

Otto-von-Guericke Universität Magdeburg Faculty of Mathematics Summer term 2015

Model Reduction for Dynamical Systems

— Lecture 1 —

Peter Benner Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de

www.mpi-magdeburg.mpg.de/2909616/mor_ss15

Outline

- Introduction
 - Model Reduction for Dynamical Systems
 - Application Areas
 - Motivating Examples

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction

Model Reduction for Dynamical Systems

Dynamical Systems

$$\Sigma : \left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) & = & g(t, x(t), u(t)) \end{array} \right.$$

with

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u}(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u}(t)). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u}(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u}(t)). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal:

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal:

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Secondary goal: reconstruct approximation of x from \hat{x} .

Parameter-Dependent Dynamical Systems

Dynamical Systems

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), & x(t_0) = x_0, \\ y(t;p) &= g(t,x(t;p),u(t),p) \end{cases}$$
 (a)

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions,
- Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.

Parameter-Dependent Dynamical Systems

Dynamical Systems

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), & x(t_0) = x_0, \\ y(t;p) &= g(t,x(t;p),u(t),p) \end{cases}$$
 (a)

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions,
- Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, \quad E,A\in\mathbb{R}^{n\times n}, \qquad B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, \quad C\in\mathbb{R}^{p\times n}, \end{array} \qquad D\in\mathbb{R}^{p\times m}.$$

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, \quad E,A\in\mathbb{R}^{n\times n}, \qquad B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, \quad C\in\mathbb{R}^{p\times n}, & D\in\mathbb{R}^{p\times m}. \end{array}$$

Linear, Time-Invariant Parametric Systems

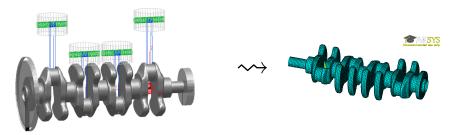
$$E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t),$$

$$y(t;p) = C(p)x(t;p) + D(p)u(t),$$

where $A(p), E(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, D(p) \in \mathbb{R}^{q \times m}$.

Application Areas Structural Mechanics / Finite Element Modeling

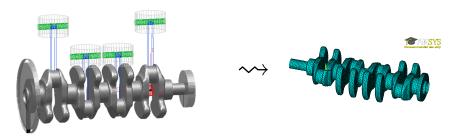
since \sim 1960ies



- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces, in particular if the model is used in an (elastic) multi-boy simulation ((E)MBS).

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) --> Craig-Bampton method.

Structural Mechanics / Finite Element Modeling



- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces, in particular if the model is used in an (elastic) multi-boy simulation ((E)MBS).

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \simple Craig-Bampton method.

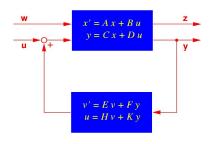
Application Areas (Optimal) Control

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_{\infty}$ -) control design: N > n.



Practical controllers require small N ($N \sim 10$, say) due to

- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation

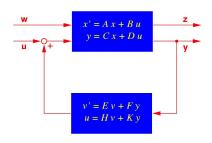
Application Areas (Optimal) Control

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_{\infty}$ -) control design: N > n.



Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints.
- increasing fragility for larger N.

 \implies reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation

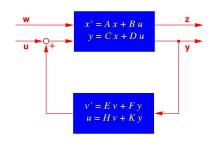
(Optimal) Control

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_{\infty}$ -) control design: N > n.



Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints.
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

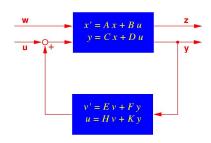
(Optimal) Control

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: N > n.



Practical controllers require small N ($N\sim 10$, say) due to

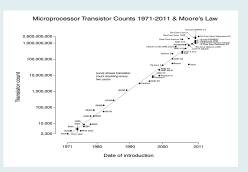
- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation and related methods.

Application Areas Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) states that the number of on-chip transistors doubles each 24 months.



Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore'sLaw_-_2011.svg

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.

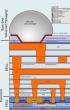
Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

Intel 4004 (1971)	Intel Core 2 Extreme (quad-core) (2007)
1 layer, 10μ technology	9 layers, 45 <i>nm</i> technology
2,300 transistors	> 8, 200, 000 transistors
64 kHz clock speed	> 3 GHz clock speed.

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) → steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.



Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.

Application Areas Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Here: mostly MOR for linear systems, they occur in micro electronics through modified nodal analysis (MNA) for RLC networks. e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) → steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

 \leadsto Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Micro Electronics/Circuit Simulation

since \sim 1990ies

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.

→ Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:

Krylov subspace / Padé approximation / rational interpolation methods.

Application Areas

Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- ...
- Current trend: more and more multi-physics problems, i.e., coupling of several field equations, e.g.,
 - electro-thermal (e.g., bondwire heating in chip design),
 - fluid-structure-interaction,
 - 0 . . .

Peter Benner and Lihong Feng

Model Order Reduction for Coupled Problems

Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015. Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf

Application Areas

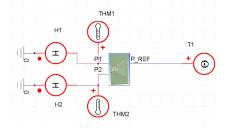
Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- ...
- Current trend: more and more multi-physics problems, i.e., coupling of several field equations, e.g.,
 - electro-thermal (e.g., bondwire heating in chip design),
 - fluid-structure-interaction,
 - ...

Peter Benner and Lihong Feng

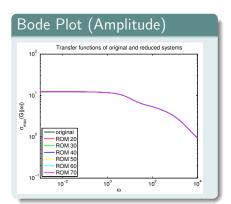
Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf

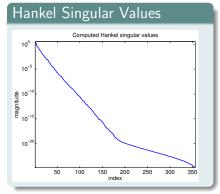
SIMPLORER[®] test circuit with 2 transistors.



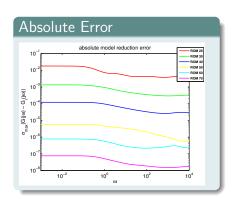
- Conservative thermic sub-system in SIMPLORER: voltage → temperature, current → heat flow.
- Original model: n = 270.593, m = p = 2 ⇒
 Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.

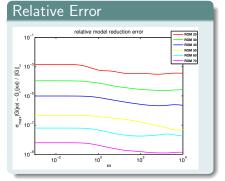
- Original model: n = 270.593, $m = p = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22 min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.





- Original model: n = 270.593, $m = p = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22 min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.





Motivating Examples A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

• Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

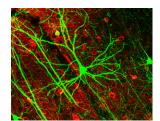
$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g,$$

with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,1]$
 $v_x(0,t) = -i_0(t),$ $v_x(1,t) = 0,$ $t > 0,$

where
$$\epsilon = 0.015$$
, $h = 0.5$, $\gamma = 2$, $g = 0.05$, $i_0(t) = 50000t^3 \exp(-15t)$.



Source: http://en.wikipedia.org/wiki/Neuron

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

• Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g,$$

with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,1]$ $v_x(0,t) = -i_0(t),$ $v_x(1,t) = 0,$ $t \ge 0,$

where
$$\epsilon = 0.015$$
, $h = 0.5$, $\gamma = 2$, $g = 0.05$, $i_0(t) = 50000t^3 \exp(-15t)$.

- Parameter g handled as an additional input.
- Original state dimension $n = 2 \cdot 400$, QBDAE dimension $N = 3 \cdot 400$, reduced QBDAE dimension r = 26, chosen expansion point $\sigma = 1$.

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

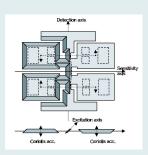
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order: $N = 17.361 \rightsquigarrow n = 34.722, m = 1, p = 12.$
- Sensor for position control based on acceleration and rotation.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

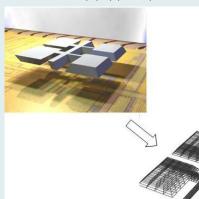
Application: inertial navigation.



Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: $M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t)$.



Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

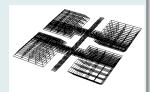
Parametric FE model:

$$M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t),$$

wobei

$$M(d) = M_1 + dM_2,$$

 $D(\Phi, d, \alpha, \beta) = \Phi(D_1 + dD_2) + \alpha M(d) + \beta T(d),$
 $T(d) = T_1 + \frac{1}{d}T_2 + dT_3,$



with

- width of bearing: d,
- angular velocity: Φ,
- Rayleigh damping parameters: α, β .

Motivating Examples Parametric MOR: Applications in Microsystems/MEMS Design

