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Overlook

Balanced truncation: first balancing, then truncate.
Given a LTI system: dx(t)/dt = Ax(t) + Bu(t)
y(t) = L' x(t)

For convenience of discussion, we denote the system as a block form:

A B\ Balancing T "5\ ‘ B ;&12 ®\
| > A A 2
[ ) =T Ay Ay | B
/-|- I:'T
L L |
,&1 § truncate
reduced modelfe (ElTl ‘ 1]( The unimportant

part is truncated



Overlook

What's the
unimportant part?

The states which are difficult to control and difficult to observe
correspond the unimportant part.

In system theory, the unknown vector x is called the state of the system.
Actually, the entries in x depict the system variables, such as branch
currents, node voltages in the interconnect model, and therefore
describe the state of the system.
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Analytical solution of the LTI System

When discuss balanced truncation method, we limit the LTI
system to the following form:

dx(t)/ dt = Ax(t) + Bu(t)
y(t) = L' x(t)
In order to analyze controllability, observability, we need to use the

analytical solution of the system, though we always solve the system
numerically (i.e. by numerical methods and using computers).

The analytical solution of the system: the analytical representation of x(t).



Analytical solution of the LTI System

What is the analytical solution excited by the input u(t) and starting

with the initial state x(0) = X,>
(see also Chapter 4, section 4.2 in [Chi-Tsong Chen, Linear System Theory and Design, 3rd edition, 1999] )

Multiplying e ="' on both sides of dx(t)/dt = Ax(t) + Bu(t) yields
e AUAX(t) = e MBu(t)
which implies,

d , _a At
a(e X(t)) = e " Bu(t)

Its integration from O to t yields,

{
e AT x(0)| L, = j e AT BU(r)d 7

0




Analytical solution of the LTI System

t
0

Because the inverse of g Alis eAl and e’ = I, (1) implies

t
X(t) = e x, + IOeA(t_T) Bu(z)dz (2)
This is the analytical solution of dx(t)/dt = Ax(t) + Bu(t).

e It is impossible to plot the waveform of x(t) by hand, we need

computers to compute x(t) numerically and plot x(t) at many samples
of time.

o It is difficult to compute x(t) by following the analytical formulation
in (2) if A is very large. We need to solve the LTI system
numerically with some numerical methods, like backward
Euler, ...etc.
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Controllability measure

Reachability

Definition: Given a system [Iﬁ;’ij, a state x is reachable from the

zero state if there exist an input function U(t) of finite energy such
that x can be obtain from the zero state and within a finite period of

time t <o .




Controllability measure

Denote X ™" the subspace spanned by the reachable states, then

X reach — X

Xis the whole state space, e.q.

X ={x(®):R, >C"}

The system is reachable <———>X ™" — X: every state in the state
space is reachable.



Controllability measure

Example 1 Picture referred to [Chi-Tsong Chen,
Linear system Theory and Design, 3rd
edition, New York Oxford, Oxford
University Press, 1999]

10 4Q)

2Q) 8Q2

x denotes the voltage drop along the capacitor, and is the state of the
system. In this circuit, x=0 at any time.

Conclusion:
In this circuit, 0 state is a reachable state, but any nonzero state is a

unreachable state! Therefore the whole system is unreachable.



Controllability measure

Example 1 is actually the Wheatstone bridge.

R; is adjustable, it is adjusted till
Vs becomes zero. It means there
is no voltage drop through vg.

+
Therefore, we have
"~/
Y, R _ R
o R Rs

R, can be easily measured by the
above equation.

Wheatstone bridge

A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie
in 1833 and improved and popularized by Sir Charles Wheatstone in 1843.
(http://en.wikipedia.org/wiki/Wheatstone_bridge)



Controllability measure

Example 2 dx(t)/dt = Ax(t) + Bu(t)

y(t) = L' x(t)
1F | % () 1F |t X5 (1) () = (Xl(t)

X (t)

\ <> voltage drops through
the two capacitors.

1Q 1Q

Those states x(t) with X (t) = X,(t) are reachable, but those states with
X (t) # X, (t) are not reachable. Because whatever the input is, the voltage
drops through the two capacitors are always identical.

Therefore the whole system is unreachable.



Controllability measure

Reachability matrix of the system:

R(A, B)=[B, AB,A’B---A"'B--]

By the Cayley-Halmilton theorem, the rank of the reachability matrix and
the span of its columns are determined (at most) by the first n terms (not

the first n columns), i.e. A'B,t=12,---,n—-1.

Thus for computational purpose the following (finite) reachability matrix
is of importance:

R,(A B)=[B, AB, A°B--- A" 'B]

SometimesR,(A,B) is directly defined as the reachability matrix.

e Why it is called reachability matrix?
e Any connection between R, (A B) and reachability?



Controllability measure

Notice the analytical solution of system state equationdx/dt = Ax+Bu is
X(U, Xo,t) =%, + [ "I Bu(r)dr,t > 1,

The reachability of a state x of the system is tested by the zero initial
state, X, =0, we look at the above analytical solution with X, =0,

X(u,0,t) = reA(t_T)Bu(r)dz'

Notice:
i 2 k

eAt = |n +_A_|_t_A2_|_..._|_t_Ak 4.
1 "



Controllability measure

(t—7

2|)2 A’B+..)u(r)dr

x(u.0.t) = [ e Bu(r)dr = j;(B +(t—7)AB+

— Bj;u(r)dﬂ ABI; (t—7)u(r)dz + AZBj; (t _ZIT)ZU(T)dr

=Ba, + ABa, + A’Ba, +---+ A“Bey, +---,

which means a reachable state x is the linear combination of the terms:

B,AB, A%B,---, AB, ...

Therefore R(A,B) = (B, A, A°B---A"'B--") is defined as the reachability
Matrix.



Controllability measure

Actually there is a Theorem (Theorem 4.5 in Chapter 4 in [Antoulas05]):

Theorem 1 If X" js the subspace spanned by the reachable

states, then
X " —im R(A, B) :space spanned by the columns.

The theorem tells us the subspace spanned by all reachable states is
exactly the subspace spanned by the columns of the reachability matrix

R(A,B) .

The finite reachability gramian at time 1 < oois defined as :

t
P(t):jeAfBBTeAder, for O<t<oo
0



Controllability measure

Connection between reachability matrix and reachability gramians
Proposition 1 The finite reachability gramians have the following
properties: (a) P(t)=P'(t)>0, and (b) their columns span the reachability
subspace, i.e., Im P(t) =im R(A, B). ( Proposition 4.8 in [Antulous 05] )
Proof An easier way is to prove im P®(t) =im R®(A, B), where

imP®(t)®@imP(t)=C" and imR®(AB)®imR(AB)=C"

We first prove vxeimP®(t)= xeim R®(A, B)
Vx eim P® we have
x"P()x=[ | BTe" x| dr =0

— BTeAtx=0 forall t>0



Controllability measure

At LT +£(AT)2+'"+i(AT)k+“‘
BT 2l k!

Therefore, BTe* 'x =0 < B" (A7) *x = 0] for alli > 0.

J

x 1 A'B

ll

x Lim R(A,B)

g

X cim R®(A, B)

We have proved: VX eim P®(t)= x eim R®(A, B)



Controllability measure

Next we prove: ¥xeimR®(A B)= xeim P®

X eim R¥(A,B) ——> x LimR(A B)——=> x L A"!B, for all i>0

d

BT (AT)x=0, for all i>0.

{—

X eimP®

ﬁ BTe”'tx
ﬁP symmetric

_ b ATHRTAATr _
XEﬂUll(P) < P(t)x—joe BB'e™ “xdr =0, I

0, forall t>0

@ AR G



Controllability measure

pTX\ /pT
vxenull(P) <=> Px=0 <—> %r %r
P21 _pand p=| P2
pIX \pl

<—>p, Lnull (P) <==> im(P") L null (P)

im (P") =span {columns of P'}=span{p,,..., p,}
@P symmetric
im (P) =im (P")

4

im (P) L null (P)




Controllability measure

The relation im P(t) =im R(A,B) provides a way to derive the minimal
energy which are needed to reach a state x.

The states using large minimal energy are difficult to reach and will be
truncated during MOR based on balanced truncation.

Therefore, the minimal energy for reaching a reachable state x is a key
concept for model order reduction based on balanced truncation.

Next, we will derive the minimal energy for reaching a state x.



Controllability measure

From the analytical solution, if a state x is reached at time T, then 3u(t)
with finite energy, such that

How much must the input u(t) be?

We have proved if x is reachable, then x eim (P(t)), i.e. 3¢&,T,

X=P(T)f = x= _[OT eMBBe” At = LT eAT-IBB e M- (1)

and U(r)=-BTe* (¢

This means x can be reached
at time T with input U




Controllability measure

The input u(t) is the excitation of the system, its energy is the energy
required to reach the state x .

:
Energy of a function is defined as: || u ||2:j u” (t)u(t)dt
0



Controllability measure

We see from above analysis, if x is reachable at time t , x can be
represented as:

£, _
X — IeA(t—T)BUdT (UI—BTeAT(t_T)é)
0

Any other input [|u(t) > T(t) || can also reach x. However if
lut) |P<|| T(t) ||?, it cannot reach x at time f, may need longer time.

Actually the energy of U is the minimal energy to reach the state x at the
given time period {. (Proposition 4.10 in [Antulous 05])

Energy of U :

J017= [ Oaed = [ £'eVBBTeN Ot =P

relation to x?

i

X



Controllability measure

A system is reachable means every state x in the whole
state space is reachable.

From theorem 1: X™" =imR(A,B)=imR_(A,B)
Therefore the system is reachable <——> rank (R (A,B))=n
From Proposition 1: im P(t) =im R(A, B)

Therefore the system is reachable <—=>rank (P(t)) =n, vVt >0

Therefore,P(t) is nonsingular for any ¢, if the system is reachable.



Controllability measure

Energy of §=BTe” )¢ (noticex=P({)¢) :

1T 11°=&"PE)¢ = (P ©)x) PP ({)x) = xP(E)x

Controllability
measure!

Only for reachable
systems.



Controllability measure

Remark 1:
Reachability is a generic property for LTI systems with the form:

dx/dt = Ax+Bu

This means, intuitively, that almost every LTI system with the form
above is reachable. If there are any unreachable systems, they are
very rare. The unreachable LTI systems like examples 1,2 are rare.

Remark 2:
The reachability of the system can be more easily checked by the
criteria:

The system is reachable <——> rank(R,(A,B))=n



Controllability measure

A concept which is closely related to reachability is that of controllability.

Here, instead of driving the zero state to a desired state, a given non-
zero state is steered to the zero state. More precisely we have:

Definition of controllability: Given a LTI system as above, a non-zero
state x is controllable if there exist an input u(t) with finite energy such
that the state of the system goes to zero from x within a finite time:t < .



Controllability measure

It has been proved that for time continuous LTI systems (as discussed in
this lecture), the concepts of reachability and controllability are
equivalent.

Theorem 2 For time continuous systems X "ach _ x O (Theorem 4.16 in
Antulous 05)

Similarly, xcontr js the subspace spanned by the controllable states.

From the property of reachable system, we have

The system is controllable<——> rank (R.(A,B))=n



Controllability measure

Example: Platform system 2u(t)l
X l lxz
1

Damping ‘ Damping ‘
Coefficient: 2 Coefficient: 1

Spring
ashdor> Constant: 1 dashpot

pring
Constant: 1

The system is described by the following linear time invariant (LTI)
system: assume mass of the platform is zero, and from Newton’s law:

F-nv—-kx=ma
U=2%~ - 0 ———  dx(t)/dt x(t)+.u(t)
— X, =



Controllability measure

Is the platform system controllable?

The system is controllable<——> rank(R,(A,B)) =n

R (A B)=[B, AB,]

0.5 —-05 005 -0.25
B = AB = =
1 0 -1){1 -1
B, AB are linearly independent!

rank(R,(A,B))=2=n

Therefore, the platform system is controllable.



Controllability measure

Associated with controllability, there is the concept of observability.

Controllability: input u(t) ——— state x(t).

Possibility of steering the state from the input.

Observability: output y(t) ——— state x(t).

Possibility of estimating the state from the output.
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Observability measure

Observability is a measure for how well internal states of a system
can be estimated by knowledge of its external outputs.

Definition of Observability: Given any input u(t) , a state x of the
system is observable, if starting with the state x (x(0)=x), and
after a finite period of timet <« , x can be uniquely determined
by the output y(t).




Observability measure

Observability matrix? ( L' \
. . L' A
Observability Gramian? O(L,A) =
LT A®
Output energy? :




Observability measure

Derivation of Observability matrix

From the analytical solution of dx/dt = Ax+ Bu, we see that after

time t <o A1)
X(f) = e x0+je Bu(r)dr
0

The system starting with x(0)=x, therefore
~ - t f t
X () =eAtx+j ARy (7)d 7
0

And the output corresponding to X(t)is:

y() = 'X(F) = LT e x + LTIO M- By (£)d

—LUeMx+ e Atj e "A"Bu(r)dz
0

_ f
—L'eMX and x= X+I e ""Bu(r)dr
0



Observability measure

Derivation of Observability matrix

If x is observable, then for any u(t), x can be uniquely determined by
the corresponding y :

yE)=LeMx and x=x+[e " Bu(r)dr

Since x can be uniquely determined by X , it is sufficient to prove that X
can be uniquely determined by Y(t).

Let us see under what condition can X be uniquely determined by y(t) ?



Observability measure

Derivation of Observability matrix
y(@) = LTeAx

Differentiate the above equation on both sides and get the derivatives
at t=0:

y(0)=L"X
y'(0) = L' AX (LU y(0)
Jo=ax S| FA YO @

X|
I

y&(0) = LT A*x

[ LT
L' A

(#) has a unique solution X if ; has full row rank n.

T ak
L A"




Observability measure

Derivation of Observability matrix

Denote:
LT [ y(0)
Al - | vy
Qe =| Y=l T X=Q7Y
(LT A ),

X can be uniquely determined, with k being at most n.

LT e R™" if m>1, then k<n, if m=1, k=n.



Observability measure

Derivation of Observability matrix

Therefore we define .
L
LT A

LT A®

Observability matrix:
O(L,A) =

From above analysis, actually the finite Observability matrix is enough
to determine observability:

LT

T
On(LiA): L.A

LT An—l

Therefore:

The system is observable <———=> rank(O,(L,A))=n



Observability measure

Output energy

The output energy associated with the initial state x is:
Iy©1P=] y(©)" ydt = [ xe""'LL e xdt
= x* e (LU eMdtx

= X'Q(f)x

1. Energy of observation
produced by an
observable state x.

2. Observability measure!

Finite Observability Gramian at timetl < « is defined as:

Q(t) = j; e’ LU e dr, 0<t <o



Observability measure

Observability Gramian

Recall the minimal energy to reach a state x at time t is
1T ]|%=x"P~(f)x
Notice both energies are related to time.
1T )1%=x"P~H(E)x I y(®) I*=X"Q(f)x

t t T
P(t):jeAfBBTeAder, O<t<oo Q(t):jOeAfLLTeAfdz, O<t<oo
0

Finite (reachability) controllability Gramian and observability
Gramian will be used to derive the infinite Gramians which

1. Make the two measures computable.
2. will be directly used for truncation in MOR.
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Infinite Gramians

make the two measures computable

Under which condition, Q(t) and P(t) are bounded when time goes to
infinity: t > o0 ?

t
P(t) =J' eA"BBTeA " dz, O<t<oo
0

t T
Q(t):j e® "LTe”dr, O<t<oo
0

At

Roughly speaking, Q(t) and P(t) can be bounded whent — « , if e
is bounded whent — o0,



Infinite Gramians

make the two measures computable

e™ is bounded if the real parts of all the eigenvalues of A are negative.

Why? Let A=S AS be the eigen-decomposition of A,

_1 - J— -
eAt _ eS ASt _ S—leAtS _ S—leAret+A|mtS _ S 1eAreteA|mtS

/Z{e A /jﬂ,ilm A

re

A =A%+ A" i=12,---n are eigenvalues of A.



Infinite Gramians

make the two measures computable

1 _
eAt _ eS ASt _ S—leAtS _ S—letAreetAlmS

[ re A

et (0 )
olhre _ e%e t > o 0
A <0 g
tA’

N e ) . 0,

T \

el
Ay t >
etAim = € > bounded

e = cos(tA™) + jsin( A™)




Infinite Gramians

make the two measures computable

-1
Therefore, et — S 7AS _ g-lgAg _ g laMeglhing _y

if the real parts of all the eigenvalues of A are negative.

Therefore the follow limits exists if all the eigenvalues of A are negative,
i.e. if the system is stable:

ot o0
— lim P(t) = lim eAfBBTeAder=j eAtBBTeA it
0

t—oo t—o0 J0

ol 00
Q=lim Q(t)=lim | e~ L eAdzr = j eAtLLT eAtgt
0

t—o0 t—>0J0

where P and Q are the infinite Gramians (only for stable systems).



Infinite Gramians

make the two measures computable

The infinite Gramians:

P =limP(t) = lim eA’BBT Atdr = _[:eAtBBTeATtdt

t—ow oo

Q= I|m 1 Q(t) = im AT LT e :joweATtLLTeAtdt

t—0J0

From the property of integral, we have

P>P(t), Wt Q>Q(t), Wt

|

In the meaning of inner product: P > P(t) < (Px, xX) > (P(t)x, X)



Infinite Gramians

make the two measures computable

The minimal energy necessary for reaching a reachable state x at
time t is:
T 1*= x"P7(t)x

For stable systems, lower bound of the minimal energy necessary
for reaching a reachable state x is:

|T|°=x"P(t) x> X P™x because P>P(t), Wt

For stable systems, the uppey bound of the energy prodused by
the observable state x is:

Iy(®) 2= QWX < YQX  because Q=0() Vti— )

Computable
measures!

Only suitable for
stable systems!



Infinite Gramians

make the two measures computable

For stable systems, the minimal energy necessary for reaching a state
is:

min || T = x P *x
For stable systems, the maximum energy produced by a state x is:

max | y(t) = X QX



Infinite Gramians

make the two measures computable

Because the MOR method we will introduce uses P and Q to derive the
reduced-order model, and therefore is only suitable for stable systems.

min | T 7= x"P7*x  max || y(t) [|*= X"Qx

|

The eigenspaces of P and Q make the two measurements practically
computable!



Eigenspaces of P and Q

make the two measures parctically computable

The states which are difficult to reach are included in the subspace
spanned by those eigenvectors of P that corresponds to small
eigenvalues.

The states which are difficult to observe are included in the subspace
spanned by those eigenvectors of Q that corresponds to small eigenvalues.



Eigenspaces of P and Q

make the two measures practically computable

Denote &;,&,,---,&, as the n eigenvectors of P, the corresponding
eigenvalues are 4, > 4, >---> 4. (P is symmetric, it has real eigenvalues.)

&, 65,00+, &, are linearly independent, therefore they constitute a basis of
the whole space C".

The state x can therefore be represented by 1,2, " &n

X=a&) + Sy ++ -+ a8,
min || T |[*= x*P*x

If a matrix is nonsingular, then its inverse has the same eigenvectors,
but the eigenvalues are the reciprocals:

PE=AE=PIPE= P e &/ =P 7Y



Eigenspaces of P and Q

make the two measures practically computable

min || T ||°= x*P*x
X=0yG) + a6, + -+ g,
1 1 1
PiX=ay—& +ay—& ++a, —
1 51 212 52 nﬂ én

U

1 .«
X'Pix = o tal = a’ =
1 215151 2 2 252 n Zn gngn

Pis symmetric,@ therefore Q=I[&.--.&,] is orthogonal.

min || U |* indicates the minimal energy needed to reach the state x,
therefore the larger min ||u ||* is, the more difficult the state x to reach.



Eigenspaces of P and Q

make the two measures practically computable

min || T ||? is larger if 4, 2 4, 2++->> A = 4, 2= 4, and
al’a2’.”<< akiak+1l”'lan than |f

L2y =>> A 22, >--2 A and

al,az,“'>>ak,ak+l,"',a

n

X=oyé + a6, ++ S,

This means if x is difficult to reach (||u||*is large), x should have large
components in the subspace spanned by the eigenvectors corresponding
to the small eigenvalues of P. Or x should almost locates in the subspace
spanned by the eigenvectors corresponding to the small eigenvalues.



Eigenspaces of P and Q

make the two measures practically computable

Similarly, if x is difficult to observe (| y(t)|°=X"QX is small ) x should
have large components in the subspace spanned by the eigenvectors
corresponding to the small eigenvalues of Q. Or x should almost locates
in the subspace spanned by the eigenvectors corresponding to the small
eigenvalues.

&2

YAt
s

QF ~AZ.i-12.wm

.;k+1 \
\y—\



Eigenspaces of P and Q

make the two measures practically computabl€

Till now it seems we could do the truncation by finding subspace
spanned by the eigenvectors corresponding to the small eigenvalues of P

or Q.

However, it could happen that states which are difficult to reach produce
the maximal energy of observation; states which produce the smallest
energy of observation are nevertheless the easiest to reach!

For such system, we do not know which states to truncate!



Eigenspaces of P and Q

make the two measures practically computable

Example: Consider the following LTI system

dx(t)/ dt = Ax(t) + Bu(t) (1 3} B_m L_m
y(t) = LT x(t) ( | | |

The two Gramians are: p — 2.5 -1 Q=
-1 0.5

Their eigenvalues and eigenvectors are:

0.92388 o (052573} 4
b B _ A9 =1.30901
P = (_0.38268},11 =2.91421 51 (0_85865 A
0.38268 —0.85865
P _ P _ Q _ 19 =0.19098
’ [0.92388}12 008578 & ( 0.52573 j ?



Eigenspaces of P and Q

make the two measures practically computable

- (0.38268) o o [0.52573) 4
, = , A, =0.08578 &F = ,Ar =1.30901
0.92388 0.85865
The angle between &, , and élQ is very small. $ ép 98Q
2 51
1
This means if S is the subspace spanned bygzp, -
then the easily observable states
X= Otlgng + 0!252(?,061 >> 0(2
may also in S. -1 '1 ]

It tells us if we truncate the states which are difficult to reach ( the
states locate in S), we risk truncating the states which are easy to
observe ( produce the maximal energy of observation) , because they
are also in S).



Eigenspaces of P and Q

make the two measures practically computable

However, if P and Q have the same eigenvalues and eigenvectors, then
the problems is solved.

The states in the subspace spanned by the eigenvectors of P
corresponding to the small eigenvalues always in the subspace spanned
by the eigenvectors of Q corresponding to the small eigenvalues,
because the eigenvalues are the same and eigenvectors are the same,
therefore the subspaces are the same.

Can we achieve
this?

We can achieve it by balancing.
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MOR: Balanced truncation

Balancing

Recall the Balanced truncation method:

Given a LTI system: dx(t)/dt = Ax(t) + Bu(t)
y(t) = L' x(t)

A‘ B\ balancing
i m—

reduced mode

o (A
AlDb ~
N j: &
\
(,Z\l ‘ 61\ truncate
< U;Tl\ J(

The unimportant
part is truncated



MOR: Balanced truncation

Balancing
Basic idea of balancing transformation:

Use state space transformation X =TX to get another realization of the
same system, so that the transformed Gramians are diagonal matrices.

Definition of Balancing transformation:

Finding a nonsingular matrix T, such that P=TPT",Q=T"QT! andP-=Q .

Definition of Balanced system:

The reachable, observable and stable LTI system is balanced, if its two
Gramians are equal P=Q, it is principal-axis balanced if

P=Q=x=diag(c,,,0,).



MOR: Balanced truncation

Balancing

Basic idea of balancing transformation:

Use state space transformation X =TX to get another realization of the
same system, so that the transformed Gramians are equal and
are diagonal matrices. I.e.

P=TPTT=%, Q=TTQT'=%

How to construct T?

Recall that PQ = TPQT ..
Since PQ = 32, we have TPQT * = 2, which means PQ =T x2T.

T should be the inverse of the matrix of eigenvectors of PQ.



MOR: Balanced truncation

Balancing

Check:P =TPT" =2 How to make TPT" =3?

If P=UUT then TPT  =TUU'T ' =TU WWUU T " = 1if TT' =1.
Here we must have the relation T=TU .
If further T =XY2TU " then TPT' =X¥*TUWUTU "T"z¥2 =3,

It looks that we can computeT asT =X Y2TU

However, we know that T is the inverse of the eigenvectors of PQ.Since PQ is not a p.s.d. matrix,
we have to compute the inverse of the matrix of eigenvectors togetT.

To avoid computing the inverse of the matrix of eigenvectors, we computeT~ In a different way.
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Balancing

Substitute T =3Y?TU into TPQT '=32, we get
lesz _1PQU'F_1Z_1/2 32
The left hand side = =Y>TU UUTQUT =22 = Y2TUTQUT = V2.

Look at the right hand side, we get
21/2-|TU TQU-F—lz—UZ _y2

ie. TUTQUT * =32 ThereforeT is the inverse of the matrix of eigenvectors of UTQU.

Furtunately, U QU isa p.s.d. matrix. therefore the inverse of the matrix of eigenvectors is exactly
the transpose of the matrix itself. So that we do not have to compute the inverse.
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Balancing

The above analysis clearly shows that:

Existence of balancing transformation: dx(t)/dt = Ax(t) + Bu(t)

y(t) = L' x(t)
Given a reachable, observable and stable LTI system

and the corresponding Gramians P and Q, a (principal axis) balancing
transformation is given as follows:

T=3"?K'U™* and T '=UKTZ™?

Here, P=UU" is the Cholesky factorization of P. U'QU =Kz*K'

is the eigen-decomposition of U'QU . (Symmetric positive semi-
definite matrix has real non-negtive eigenvalues and orthogonal
eigenvectors. Here, the Eigenvectors in K are taken as orthonormal)
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Balancing

What is the corresponding balanced system?

Apply the state space tansformation: X =TX to the original realization:

dx(t)/dt = Ax(t)+Bu(t) 5 _+, dX (t)/ dt = TAT 7% (t) + TBu(t)

y(t) = L x(t) > y(t) = U'T (1)
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Balancing

Balancing :

dx(t)/ dt = Ax(t) + Bu(t)
e Given T
y(t) =L x(t)

e Compute P, Q.

e Compute p=yy"™ U'QU =Kkz°KT The eigenvalues are ordered
from the largest to the smallest

* dx(t)/dt=Ax(t)+Bu(t) T==°KTU™ _ dR(t)/dt=TAT % (t) + TBu(t)
y(t) = L' x(t) TH=UKz ™  y(t)=L"T7'X()
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Truncate

balanced system: dX(t)/dt=TAT 7'X(t) + TBu(t)
y(t) = L'T X (1)

~

P =Q =3 = the unit vectors e. aretheeigenvectorsof £:Xe. =oe,i=1,...,n.

Assume that the elements on the diagonal of X is already orderedas:o, >0, >...>2 0.

Thereforee,,...e, span the subspace containing easily controllable and easily observable states.

Truncate the difficult - to - observe and difficult - to - control states means:

X=eX +...e X ~eX +...e. X =(X,...X,0,...,0)".

~

le.X = (X,,...X,0,...,0)" = x;.Replace X with x, in the balanced system:

i (1) dt=TAT 1 (+TBU() 7= (X,,... %) d(z(t)j _ L&z(t)j{%u (t)J
y(t) = L'T X, (t) > 0 0 B,u(t)

v =(Zz0) o)
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Truncate

d(z(t)}z[&z(t)HElu(oJ
0 0 B,u(t)

y(t)=(Cz@t) 0)

is @ non-minimal realization of a system.

A minimal realization of the same system is:

dz(t) = A, z(t) + Bu(t)
g(t) = Lz(t)

The reduced-order
model (ROM)

Therefore we have the following simple steps for truncation:
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Truncate

Balancing:

dx(t)/ dt = Ax(t) + Bu(t) T=3"2k'U  dx(t)/dt = TAT X (t) + TBu(t)

y(t) = L' x(t) T1 _UKs2 g y() =L T7X(t)

Truncate: ﬂ

TPT' =% and T'QT'=3 - -
dz(t)/dt = A,z(t) + Bu(t)

. R g(t) =L z(t)
2:[ 1 A=TATZ | 512)
Ao Ay Separated

v = 8 :(ﬁ1 e according Reduced model!

Small part B 5 to the
2 separation

of x.
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Balancing:

dx(t)/dt = Ax(t)+Bu(t) T —xl2KTy-L R dX(t)/ dt = TAT XX (t) + TBu(t)
y(t) = L' x(t) T UKz V2 y(t) = L'T7X()

e Does it make sense if we do model reduction on the balanced system
rather than the original system?

Yes. As a state transformation, balancing does not change the transfer
Function, and the HSVs The balanced system is only a different
realization of the system.
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Observe:

dx(t)/ dt = Ax(t) + Bu(t)

i dX (t)/ dt = TAT X (t) + TBu(t)
y(t) =L x(t) —

dz(t)/dt= A,z(t)+ Bu(t)
y(t) = L'T X ()

— ~
y(t) =L, z(t)

x =T X =YX. Here the columns inY :=T " are the eigenvectors of
the matrix product PQ.Y =T =T =Y =W, W,)'

1

XU X1

If separate Y asY =(Y,,Y,),and X as X =£ ],then X =YX =YX, +Y,X,.

2

T

T T
A=TAT " = WlT A(Yl Y2 ) - WlT N WlT N = A
W, W, AY, W, AY,
3 W' W,'B o] T Tl _ T T T r
B=TB=| 7 [B=| g B U =UT%=U(Y, v,)=(CY, LUYV,)=L
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Therefore the two ROMs are the same:

dz(t)/ C,j,t = Ayz(t) +Bu(t) dX, (t) / dt =W," AY,X, (t) +W," Bu(t)
y(t) = L1T z(t) y(t) = LTYlil(t)

Conclusion: balanced truncation is Petrov-Galerkin projection as below:
Let X ~ Y, X,
dx(t)/ dt = Ax(t) + Bu(t)

X~ Y, X dx, (t)/dt =W," AY,X, (t) +W, Bu(t)
y(t) = L' x(t)

> ~
Petrov - Galerkin usingW,” y(t) = L'Y,X, (t)

Therefore, balanced truncation is equivalent to: finding the invariant

subspace of PQ, and remaining only the part (Y,) which corresponds to
the largest HSVs (square root of the eigenvalues of PQ).
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Algorithm 1 Given dx(t)/dt = Ax(t) + Bu(t)
e Balancing: y(t) = L' x(t)

1. Compute P, Q.
2. Compute p-yuy"’ UTQU = Kx2KT

3. T=3?K'U™, Tl=Ukz? zz[zl zj
2

4. Balancing and separating A B, L according to the separation

of X :

. A o) 5 orn (B

A:TAT‘lz[g‘ll /f__:HJ B=TB=(§1J C=U1'=(0 0O)
e Truncate: el Tz 2

5. Form the reduced model: dg(t)/dt = ,&_Llf((t)Jr I§1u(t)
() = Li (1)
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computational details

Are we ready to get the reduced model from the above Algorithm 1?

Not yet, because we do not know yet how to compute P and Q
numerically!

Recall: P :jweAtBBTeATtdt Q :IweATtLLTeAtdt @
0 0

Fortunately we have:

Proposition (proposition 4.25 in [Antoulas 05])

P and Q are the solution of the following two Lyapunov equations:
AP+PA' =-BB'
ATQ+QA=—LL'

These two matrix equations can be solved numerically (by computer)!
Of course by using some algorithms.
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computational details

In MATLAB, use command:
P =lyap(A B*B)

Q=lyap(A",L*L)
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Numerical issues

The balancing matrix is: T =32k Ty, P=UU".

Computation of U™ may cause numerical instability, because U is
usually near singular.

U is usually near singular, because the matrix P has numerically
low-rank, i.e. near singular.

P is near singular because in may cases, its eigenvalues decay
rapidly to zero, some eigenvalues are very close to zero, e.g. 1,=10".

Q and 2 behaves similarly as P.

However in algorithm 1, we need to compute:

Can we avoid
computing U7,

T=3"2k"U?, Tl=UKz"?, o O g1 7
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computational details

If using Choelsky factorization of both
P=7p7p,Q=24Z
Observe

T
rioz, iz,

Use SVD instead of eigen- decomposition

257, =UsV’

Comparing with P defined in Algorithm 1, we immediately get
U (T -1

T=2"U"Z

To avoid computing the inverse of Z,, we have:

2}Z,=UsVT = Z'=US V'] ——= T=3"""Z]
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Numerical issues

Algorithm 2 SR method (Getting the reduced model without computing = U ):

1. Do Cholesky factorization of the two Gramians: P=Z,Z;,Q=2,Z
Zp,Zq are lower triangular matrices.

2. Do Singular value decomposition (SVD) of matrlx Zr Zy,i.e., there
are two orthonormal matrices UV, U'U=1I, V'V =1, such that

- ~ ~ ~ VX \YAl
7'z =Usv' =U, U,| ! 2
P=Q ( 1 2( Ezj[vaj
3. Let W =Z V3", V =Z,Uz"

4. Let A=WTAV B=W'B,[" =L"V.

5. The reduced model is dx(t)/dt = AX(t) + Bu(t)

) AT Do we have done
y(t) = L' (1)

balancing?
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Numerical issues

We will prove that the reduced model we got, comes from the above
balanced system (balanced by T zz—UZVTz(T? )!

The balanced system which is balanced by T =3 Y%/ 77}
and Tt=z,us%2is:

R:TAle[ﬁll 512) I§:TB:£81) I:T=LT‘1=(I:I E;)
A21 A22
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Numerical issues

The reduced model we obtained just now is:
( A=WTAV,B=W'B,[ =LV
7 w1/ T3S

< ~
-~ ~ ~ ~ Y3 VAl
Z8Zo=UzVT ={U; U,) L 25T 5T
LTPTe ( ! 2{ ZJ{VT v U2TT5T _ 27V ZQ
? T=2"V 2o = 12571
Tl=z,us™V?
Yes, they are equal! The reduced :(Zpglzl-uz ZPJZZEUZ)
model is really from a balanced
system.
Use the block forms above to
check if
A_A B_Rp (T _T
x A:Ail,BzBl,LT — I—]_
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Numerical issues

Algorithm 2 sometimes cannot continue either, because the Cholesky factorization of
P, Q cannot be done. This is because that in some cases P and Q include too small
eigenvalues like: A = 10~ which is considered by the algorithm as a singular matrix,
therefore Cholesky factorization cannot be continued.

Paper [BennerQ ’05] provides an algorithm computing the numerically full rank
factors of P .and Q , which are in the forms z, c R™,Z, e R™ A << n

The full rank factors numerically satisfy: P = Z~PZT ,Q = Z~QZ~<Tg

[BennerQ '05] P. Benner, E.S. Quitana-Orti, Model reduction based on spectral

projection methods. In: P. Benner, V.L. Mehrmann, D.C. Sorensen (eds.), "Dimension
Redution of Large-Scale Systems", vol. 45 of Lecture Notes in Computational Science and
Engineering, pp. 5-48, Springer-Verlag, Berlin/Heidelberg, 2005. (Algorithm 4 in the
paper)
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Numerical issues

Algorithm 3 Getting the reduced model using full-rank factors [BennerQ'05]:

~

1. Compute full-rank factors of the Gramians: P=2,2},Q =2,Z],
Z~P eR”Xﬁ,Z~Q e R™ A<<n.

2. Compute SVD
_~ > YA
T T 1
ZoZ,=UzV' =(U, uz)( zzj[vlgj'

3. Let W =7V, 52, V =Z,U,5"2

4. Let A=WTAV,B=W'B," =L"V.

5. The reduced model is dg(t)/dt = AX(t) + Bu(t)
J(t) = L"X(1)
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Error bound

Theorem [BennerQ’05]

If the original LTI system is stable, then the reduced model obtained by
Algorithm 1, Algorithm 2, Algorithm 3 satisfies:

1) The reduced model is balanced, minimal and stable. It's Gramians
are equal to the same diagonal matrix.

2) The absolute error bound (proof in [Antoulas ‘05] Chapter 7)

IH(S)-HEG) Iy, <2 0,
k=r+1

holds.
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