theory The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C}
$$

F is a function in the (Laplace or) frequency domain.

Lemma

$$
\mathcal{L}\{\dot{f}(t)\}(s)=s F(s)-f(0) .
$$

Note: for ease of notation, in the following we will use lower-case letters for both, a function and its Laplace transform!

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s E x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s E x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

\Longrightarrow I/O-relation in frequency domain:

$$
y(s)=(\underbrace{C(s E-A)^{-1} B+D}_{=: G(s)}) u(s)
$$

$G(s)$ is the transfer function of Σ.

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s E x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

\Longrightarrow I/O-relation in frequency domain:

$$
y(s)=(\underbrace{C(s E-A)^{-1} B+D}_{=: G(s)}) u(s) .
$$

$G(s)$ is the transfer function of Σ.
Goal: Fast evaluation of mapping $u \rightarrow y$.

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$
\begin{aligned}
E \dot{x} & =A x+B u, & & E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y & =C x+D u, & & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{aligned}
$$

by reduced-order system

$$
\begin{aligned}
\hat{E} \dot{\hat{x}} & =\hat{A} \hat{x}+\hat{B} u, \quad \hat{E}, \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m} \\
\hat{y} & =\hat{C} \hat{x}+\hat{D} u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\|
$$

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$
\begin{aligned}
E \dot{x} & =A x+B u, & & E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y & =C x+D u, & & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{aligned}
$$

by reduced-order system

$$
\begin{aligned}
\hat{E} \dot{\hat{x}} & =\hat{A} \hat{x}+\hat{B} u, \quad \hat{E}, \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m} \\
\hat{y} & =\hat{C} \hat{x}+\hat{D} u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\|
$$

\Longrightarrow Approximation problem: $\min _{\operatorname{order}(\hat{G}) \leq r}\|G-\hat{G}\|$.

Systems and Control Theory

 Properties of linear systems
Definition

A linear system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

is stable if its transfer function $G(s)$ has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re(z)<0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of $A-\lambda E$, denoted by $\wedge(A, E)$, satisfies $\wedge(A, E) \subset \mathbb{C}^{-}$

[^0]
Systems and Control Theory Properties of linear systems

Definition

A linear system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

is stable if its transfer function $G(s)$ has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re(z)<0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of $A-\lambda E$, denoted by $\Lambda(A, E)$, satisfies $\Lambda(A, E) \subset \mathbb{C}^{-}$.

Note that by abuse of notation, often stable system is used for asymptotically stable systems.

Systems and Control Theory
 Properties of linear systems

Further properties to be discussed:

- Controllability/reachability
- Observability
- Stabilizability
- Detectability

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t)=A x(t)+B u(t), & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & G(s)=C(s l-A)^{-1} B+D,
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{array}{rlrl}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{array}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Transfer function is invariant under state-space transformations,

$$
\mathcal{T}:\left\{\begin{array}{ccc}
x & \rightarrow & T x, \\
(A, B, C, D) & \rightarrow & \left(T A T^{-1}, T B, C T^{-1}, D\right),
\end{array}\right.
$$

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t) & =C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right] & =\left[\begin{array}{cc}
A & 0 \\
0 & A_{1}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
B \\
B_{1}
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
C & 0
\end{array}\right]\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right]+D u(t), \\
\frac{d}{d t}\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right] & =\left[\begin{array}{cc}
A & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B \\
0
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
C & C_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right]+D u(t),
\end{aligned}
$$

for arbitrary $A_{j} \in \mathbb{R}^{n_{j} \times n_{j}}, j=1,2, B_{1} \in \mathbb{R}^{n_{1} \times m}, C_{2} \in \mathbb{R}^{q \times n_{2}}$ and any $n_{1}, n_{2} \in \mathbb{N}$.

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t) & =C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Hence,

$$
\begin{array}{ll}
(A, B, C, D), & \left(\left[\begin{array}{cc}
A & 0 \\
0 & A_{1}
\end{array}\right],\left[\begin{array}{c}
B \\
B_{1}
\end{array}\right],\left[\begin{array}{cc}
C & 0
\end{array}\right], D\right), \\
\left(T A T^{-1}, T B, C T^{-1}, D\right), & \left(\left[\begin{array}{cc}
A & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{c}
B \\
0
\end{array}\right],\left[\begin{array}{ll}
C & C_{2}
\end{array}\right], D\right)
\end{array}
$$

are all realizations of Σ !

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t) & =C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely. A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n}.

Systems and Control Theory

Realizations of Linear Systems (with $E=I_{n}$ for simplicity)

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t) & =C x(t)+D u(t), & & G(s)=C(s I-A)^{-1} B+D
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely. A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n}.

Theorem

A realization (A, B, C, D) of a linear system is minimal \Longleftrightarrow (A, B) is controllable and (A, C) is observable.

Systems and Control Theory
 Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad \text { (w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1 \text {). }
$$

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right) .
$$

When does a balanced realization exist?

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. $\Lambda(A) \subset \mathbb{C}^{-}$. Then:

Theorem

Given a stable minimal linear system $\Sigma:(A, B, C, D)$, a balanced realization is obtained by the state-space transformation with

$$
T_{b}:=\Sigma^{-\frac{1}{2}} V^{\top} R,
$$

where $P=S^{T} S, Q=R^{T} R$ (e.g., Cholesky decompositions) and $S R^{T}=U \Sigma V^{T}$ is the SVD of $S R^{T}$.

Proof. Exercise!

Systems and Control Theory
 Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right) .
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Theorem

The infinite controllability/observability Gramians P / Q satisfy the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Systems and Control Theory Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are $\Lambda(P Q)^{\frac{1}{2}}$. Now let

$$
(\hat{A}, \hat{B}, \hat{C}, D)=\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

be any transformed realization with associated controllability Lyapunov equation

$$
0=\hat{A} \hat{P}+\hat{P} \hat{A}^{T}+\hat{B} \hat{B}^{T}=T A T^{-1} \hat{P}+\hat{P} T^{-T} A^{T} T^{T}+T B B^{T} T^{T} .
$$

This is equivalent to

$$
0=A\left(T^{-1} \hat{P} T^{-T}\right)+\left(T^{-1} \hat{P} T^{-T}\right) A^{T}+B B^{T}
$$

The uniqueness of the solution of the Lyapunov equation implies that $\hat{P}=T P T^{T}$ and, analogously, $\hat{Q}=T^{-T} Q T^{-1}$. Therefore,

$$
\hat{P} \hat{Q}=T P Q T^{-1}
$$

showing that $\Lambda(\hat{P} \hat{Q})=\Lambda(P Q)=\left\{\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right\}$.

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading $\hat{n} \times \hat{n}$ submatrices equal to $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\hat{n}}\right)$, and

$$
\hat{P} \hat{Q}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{\hat{n}}^{2}, 0, \ldots, 0\right)
$$

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$.

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega=\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega
$$

(Here, $\|$.$\| denotes the Euclidian vector or spectral matrix norm.)$

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega
\end{aligned}
$$

(Here, ||. || denotes the Euclidian vector or spectral matrix norm.)

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega \\
& =M^{2} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega<\infty .
\end{aligned}
$$

(Here, $\|$.$\| denotes the Euclidian vector or spectral matrix norm.)$

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}: r e z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega \\
& =M^{2} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega<\infty .
\end{aligned}
$$

$$
\Longrightarrow y \in \mathcal{L}_{2}^{q} \cong L_{2}^{q}(-\infty, \infty)
$$

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Consequently, the 2-induced operator norm

$$
\|G\|_{\infty}:=\sup _{\|u\|_{2} \neq 0} \frac{\|G u\|_{2}}{\|u\|_{2}}
$$

is well defined. It can be shown that

$$
\|G\|_{\infty}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\jmath \omega))
$$

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Consequently, the 2-induced operator norm

$$
\|G\|_{\infty}:=\sup _{\|u\|_{2} \neq 0} \frac{\|G u\|_{2}}{\|u\|_{2}}
$$

is well defined. It can be shown that

$$
\|G\|_{\infty}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\jmath \omega))
$$

Sketch of proof:
$\|G(\jmath \omega) u(\jmath \omega)\| \leq\|G(\jmath \omega)\|\|u(\jmath \omega)\| \Rightarrow " \leq "$.
Construct u with $\|G u\|_{2}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|\|u\|_{2}$.

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

Hardy space \mathcal{H}_{∞}

Function space of matrix-/scalar-valued functions that are analytic and bounded in \mathbb{C}^{+}.
The \mathcal{H}_{∞}-norm is

$$
\|F\|_{\infty}:=\sup _{\text {res>0 }} \sigma_{\max }(F(s))=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(F(\jmath \omega))
$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_{∞} in the SISO case (single-input, single-output, $m=q=1$);
- $\mathcal{H}_{\infty}^{q \times m}$ in the MIMO case (multi-input, multi-output, $m>1, q>1$).

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$
L_{2}(-\infty, \infty) \cong \mathcal{L}_{2}, \quad L_{2}(0, \infty) \cong \mathcal{H}_{2}
$$

Consequently, 2-norms in time and frequency domains coincide!

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$
L_{2}(-\infty, \infty) \cong \mathcal{L}_{2}, \quad L_{2}(0, \infty) \cong \mathcal{H}_{2}
$$

Consequently, 2-norms in time and frequency domains coincide!

\mathcal{H}_{∞} approximation error

Reduced-order model \Rightarrow transfer function $\hat{G}(s)=\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}$.

$$
\|y-\hat{y}\|_{2}=\|G u-\hat{G} u\|_{2} \leq\|G-\hat{G}\|_{\infty}\|u\|_{2}
$$

\Longrightarrow compute reduced-order model such that $\|G-\hat{G}\|_{\infty}<$ tol!
Note: error bound holds in time- and frequency domain due to Paley-Wiener!

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider stable transfer function

$$
G(s)=C(s l-A)^{-1} B, \quad \text { i.e. } D=0 .
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\begin{aligned}
\|F\|_{2} & :=\frac{1}{2 \pi}\left(\sup _{\operatorname{re} \sigma>0} \int_{-\infty}^{\infty}\|F(\sigma+\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}} \\
& =\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}} .
\end{aligned}
$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_{2} in the SISO case (single-input, single-output, $m=q=1$);
- $\mathcal{H}_{2}^{q \times m}$ in the MIMO case (multi-input, multi-output, $m>1, q>1$).

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider stable transfer function

$$
G(s)=C(s l-A)^{-1} B, \quad \text { i.e. } D=0
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\|F\|_{2}=\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}}
$$

\mathcal{H}_{2} approximation error for impulse response $\left(u(t)=u_{0} \delta(t)\right)$

Reduced-order model \Rightarrow transfer function $\hat{G}(s)=\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}$.

$$
\|y-\hat{y}\|_{2}=\left\|G u_{0} \delta-\hat{G} u_{0} \delta\right\|_{2} \leq\|G-\hat{G}\|_{2}\left\|u_{0}\right\| .
$$

\Longrightarrow compute reduced-order model such that $\|G-\hat{G}\|_{2}<$ tol!

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider stable transfer function

$$
G(s)=C(s I-A)^{-1} B, \quad \text { i.e. } D=0
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\|F\|_{2}=\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}}
$$

Theorem (Practical Computation of the \mathcal{H}_{2}-norm)

$$
\|F\|_{2}^{2}=\operatorname{tr}\left(B^{T} Q B\right)=\operatorname{tr}\left(C P C^{T}\right)
$$

where P, Q are the controllability and observability Gramians of the corresponding LTI system.

Qualitative and Quantitative Study of the Approximation Error Approximation Problems

Output errors in time-domain

$$
\begin{aligned}
\|y-\hat{y}\|_{2} & \leq\|G-\hat{G}\|_{\infty}\|u\|_{2} \quad
\end{aligned} \quad \Longrightarrow\|G-\hat{G}\|_{\infty}<\mathrm{tol},
$$

Qualitative and Quantitative Study of the Approximation Error Approximation Problems

Output errors in time-domain

$$
\begin{aligned}
\|y-\hat{y}\|_{2} & \leq\|G-\hat{G}\|_{\infty}\|u\|_{2}
\end{aligned} \quad \Longrightarrow\|G-\hat{G}\|_{\infty}<\mathrm{tol}, ~=\|G-\hat{G}\|_{2}<\mathrm{tol}
$$

\mathcal{H}_{∞}-norm	best approximation problem for given reduced order r in general open; balanced truncation yields suboptimal solu- tion with computable \mathcal{H}_{∞}-norm bound.		
\mathcal{H}_{2}-norm	necessary conditions for best approximation known; (local) optimizer computable with iterative rational Krylov algo- rithm (IRKA)		
Hankel-norm $\\|G\\|_{H}:=\sigma_{\max }$	optimal Hankel norm approximation (AAK theory).		

Qualitative and Quantitative Study of the Approximation Error Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

- absolute errors $\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{2},\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{\infty}\left(j=1, \ldots, N_{\omega}\right)$;
- relative errors $\frac{\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{2}}{\left\|G\left(\jmath \omega_{j}\right)\right\|_{2}}, \frac{\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{\infty}}{\left\|G\left(\jmath \omega_{j}\right)\right\| \infty}$;
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs. $|G(\jmath \omega)|$ (or $|G(\jmath \omega)-\hat{G}(\jmath \omega)|)$ in decibels, $1 \mathrm{~dB} \simeq 20 \log _{10}$ (value).
For MIMO systems, $q \times m$ array of plots $G_{i j}$.

[^0]: Note that by abuse of notation, often stable system is used for asymptotically stable systems.

