
Summary of moment-matching methods

Consider a linear time invariant (LTI) system{
Eẋ = Ax + Bu(t),

y = Cx,
(1)

where E,A ∈ Rn×n, B ∈ Rn×nI , C ∈ Rp×nO . The transfer function is H(s) = C(sE − A)−1B. The

matrix E could be a singular matrix, i.e. not invertible.

1 Explicit moment-matching method: AWE

For single-input single-output (SISO) system:

H(s)− Ĥ(s) = O(s2q).

Ĥ(s) =
Pq−1(s)
Qq(s)

Moments matched: mi = m̂i, i = 0, 1, . . . , 2q − 1.

AWE method approximates the transfer function H(s) by a rational function Ĥ(s) =
Pq−1(s)
Qq(s)

, which

is the Padé approximation of H(s).
The method explicitly computes the moments of the transfer function, which is not numerically

stable. Usually, the accuracy of the approximation cannot be improved for q ≥ 8.

2 Implicit moment-matching method

2.1 Padé approximation

range(V ) = span{B̃(s0), Ã(s0)B̃(s0), . . . , (Ã(s0))
q−1B̃(s0)},

range(W ) = span{CT , ÃT (s0)C
T , . . . , (ÃT (s0))

q−1CT }, (2)

where B̃(s0) = (s0E − A)−1B, Ã(s0) = (s0E − A)−1, and s0 is the expansion point. We require

W TV = I, i.e. the matrices W and V are bi-orthogonal with each other.

2.1.1 Reduced model 1

The reduced model is constructed as{
W T (s0E −A)−1EV dz

dt = W T (s0E −A)−1AV z + W T (s0E −A)−1Bu(t),

y = CV z.
(3)

De�ne Ẽ = W T (s0E − A)−1EV , Ã = W T (s0E − A)−1AV , B̃ = W T (s0E − A)−1B, and C̃ = CV .

Here, H̃(s) = C̃(sẼ − Ã)−1B̃ is the transfer function of the reduced model in (3).

• Moments matched: mi = m̃i, i = 0, 1, . . . , 2q − 1 if the original system is a SISO system.

• If the original system in (1) is a SISO system, the transfer function is a Padé approximation of

the original system, i.e. H(s)− H̃(s) = O(s2q) or mi = m̃i, i = 0, 1, . . . , 2q − 1.
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2.1.2 Reduced model 2

The reduced model is constructed as{
W TEV dz

dt = W TAV z + W TBu(t),

y = CV z.
(4)

De�ne Ê = W TEV , Â = W TAV , B̃ = W TB, and C̃ = CV . Here, Ĥ(s) = Ĉ(sÊ − Â)−1B̂ is the

transfer function of the reduced model in (3).

• If the original system in (1) is a SISO system, and if E = I, the identity matrix, then the transfer

function is a Padé approximation of the original system, i.e. H(s)− Ĥ(s) = O(s2q), or mi = m̂i,

i = 0, 1, . . . , 2q − 1.

• Moments matched: mi = m̂i, i = 0, 1, . . . , 2q − 1, if E = I, and if the original system is a SISO

system;

Mi = M̂i, i = 0, 1, . . . , 2q − 1 if E = I, and if the original system is a MIMO system.

2.2 Matrix-Padé approximation

• For the reduced model in (3), assume that z ∈ Rr, i.e. the order of the reduced model is r, then

Mi = M̃i, i = 0, 1, . . .
⌊

r
nO

⌋
+

⌊
r
nI

⌋
. Here nO is the number of outputs, and nI is the number of

inputs.

2.3 Padé type approximation

The reduced model is constructed by Galerkin projection rather than Petrov-Galerkin projection as

below: {
V TEV dz

dt = V TAV z + V TBu(t),

y = CV z.
(5)

De�ne Ê = V TEV , Â = V TAV , B̃ = V TB, and C̃ = CV . V is de�ned as above. Here, Ĥ(s) =
Ĉ(sÊ − Â)−1B̂ is the transfer function of the reduced model in (3).

• For both SISO and MIMO system in (1), the transfer function Ĥ(s) matches q moments of the

original transfer function, i.e. mi = m̂i, or Mi = M̂i, i = 0, 1, . . . , q − 1.

2.4 Rational interpolation

Let
range(V ) = span{B̃(s0), ÃB(s0)B̃(s0), . . . , (ÃB(s0))

q−1B̃(s0)},
range(W ) = span{C̃T , ÃC(s0)C̃

T , . . . , (ÃC(s0))
q−1C̃T }, (6)

where B̃(s0) = (s0E − A)−1B, ÃB(s0) = (s0E − A)−1E, ÃC(s0) = (s0E − A)−TET , C̃T = (s0E −
A)−TCT .

The reduced model is constructed similarly as in (3), but with the matrices W and V in (6) instead.

• It is not required that W TV = I for rational interpolation.

• For both SISO and MIMO system in (1), the transfer function Ĥ(s) matches 2q moments of the

original transfer function, i.e. mi = m̃i, or Mi = M̂i, i = 0, 1, . . . , 2q − 1. In this sense, Ĥ(s) is
also a Padé approximation of H(s) for SISO system in (1).

• IRKA is a special case of rational interpolation, where q = 1 for W and V .
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