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Overlook 

Balanced truncation: first balancing, then truncate. 

Given a LTI system: 
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For convenience of discussion, we denote the system as a block form: 
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The unimportant 
part is truncated 



Overlook 

What’s the 
unimportant part? 

The states which are difficult to control and difficult to observe 
correspond the unimportant part. 

In system theory, the unknown vector x is called the state of the system.  
Actually, the entries in x depict the system variables, such as  branch 
currents, node voltages in the interconnect model, and therefore 
describe the state of the system.   
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Analytical solution of the LTI System 

When discuss balanced truncation method, we limit the LTI 
system to the following form: 

In order to analyze controllability, observability, we need to use the 
analytical solution of the system, though we always solve the system 
numerically (i.e. by numerical methods and using computers). 

The analytical solution of the system: the analytical representation of x(t). 

)()(

)()(/)(

txLty

tButAxdttdx

T





Analytical solution of the LTI System 

What is the analytical solution excited by the input u(t) and starting 
with the initial state             ?   

(see also Chapter 4, section 4.2 in [Chi-Tsong Chen,  Linear System Theory and Design, 3rd edition, 1999] )            
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Multiplying        on both sides of                                   yields  Ate
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Analytical solution of the LTI System 

Thus we have  dBuexetxe
t
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Because the inverse of        is       and         , (1) implies Ate Ate Ie 0
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• It is difficult to compute x(t) by following the analytical formulation  
   in (2) if A is very large. We need to solve the LTI system  
   numerically with some numerical methods, like backward 
   Euler, ...etc. 

)()(/)( tButAxdttdx This is the analytical solution of                                   .                    

(2) 

• It is impossible to plot the waveform of x(t) by hand, we need              
  computers to compute x(t) numerically and plot x(t) at many samples 
  of time. 



Outline 

• Overlook 
 
• Controllability measures 
 
• Observability measures 
 

• Infinite Gramians 
 

• MOR: Balanced truncation based on infinite Gramians 



Controllability measure 

Reachability  

Definition: Given a system             , a state x is reachable from the  
 
zero state if there exist an input function        of finite energy such 
that x can be obtain from the zero state and within a finite period of 
time          .   
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reachX

Controllability measure 

Denote        the subspace spanned by the reachable states, then   

XX reach 

XX reach 

The system is reachable                           : every state in the state 
space is reachable. 

    is the whole state space, e.g.                          
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Controllability measure 

Example 1 
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x denotes the voltage drop along the capacitor, and is the state of the  
system. In this circuit, x=0 at any time. 

Conclusion: 
In this circuit, 0 state is a reachable state, but any nonzero state is a 
unreachable state!  Therefore the whole system is unreachable. 

Picture referred to [Chi-Tsong Chen, 
Linear system Theory and Design, 3rd 
edition, New York Oxford, Oxford 
University Press, 1999] 



Wheatstone bridge 

A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie 
in 1833 and improved and popularized by Sir Charles Wheatstone in 1843. 
(http://en.wikipedia.org/wiki/Wheatstone_bridge) 

Example 1 is actually the Wheatstone bridge. 
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     is adjustable, it is adjusted till  
     becomes zero. It means there  
 is no voltage drop through    . 
 
Therefore, we have  
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xR can be easily measured by the 
 above equation. 

Controllability measure 



Controllability measure 

Example 2 
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voltage drops through 
the two capacitors. 

Those states      with                are reachable, but those states with                   
               are not reachable. Because whatever the input is, the voltage 
drops through the two capacitors are always identical.  
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Therefore the whole system is unreachable. 



Controllability measure 

Reachability matrix of the system: 

],,[),( 12  BABAABBBAR n

By the Cayley-Halmilton theorem, the rank of the reachability matrix and 
the span of its columns are determined (at most) by the first n terms (not  
the first n columns), i.e.                             
 
Thus for computational purpose the following (finite) reachability matrix  
is of importance: 

.1,,2,1,  ntBAt 

],,[),( 12 BABAABBBAR n
n

 

Sometimes           is directly defined as the reachability matrix. ),( BARn

• Why it is called reachability matrix?          
• Any connection between            and reachability? ),( BARn



Controllability measure 

Notice the analytical solution of system state equation                      is BuAxdtdx /
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The reachability of a state x of the system is tested by the zero initial  
state,         , we look at the above analytical solution with          ,   00 x
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which means a reachable state x is the linear combination of the terms:  

 ,,,,, 2 BABAABB k

Therefore                                           is defined as the reachability 
Matrix. 

),,(),( 12  BABAABBAR n

Controllability measure 



Controllability measure 

Actually there is a Theorem (Theorem 4.5 in Chapter 4 in [Antoulas05]):  

Theorem 1  If         is the subspace spanned by the reachable  
states, then                                                                       

reachX

columns. by the spanned space :),( im BARX reach 

The theorem tells us the subspace spanned by all reachable states is  
exactly the subspace spanned by the columns of the reachability matrix 

         . ),( BAR

The finite reachability gramian at time        is defined as : t
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Controllability measure 

Connection between reachability matrix and reachability gramians 

Proposition 1  The finite reachability gramians have the following  
properties: (a)                        and (b) their columns span the reachability  
subspace, i.e.,   
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We first prove ),( im)( im BARxtPx  

( Proposition 4.8 in [Antulous 05] ) 



Controllability measure 

  kT
k

TT
n

tA A
k

t
A

t
A

t
Ie

T

)(
!

)(
!2!1

2
2

.0 allfor  ,0)(0 Therefore, 1   ixABxeB iTTtAT T

BAx i 1

),( im BARx 

),( im BARx 

We have proved: ),( im)( im BARxtPx  



Controllability measure 

  PxBARx  im),( imNext we prove: 
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Controllability measure 

)( null Px 0Px
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The states using large minimal energy are difficult to reach and will be 
truncated during MOR based on balanced truncation. 

The relation                           provides a way to derive the minimal  
energy which are needed to reach a state x. 
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Controllability measure 

Therefore, the minimal energy for reaching a reachable state x is a key 
concept for model order reduction based on balanced truncation. 

Next, we will derive the minimal energy for reaching a state x. 



Controllability measure 

From the analytical solution, if a state x is reached at time  , then             
with finite energy, such that   
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How much must the input u(t) be? 

We have proved if x is reachable, then                 , i.e. ))(( im tPx
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Controllability measure 

C 

A 

B 

x (0)=0 

1 y x )(tu

t

The input u(t) is the excitation of the system, its energy is the energy 
required to reach the state x . 

Energy of a function is defined as: dttutuu
T
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Controllability measure 

Actually the energy of    is the minimal energy to reach the state x at the  
given time period   .  (Proposition 4.10 in [Antulous 05]) 

u
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We see from above analysis, if x is reachable at time    ,  x can be  
represented as: 
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Controllability measure 

A system is reachable means every state x in the whole  
state space is reachable. 
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From theorem 1: 

From Proposition 1: ),( im)( im BARtP 

Therefore the system is reachable      

Therefore the system is reachable     0 ,))((rank  tntP

Therefore,      is nonsingular for any t, if the system is reachable.      )(tP



Controllability measure 

Energy of                      (notice            ) :  )(  tAT T
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Controllability  
measure! 

xtPxu )(|||| 12 

Only for reachable 
systems.  



Remark 1: 
Reachability is a generic property for LTI systems with the form: 
 
 
This means, intuitively, that almost every LTI system with the form  
above is reachable.  If there are any unreachable systems, they are 
very rare. The unreachable LTI systems like examples 1,2 are rare. 

Controllability measure 

BuAxdtdx /

Remark 2: 
The reachability of the system can be more easily checked by the 
criteria:  

The system is reachable      nBARrank n )),((



Controllability measure 

A concept which is closely related to reachability is that of controllability. 
 
Here, instead of driving the zero state to a desired state, a given non-

zero state is steered to the zero state. More precisely we have: 

Definition of controllability:  Given a LTI system as above, a non-zero  
state x is controllable if  there exist an input u(t) with finite energy such  
that the state of the system goes to zero from x within a finite time:        .  t



Controllability measure 

Theorem 2  For time continuous systems                     . (Theorem 4.16 in 

Antulous 05) 

contrreach XX 

Similarly,         is the subspace spanned by the controllable states.  

It has been proved that for time continuous LTI systems (as discussed in 
this lecture), the concepts of reachability and controllability are 
equivalent.  

contrX

The system is controllable 

From the property of reachable system, we have      

nBARn )),((rank 



Controllability measure 

Spring 
Constant: 1 

Damping 
Coefficient: 1 

Damping 
Coefficient: 2 

2u(t) 
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Example: Platform system 

The system is described by the following linear time invariant (LTI) 
system: 
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assume mass of the platform is zero,  and from Newton’s  law: 



Controllability measure 

Is the platform system controllable? 

nBARrank n )),((The system is controllable 
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ABB, are linearly independent! 

nBARrank n  2)),((

Therefore, the platform system is controllable. 



Controllability measure 

Associated with controllability, there is the concept of observability. 

Controllability:  input u(t)             state x(t).  

Possibility of steering the state from the input. 

Observability:  output y(t)             state x(t).  

Possibility of estimating the state from the output. 
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Observability measure 

Observability is a measure for how well internal states of a system 
can be estimated by knowledge of its external outputs.  

Definition of Observability: Given any input u(t) , a state x of the  
system is observable, if starting with the state x (x(0)=x), and  
after a finite period of time       , x can be uniquely determined  
by the output      . 
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Observability measure 

Observability matrix? 
 
Observability Gramian? 
 
Output energy? 
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Observability measure 
                         Derivation of Observability matrix 
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From the analytical solution of                        , we see that after 
time        :  
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The system starting with x(0)=x, therefore  
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If x is observable,  then for any u(t), x can be uniquely determined by 
the corresponding y : 


 t AtAT dBuexxandxeLty 0 )()( 

Since x can be uniquely determined by    , it is sufficient to prove that   
can be uniquely determined by       .   

   Let us see under what condition can    be uniquely determined by       ? x

Observability measure 
                     Derivation of Observability matrix 
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Differentiate the above equation on both sides and get the derivatives 
at t=0: 
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(#) has a unique solution      if              has full  row rank n. 
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Observability measure 
                         Derivation of Observability matrix 
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     can be uniquely determined, with k being at most n. x

if  m>1, then k<n, if m=1, k=n. nmT RL 

Observability measure 
                         Derivation of Observability matrix 



Observability matrix:  
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From above analysis, actually the finite Observability matrix is enough 
to determine observability:  

Therefore we define 

The system  is observable nALOrank n )),((

Observability measure 
                         Derivation of Observability matrix 



The output energy associated with the initial state x is: 
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1. Energy of observation  
    produced by an      
    observable state x.   
2. Observability measure! 

Observability measure 
                         Output  energy 

Finite Observability Gramian at time         is defined as:  t
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Observability measure 
                              Observability Gramian 

Recall the minimal energy to reach a state x at time   is                                                      t

xtPxu )(|||| 12 

Notice both energies are related to time. 

xtQxty )(||)(|| *2xtPxu )(|||| 12 

Finite (reachability) controllability Gramian and observability 
Gramian will be used to derive the infinite Gramians which  
 
1. Make the two measures computable. 
2. will be directly used for truncation in MOR.  
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Under which condition,        and       are bounded when time goes to 
infinity:           ? 
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 Infinite Gramians 
                            make the two measures computable 
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      is bounded if the real parts of all the eigenvalues of A are negative.    Ate
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 Infinite Gramians 
                            make the two measures computable 
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bounded 

 Infinite Gramians 
                            make the two measures computable 
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if the real parts of all the eigenvalues of A are negative.    
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  Therefore the follow limits exists if all the eigenvalues of A are negative,  
   i.e. if the system is stable:   
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 where P and Q are the infinite Gramians (only for stable systems).    

 Infinite Gramians 
                            make the two measures computable 



The infinite Gramians: 
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From the property of integral, we have 
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 Infinite Gramians 
                            make the two measures computable 

In the meaning of inner product: ),)((),()( xxtPxPxtPP 



For stable systems, lower bound of the minimal energy necessary 
for reaching a reachable state x is: 

xPxxtPxu 1*12 )(||||  

The minimal energy necessary for reaching a reachable state x at 
time t is: 
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because  ttPP  ),(

For stable systems, the upper bound of the energy produced by 
the observable state x is: 

xQxxtQxty *2 )(||)(||  
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Only suitable for 
stable systems! 

 Infinite Gramians 
                            make the two measures computable 

Computable 
measures! 



For stable systems, the minimal energy necessary for reaching a state 
is: 

xPxu 1*2||||min 

For stable systems, the maximum energy produced by a state x is: 

xQxty *2||)(||max 

 Infinite Gramians 
                            make the two measures computable 



Because the MOR method we will introduce uses P and Q to derive the  
reduced-order model, and therefore is only suitable for stable systems.  

xPxu 12||||min  xQxty 2||)(||max

The eigenspaces of  P and Q make the two measurements practically 
computable!  

 Infinite Gramians 
                            make the two measures computable 



The states which are difficult to reach are included in  the subspace 
spanned by those eigenvectors of P that corresponds to small 
eigenvalues.  

The states which are difficult to observe are included in the subspace 
spanned by those eigenvectors of Q that corresponds to small eigenvalues.  

why and 
how? 

Eigenspaces of P and Q 
                      make the two measures parctically computable 



n ,,, 21 Denote                 as the n eigenvectors of P, the corresponding 
eigenvalues are                     . (P is symmetric, it has real eigenvalues.) 
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The state  x can therefore be represented by               :  n ,,, 21 
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If a matrix is nonsingular, then its inverse has the same eigenvectors, 
but the eigenvalues are the reciprocals: 
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                are linearly independent, therefore they constitute a basis of   
 the whole space    . 
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 Eigenspaces of P and Q 
                      make the two measures practically computable 
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                indicates  the minimal energy needed to reach the state x,    
   therefore the larger             is, the more difficult the state x to reach. 

2||||min u
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therefore                 is orthogonal. P is symmetric,  ],,[
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 Eigenspaces of P and Q 
                      make the two measures practically computable 
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This means if x is difficult to reach (       is large), x should have large 
components in the subspace spanned by the eigenvectors corresponding 
to the small eigenvalues of P. Or x should almost locates in the subspace 
spanned by the eigenvectors corresponding to the small eigenvalues. 
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 Eigenspaces of P and Q 
                      make the two measures practically computable 

than if 

nkk     121 and 

nkk  ,,,,, 121  



Similarly, if x is difficult to observe  (                    is small ) x should  
have large components in the subspace spanned by the eigenvectors 
corresponding to the small eigenvalues of Q. Or x should almost  locates 
in the subspace spanned by the eigenvectors corresponding to the small 
eigenvalues. 
 

xQxty 2||)(||

k
2

1

1k
2k n

x

niP iii ,2,1,  

niQ iii ,2,1,
~~~

 

nkk     121

nkk 
~~~~~

121   

 Eigenspaces of P and Q 
                      make the two measures practically computable 



Till now it seems we could do the truncation by finding subspace 
spanned by the eigenvectors corresponding to the small eigenvalues of P 
or Q.  

However, it could happen that states which are difficult to reach produce 
the maximal energy of observation; states which produce the smallest 
energy of observation are nevertheless the easiest to reach!   

For such system, we do not know which states to truncate! 

 Eigenspaces of P and Q 
                      make the two measures practically computable 



Example: Consider the following LTI system 
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QPThe two Gramians are: 

Their eigenvalues and eigenvectors are: 
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 Eigenspaces of P and Q 
                      make the two measures practically computable 
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The angle between      and     is very small. ,2
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This means if S is the subspace spanned by 
then the easily observable states           
 
                                      
may also in S.               

,2
P

212211 ,   QQx

It tells us if we truncate the states which are difficult to reach ( the 
states locate in S), we risk truncating the states which are easy to 
observe ( produce the maximal energy of observation) , because they 
are also in S).  

 Eigenspaces of P and Q 
                      make the two measures practically computable 



However, if P and Q have the same eigenvalues and eigenvectors, then 
the problems is solved. 

The states in the subspace spanned by the eigenvectors of P 
corresponding to the small eigenvalues always in the subspace spanned 
by the eigenvectors of Q corresponding to the small eigenvalues, 
because the eigenvalues are the same and eigenvectors are the same, 
therefore the subspaces are the same.  

Can we achieve 
this? Yes. 

We can achieve it by balancing. 

 Eigenspaces of P and Q 
                      make the two measures practically computable 
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• MOR: Balanced truncation based on infinite Gramians 



Recall the Balanced truncation method: 

Given a LTI system: 
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balancing 

truncate 
reduced model 

The unimportant 
part is truncated 

MOR: Balanced truncation 
                                Balancing 



Definition of Balancing transformation: 

Finding a nonsingular matrix T, such that                             and        . 1~
,

~  QTTQTPTP TT
QP
~~



The reachable, observable and stable LTI system is balanced, if its two  
Gramians are equal        , it is principal-axis balanced if                                                    .                                                                           QP 

).,,( 1 ndiagQP  

Definition of Balanced system: 

MOR: Balanced truncation 
                               Balancing 

Basic idea of balancing transformation: 
 
Use state space transformation          to get another realization of the 
same system, so that the transformed Gramians are diagonal matrices.  

Txx ~
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~
QTTQTPTP TT

MOR: Balanced truncation 
                               Balancing 

Basic idea of balancing transformation: 
 
Use state space transformation          to get another realization of the 
same system, so that the transformed Gramians are equal and  
are diagonal matrices. I.e.                                     

Txx ~

How to construct T? 

.  means which  ,  have   we,
~~

 Since
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 that Recall

21212
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T should be the inverse of the matrix of eigenvectors of PQ.  
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                               Balancing 
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                               Balancing 
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Existence of balancing transformation: 

Given a reachable, observable and stable LTI system                                
and the corresponding Gramians P and Q, a (principal axis) balancing  
transformation is given as follows:  
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2/1112/1   TT UKTandUKT

Here,             is the Cholesky factorization of P. TUUP 
TT KKQUU 2

is the eigen-decomposition of         .  (Symmetric positive  semi-
definite matrix has real non-negtive eigenvalues and orthogonal 
eigenvectors. Here, the Eigenvectors in K are taken as orthonormal)   

QUU T

MOR: Balanced truncation 
                               Balancing 

The above analysis clearly shows that: 



MOR: Balanced truncation 
                               Balancing 

What is the corresponding balanced system? 
 
Apply the state space tansformation:          to the original realization:  Txx ~
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Balancing : 

• Compute P, Q. 

• Given                                                                                   

• Compute  TUUP 
TT KKQUU 2
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MOR: Balanced truncation 
                               Balancing 

The eigenvalues are ordered 
from the largest to the smallest 



MOR: Balanced truncation 
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balanced system: 
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A minimal realization of the same system is:  

is a non-minimal realization of a system.  
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The reduced-order 

model (ROM)  
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Therefore we have the following simple steps for truncation: 
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Balancing:   

Truncate:   
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Separated 
according  
to the 
separation 
of   .  
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Reduced model!  

MOR: Balanced truncation 
                               Truncate 



• Does it make sense if we do model reduction on the balanced system  
   rather than the original system?  
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Balancing:   

MOR: Balanced truncation 

Yes. As a state transformation, balancing does not change the transfer  
Function, and the HSVs The balanced system is only a different 
realization of the system. 



Observe: 

MOR: Balanced truncation 
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MOR: Balanced truncation 
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Therefore the two ROMs are the same: 
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TW1 usingGalerkin  -Petrov

Conclusion: balanced truncation is Petrov-Galerkin projection as below: 

Therefore, balanced truncation is equivalent to: finding the invariant 
subspace of PQ, and remaining only the part (   ) which corresponds to 
the largest HSVs (square root of the eigenvalues of PQ).  

1Y



MOR: Balanced truncation 

Algorithm 1 

• Balancing:   )()(
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2/11  UKT,12/1  UKT T

1. Compute P, Q. 

 Given                                                                                   

2. Compute  TUUP  TT KKQUU 2

3.  

5. Form the reduced model: 














 

2221

12111
~~

~~
~

AA

AA
TATA















2

1
















2

1
~

~
~

B

B
TBB  TTTT LLTLL 21

1 ~~~
 

4. Balancing and separating         according to the separation   
    of    :  

LBA ,,
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• Truncate:   



MOR: Balanced truncation 
                  computational details 

Are we ready to get the reduced model from the above Algorithm 1?   

Not yet, because we do not know yet how to compute P and Q 
numerically!   

Recall: dteBBeP tATAt T





0

dteLLeQ AtTtAT





0

Fortunately we have: 

? 

Proposition (proposition 4.25 in [Antoulas 05]) 

P and Q are the solution of the following two Lyapunov equations: 

TT

TT

LLQAQA

BBPAAP





These two matrix equations can be solved numerically (by computer)!  
Of course by using some algorithms. 



MOR: Balanced truncation 
                  computational details 

),( 'BBAlyapP 

),( 'LLAlyapQ T 

In MATLAB, use command: 



MOR: Balanced truncation 
                  Numerical issues 

,12/1  UKT T The balancing matrix is: 

 Computation of       may cause numerical instability, because U is  
 usually near singular. 

.TUUP 

1U

U is usually near singular, because the matrix P has numerically 
low-rank, i.e. near singular. 

P is near singular because in may cases, its eigenvalues decay 
rapidly to zero, some eigenvalues are very close to zero, e.g.          .  

Q and    behaves similarly as P. 

2010i



However in algorithm 1, we need to compute: 

,12/1  UKT T 2/11  UKT

Can we avoid 
computing 
         ?  

,1U
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                  computational details 
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If using Choelsky factorization of both 

Observe 
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Use SVD instead of eigen- decomposition  
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Comparing with P defined in Algorithm 1, we immediately get 

To avoid computing the inverse of    , we have:  pZ



MOR: Balanced truncation 
                  Numerical issues 

Algorithm 2  SR method (Getting the reduced model without computing          ):  11,  U

1. Do Cholesky factorization of the two Gramians: T
QQ

T
PP ZZQZZP  ,

QP ZZ , are lower triangular matrices. 

2. Do Singular value decomposition (SVD) of matrix         i.e., there 
are two orthonormal matrices                                   , such that 
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5. The reduced model is  

)(ˆˆ)(ˆ

)(ˆ)(ˆˆ/)(ˆ

txLty

tuBtxAdttxd

T



4. Let  .ˆ,ˆ,ˆ VLLBWBAVWA TTTT 

Do we have done 
balancing? 

IVVIUUVU TT 
~~

,
~~

,
~

,
~



MOR: Balanced truncation 
                  Numerical issues 

T
Q

T ZVT
~2/1

We will prove that the reduced model we got, comes from the above 
balanced system  (balanced  by                       )! 

The balanced system which is balanced by                             
and                     is: 
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MOR: Balanced truncation 
                  Numerical issues 

The reduced model we obtained  just now is: 
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Use the block forms above to  
check if  

TT LLBBAA 1111

~ˆ,
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Yes, they are equal! The reduced  
model is really from a balanced  
system. 



MOR: Balanced truncation 
                  Numerical issues 

Algorithm 2 sometimes cannot continue either, because the Cholesky factorization of 

P, Q cannot be done. This is because that in some cases P and Q include too small 

eigenvalues like:              , which is considered by the algorithm as a singular matrix, 

therefore Cholesky factorization cannot be continued.  

2010

Paper [BennerQ ’05] provides an algorithm computing the numerically full rank 

factors of P and Q , which are in the forms                                      

 

The full rank factors numerically satisfy:                                      . 

nn
Q

nn
P RZRZ

ˆˆ ~
,

~  

[BennerQ ’05] P. Benner, E.S. Quitana-Orti, Model reduction based on spectral  
projection methods.  In: P. Benner, V.L. Mehrmann, D.C. Sorensen (eds.), "Dimension 
Redution of Large-Scale Systems", vol. 45 of Lecture Notes in Computational Science and 
Engineering, pp. 5-48, Springer-Verlag, Berlin/Heidelberg, 2005. (Algorithm 4 in the 
paper) 
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                  Numerical issues 

Algorithm 3   Getting the reduced model using full-rank factors [BennerQ’05]:  

1. Compute full-rank factors of the Gramians: 

2. Compute SVD 
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MOR: Balanced truncation 
                  Error bound  

Theorem [BennerQ’05]  

 

If the original LTI system is stable, then the reduced model obtained by 
Algorithm 1, Algorithm 2, Algorithm 3 satisfies: 
 
1) The reduced model is balanced, minimal and stable. It’s Gramians  
    are equal to the same diagonal matrix. 
 
2) The absolute error bound (proof in [Antoulas ‘05] Chapter 7) 

 
 

 
    holds. 
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