Parametric Model Order Reduction

Lihong Feng

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

Outline

PMOR based on multi-moment matching (Krylov subspace PMOR)

3 A Robust Algorithm

4 Conclusions

Parametric Systems

A linear parametric system

$$C(s_1, s_2, \cdots, s_{p-1})\frac{dx}{dt} = G(s_1, s_2, \cdots, s_{p-1})x + Bu(t), \qquad (1)$$

$$y(t) = L^T x,$$

where the system matrices $C(s_1, s_2, \dots, s_{p-1})$, $G(s_1, s_2, \dots, s_{p-1})$ are (maybe, nonlinear, non-affine) functions of the parameters s_1, s_2, \dots, s_{p-1} .

PMOR based on multi-moment matching (Krylov subspace PMOR)

In frequency domain

Using Laplace transform, the system in (1) is transformed into

$$E(s_1,\ldots,s_p)x = Bu(s_p), y = L^T x,$$
(2)

where the matrix $E \in \mathbb{R}^{n \times n}$ is parametrized. The new parameter s_p is in fact the frequency parameter s, which corresponds to time t.

In case of a nonlinear and/or non-affine dependence of the matrix E on the parameters, the system in (2) is first transformed to an affine form

$$(E_0 + \tilde{s}_1 E_1 + \tilde{s}_2 E_2 + \ldots + \tilde{s}_p E_p) x = Bu(s_p),$$

$$y = L^T x.$$

$$(3)$$

Here the newly defined parameters \tilde{s}_i , i = 1, ..., p, might be some functions (rational, polynomial) of the original parameters s_i in (2).

PMOR based on multi-moment matching

To obtain the projection matrix V for the reduced model, the state x in (3) is expanded into a Taylor series at an expansion point $\tilde{s}_0 = (\tilde{s}_1^0, \dots, \tilde{s}_p^0)^T$ as below,

generated recursively as

PMOR based on multi-moment matching

$$F_{k_{2},...,k_{p}}^{m}(M_{1},...,M_{p}) = \begin{cases} 0, & \text{if } k_{i} \notin \{0,1,...,m\}, i = 2,...,p, \\ 0, & \text{if } k_{2} + ... + k_{p} \notin \{0,1,...,m\}, \\ I, & \text{if } m = 0, \\ M_{1}F_{k_{2},...,k_{p}}^{m-1}(M_{1},...,M_{p}) + M_{2}F_{k_{2}-1,...,k_{p}}^{m-1}(M_{1},...,M_{p}) + ... \\ & \dots + M_{p}F_{k_{2},...,k_{p}-1}^{m-1}(M_{1},...,M_{p}), \quad \text{else.} \end{cases}$$

For example, if there are two parameters \tilde{s}_1, \tilde{s}_2 in (3), $F^m_{k_2,...,k_p}(M_1,...,M_p) = F^m_{k_2}$ are:

$$F_0^0 = I,$$

$$F_0^1 = M_1 F_0^0 = M_1, \quad F_1^1 = M_2 F_0^0 = M_2$$
(5)

$$F_0^2 = M_1 F_0^1 = M_1^2, \quad F_1^2 = M_1 F_1^1 + M_2 F_0^1 = M_1 M_2 + M_2 M_1, \quad F_2^2 = M_2 F_1^1 = M_2^2,$$

. . .

PMOR based on multi-moment-matching

For the general case, the projection matrix V is constructed as

PMOR based on multi-moment-matching

- $L^{T}B_{M}$: the 0th order multi-moments; the columns in B_{M} : the 0th order moment vectors.
- L^T M_iB_M, i = 1, 2, ..., p: the first order multi-moments; the columns in M_iB_M, i = 1, 2, ..., p: the first order moment vectors.
- ...; the columns in $M_i^2 B_M$, i = 1, 2, ..., p, $(M_1 M_i + M_i M_1) B_M$, i = 2, ..., p, $(M_2 M_i + M_i M_2) B_M$, i = 3, ..., p, ..., $(M_{p-1} M_p + M_p M_{p-1}) B_M$: the second order moment vectors. •

Since the coefficients corresponding not only to $s = s_p$, but also to those associated with the other parameters s_i , i = 1, ..., p - 1 are, we call them as **multi-moments** of the transfer function.

A Robust Algorithm

Taking a closer look at the power series expansion of x in (4), we get the following equivalent, but different formulation,

$$\begin{aligned} x &= [I - (\sigma_1 M_1 + \ldots + \sigma_p M_p)]^{-1} \tilde{E}^{-1} B u \\ &= \sum_{m=0}^{\infty} [\sigma_1 M_1 + \ldots + \sigma_p M_p]^m B_M u \\ &= B_M u + [\sigma_1 M_1 + \ldots + \sigma_p M_p] B_M u + [\sigma_1 M_1 + \ldots + \sigma_p M_p]^2 B_M u + \ldots \\ &+ [\sigma_1 M_1 + \ldots + \sigma_p M_p]^j B_M u + \ldots \end{aligned}$$
(7)

By defining

$$\begin{aligned} x_0 &= B_M, \\ x_1 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] B_M, \\ x_2 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p]^2 B_M, \ldots, \\ x_j &= [\sigma_1 M_1 + \ldots + \sigma_p M_p]^j B_M, \ldots, \end{aligned}$$

we have $x = (x_0 + x_1 + x_2 + \cdots + x_j + \cdots)u$ and obtain the recursive relations

Max Planck Institute Magdeburg

A Robust Algorithm

$$\begin{aligned} x_0 &= B_M, \\ x_1 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_0, \\ x_2 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_1, \ldots \\ x_j &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_{j-1}, \ldots. \end{aligned}$$

If we define a vector sequence based on the coefficient matrices of $x_j, j = 0, 1, ...$ as below,

•

$$R_{0} = B_{M},$$

$$R_{1} = [M_{1}R_{0}, M_{2}R_{0}, \dots, M_{p}R_{0}],$$

$$R_{2} = [M_{1}R_{1}, M_{2}R_{1}, \dots, M_{p}R_{1}],$$

$$\vdots$$

$$R_{j} = [M_{1}R_{j-1}, M_{2}R_{j-1}, \dots, M_{p}R_{j-1}],$$
(8)

A Robust Algorithm

and let R be the subspace spanned by the vectors in R_i , $j = 0, 1, \dots, m$:

 $R = \operatorname{colspan}\{R_0, \ldots, R_j, \ldots, R_m\},\$

then there exists $z \in \mathbb{R}^q$, such that $x \approx Vz$. Here the columns in $V \in \mathbb{R}^{n \times q}$ is a basis of R. We see that the terms in R_j , $j = 0, 1, \ldots, m$ are the coefficients of the parameters in the series expansion (7). They are also the *j*-th order moment vectors.

How to compute an orthonormal basis V?

Algorithm 1 Compute $V = [v_1, v_2, \dots, v_q]$

- 1: Initialize $a_1 = 0$, $a_2 = 0$, sum = 0.
- 2: Compute $R_0 = \tilde{E}^{-1}B$.
- 3: if (multiple input) then
- 4: Orthogonalize the columns in R_0 using MGS: $[v_1, v_2, ..., v_{q_1}] = \operatorname{orth}\{R_0\}$ with respect to a user given tolerance $\varepsilon > 0$ specifying the deflation criterion for numerically linearly dependent vectors.
- 5: $sum = q_1$ % q_1 is the number of columns remaining after deflation w.r.t. ε .)
- 6: else
- 7: Compute the first column in V: $v_1 = R_0/||R_0||_2$
- 8: *sum* = 1
- 9: end if
- 10: % Compute the orthonormal columns in R_1, R_2, \ldots, R_m iteratively as below

Algorithm 2 Continued

1: for
$$i = 1, 2, ..., m$$
 do
2: $a_2 = sum$;
3: for $t = 1, 2, ..., p$ do
4: IF $a_1 = a_2$, stop ELSE do
5: for $j = a_1 + 1, ..., a_2$ do
6: $w = \tilde{E}^{-1}E_t v_j$; col = sum + 1;
7: for $k = 1, 2, ..., col - 1$ do
8: $h = v_k^T w$; $w = w - hv_k$
9: end for
10: if $||w||_2 > \varepsilon$ then
11: $v_{col} = \frac{w}{||w||_2}$; sum = col;
12: end if
13: end for
14: end for
15: $a_1 = a_2$;
16: end for
17: Orthogonalize the columns in V by MGS w.r.t. ε .

Conclusions

- PMOR methods include also reduced basis methods, which is a huge topic. The curse of dimensionality of the parameters is still unsolved.
- Other PMOR methods are not introduced: POD based method, reduced basis method, tansfer function interpolation based method, PMOR based on measured data.

References

- Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models.
 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 678–693 (2004).
- Feng, L., Benner, P.: A robust algorithm for parametric model order reduction based on implicit moment matching.
 Proc. Appl. Math. Mech. 7, 1021.501–1021.502 (2008)
- Peter Benner and Lihong Feng: A robust algorithm for parametric model order reduction based on implicit moment-matching.
 In Reduced Order Methods for Modeling and Computational Reduction.
 A. Quarteroni, G. Rozza (editors), 9: 159–186, Series MS &A, 2014, Springer.