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Parametric Systems

A linear parametric system

C (s1, s2, · · · , sp−1) dx
dt = G (s1, s2, · · · , sp−1)x + Bu(t),

y(t) = LTx ,
(1)

where the system matrices C (s1, s2, · · · , sp−1), G (s1, s2, · · · , sp−1) are
(maybe, nonlinear, non-affine) functions of the parameters
s1, s2, · · · , sp−1.
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PMOR based on multi-moment matching (Krylov
subspace PMOR)

In frequency domain

Using Laplace transform, the system in (1) is transformed into

E (s1, . . . , sp)x = Bu(sp),
y = LTx ,

(2)

where the matrix E ∈ Rn×n is parametrized. The new parameter sp is in
fact the frequency parameter s, which corresponds to time t.

In case of a nonlinear and/or non-affine dependence of the matrix E on
the parameters, the system in (2) is first transformed to an affine form

(E0 + s̃1E1 + s̃2E2 + . . .+ s̃pEp)x = Bu(sp),
y = LTx .

(3)

Here the newly defined parameters s̃i , i = 1, . . . , p, might be some
functions (rational, polynomial) of the original parameters si in (2).
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PMOR based on multi-moment matching

To obtain the projection matrix V for the reduced model, the state x
in (3) is expanded into a Taylor series at an expansion point
s̃0 = (s̃01 , . . . , s̃

0
p)T as below,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu(sp)

=
∞∑

m=0
[σ1M1 + . . .+ σpMp]mẼ−1Bu(sp)

=
∞∑

m=0

m−(k3+...+kp)∑
k2=0

. . .
m−kp∑
kp−1=0

m∑
kp=0

[Fm
k2,...,kp

(M1, . . . ,Mp)BMu(sp)σ
m−(k2+...+kp)
1 σk2

2 · · ·σ
kp
p ,

(4)
where σi = s̃i − s̃0i , Ẽ = E0 + s̃01E1 + . . .+ s̃0pEp, Mi = −Ẽ−1Ei ,

i = 1, 2, . . . p, and BM = Ẽ−1B. The Fm
k2,...,kp

(M1, . . . ,Mp) can be
generated recursively as
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PMOR based on multi-moment matching

Fm
k2,...,kp

(M1, . . . ,Mp)

=


0, if ki /∈ {0, 1, . . . ,m}, i = 2, . . . , p,
0, if k2 + . . .+ kp /∈ {0, 1, . . . ,m},
I , if m = 0,

M1F
m−1
k2,...,kp

(M1, . . . ,Mp) + M2F
m−1
k2−1,...,kp (M1, . . . ,Mp) + . . .

. . .+ MpF
m−1
k2,...,kp−1(M1, . . . ,Mp), else.

For example, if there are two parameters s̃1, s̃2 in (3),
Fm
k2,...,kp

(M1, . . . ,Mp) = Fm
k2

are:

F 0
0 = I ,

F 1
0 = M1F

0
0 = M1, F 1

1 = M2F
0
0 = M2 (5)

F 2
0 = M1F

1
0 = M2

1 , F
2
1 = M1F

1
1 + M2F

1
0 = M1M2 + M2M1, F

2
2 = M2F

1
1 = M2

2 ,

. . .
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PMOR based on multi-moment-matching

For the general case, the projection matrix V is constructed as

range {V }

= colspan{
mq⋃
m=0

m−(kp+...+k3)⋃
k2=0

. . .
m−kp⋃
kp−1=0

m⋃
kp=0

Fm
k2,...,kp

(M1, . . . ,Mp)BM}

= colspan{BM ,M1BM ,M2BM , . . . ,MpBM , (M1)2BM , (M1M2 + M2M1)BM , . . . ,
(M1Mp + MpM1)BM , (M2)2BM , (M2M3 + M3M2)BM , . . .}.

(6)
We call the coefficients in the series expansion of the state x in (4) the
moment vectors of the parametric system. The corresponding moments
of the transfer function are the moment vectors multiplied by LT from
the left. For example,
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PMOR based on multi-moment-matching

LTBM : the 0th order multi-moments; the columns in BM : the 0th
order moment vectors.

LTMiBM , i = 1, 2, . . . , p: the first order multi-moments; the
columns in MiBM , i = 1, 2, . . . , p: the first order moment vectors.

. . . ; the columns in M2
i BM , i = 1, 2, . . . , p,

(M1Mi +MiM1)BM , i = 2, . . . , p, (M2Mi +MiM2)BM , i = 3, . . . , p,
. . . , (Mp−1Mp + MpMp−1)BM : the second order moment vectors.

. . . .

Since the coefficients corresponding not only to s = sp, but also to those
associated with the other parameters si , i = 1, . . . , p − 1 are, we call
them as multi-moments of the transfer function.
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A Robust Algorithm

Taking a closer look at the power series expansion of x in (4), we get the
following equivalent, but different formulation,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu

=
∞∑

m=0
[σ1M1 + . . .+ σpMp]mBMu

= BMu + [σ1M1 + . . .+ σpMp]BMu + [σ1M1 + . . .+ σpMp]2BMu + . . .
+[σ1M1 + . . .+ σpMp]jBMu + . . .

(7)
By defining

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp]BM ,

x2 = [σ1M1 + . . .+ σpMp]2BM , . . . ,

xj = [σ1M1 + . . .+ σpMp]jBM , . . . ,

we have x = (x0 + x1 + x2 + · · ·+ xj + · · · )u and obtain the recursive
relations

Max Planck Institute Magdeburg Lihong Feng, Parametric Model Order Reduction 9/15



Parametric Systems PMOR based on multi-moment matching (Krylov subspace PMOR) A Robust Algorithm Conclusions

A Robust Algorithm

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp]x0,

x2 = [σ1M1 + . . .+ σpMp]x1, . . .

xj = [σ1M1 + . . .+ σpMp]xj−1, . . . .

If we define a vector sequence based on the coefficient matrices of
xj , j = 0, 1, . . . as below,

R0 = BM ,
R1 = [M1R0,M2R0, . . . ,MpR0],
R2 = [M1R1,M2R1, . . . ,MpR1],

...
Rj = [M1Rj−1,M2Rj−1, . . . ,MpRj−1],

...

(8)
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A Robust Algorithm

and let R be the subspace spanned by the vectors in Rj , j = 0, 1, · · · ,m:

R = colspan{R0, . . . ,Rj , . . . ,Rm},

then there exists z ∈ Rq, such that x ≈ Vz . Here the columns in
V ∈ Rn×q is a basis of R. We see that the terms in Rj , j = 0, 1, . . . ,m
are the coefficients of the parameters in the series expansion (7). They
are also the j-th order moment vectors.

How to compute an orthonormal basis V ?
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Algorithm 1 Compute V = [v1, v2, . . . , vq]

1: Initialize a1 = 0, a2 = 0, sum = 0.
2: Compute R0 = Ẽ−1B.
3: if (multiple input) then
4: Orthogonalize the columns in R0 using MGS: [v1, v2, . . . , vq1 ] =

orth{R0} with respect to a user given tolerance ε > 0 specifying
the deflation criterion for numerically linearly dependent vectors.

5: sum = q1 % q1 is the number of columns remaining after
deflation w.r.t. ε.)

6: else
7: Compute the first column in V: v1 = R0/||R0||2
8: sum = 1
9: end if

10: % Compute the orthonormal columns in R1,R2, . . . ,Rm iteratively as
below

Max Planck Institute Magdeburg Lihong Feng, Parametric Model Order Reduction 12/15



Parametric Systems PMOR based on multi-moment matching (Krylov subspace PMOR) A Robust Algorithm Conclusions

Algorithm 2 Continued

1: for i = 1, 2, . . . ,m do
2: a2 = sum;
3: for t = 1, 2, . . . , p do
4: IF a1 = a2, stop ELSE do
5: for j = a1 + 1, . . . a2 do
6: w = Ẽ−1Etvj ; col = sum + 1;
7: for k = 1, 2, . . . , col − 1 do
8: h = vT

k w ; w = w − hvk
9: end for

10: if ‖w‖2 > ε then
11: vcol = w

‖w‖2 ; sum = col ;

12: end if
13: end for
14: end for
15: a1 = a2;
16: end for
17: Orthogonalize the columns in V by MGS w.r.t. ε.
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Conclusions

PMOR methods include also reduced basis methods, which is a huge
topic. The curse of dimensionality of the parameters is still unsolved.

Other PMOR methods are not introduced: POD based method,
reduced basis method, tansfer function interpolation based method,
PMOR based on measured data.
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