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Mathematical Basics

Numerical Linear Algebra
Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/, ).

@ Memory (in single precision): 4 - n, - n, bytes.
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Numerical Linear Algebra
Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/, ).

@ Memory (in single precision): 4 - n, - n, bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

~ r T
X~=X= E j:lajquj )

where X = UL VT is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.
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Numerical Linear Algebra
Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/, ).

@ Memory (in single precision): 4 - n, - n, bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

~X=5" T
X~X= Zj:l O'J'UJ'VJ- ,
where X = UL VT is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.

v

Idea for dimension reduction

Instead of X save uy,...,u,, o1Vi,...,0,V,.
~+ memory = 4r X (ny + n,) bytes.

y
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Example: Image Compression by Truncated SVD

Example: Clown

320 x 200 pixel
~ ~ 256 kB
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Example: Image Compression by Truncated SVD

Example' Clown @ rank r =50, ~ 104 kB

320 x 200 pixel
~ ~ 256 kB
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Example' Clown @ rank r =50, ~ 104 kB
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,
Peter Henrici, Fritz L. Bauer.

Original inage

640 x 480 pixel, ~ 1229 kB
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Dimension Reduction via SVD

@ rank r = 100, ~ 448 kB

Rank-100 approximation

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,
Peter Henrici, Fritz L. Bauer.

Original inage

@ rank r =50, = 224 kB

Rank-50 appraximation

640 x 480 pixel, ~ 1229 kB
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Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay

(exponentially).

Singular Values of the Image Data Matrices

: Clown
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Mathematical Basics

Systems and Control Theory
The Laplace transform

Definition

The Laplace transform of a time domain function f € Ly joc with
dom (f) =Ry is

L:f(t) o £(s) = L{F(E)}(s) == /Ooo e~tf(t)dt, seC.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (“frequency response analysis”), one
takes res = 0 and ims > 0. Then w := im s takes the role of a frequency (in
[rad/s], i.e., w = 27v with v measured in [Hz]).
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Systems and Control Theory
The Laplace transform

L{f(t)}(s) = sF(s) — £(0).

if £(0)=0, then _
L{F(t)}(s) = sF(s).

Note: For ease of notation, in the following we will use lower-case letters for
both, a function f(t) and its Laplace transform F(s)!
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Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s)) to linear
system
Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
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Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), X(t) — sx(s)) to linear

system
Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sE—A)'B+D ) u(s).

=:G(s)

G(s) is the transfer function of X.
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Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), X(t) — sx(s)) to linear

system
Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sE— A)'B+D ) u(s).

=:G(s)

G(s) is the transfer function of X.

Goal: Fast evaluation of mapping u — y.
v
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Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in time domain

Approximate the dynamical system

Ex Ax+Bu, E,A€R"™n BeRmMm
y = Cx+Du,  CeRI*" DecRI*M

by reduced-order system

EX = AR+ Bu, E,AecR™r, BeR™m,
y = Cx+Du, € R DeRIxm

of order r < n, such that

ly =9Il = |6Gu — Gull < |G — G| - |lul| < tolerance - |lu].
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Mathematical Basics

Systems and Control Theory
Properties of linear systems

Definition
A linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|%(z) < 0}.
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Systems and Control Theory
Properties of linear systems

Definition
A linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|%(z) < 0}.

Lemma

| \

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the eigenvalues of the generalized eigenvalue problem
Ax = AEx, denoted by A (A, E), satisfies A (A, E) C C~.

Note that by abuse of notation, often stable system is used for asymptotically
stable systems.
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Systems and Control Theory
Properties of linear systems

Further properties:
o Controllability/reachability
@ Observability
will be discussed in the lecture on balanced truncation MOR method. For

o Stabilizability
o Detectability
See handout " Mathematical Basics”.
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Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
x(t)

PEE
{ ()

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)"*'B+ D,
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Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
x(t)

PEE
{ ()

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)"*'B+ D,

Realizations are not unique!

| \,

Transfer function is invariant under state-space transformations,

T - X — Tx,
"\ (AB,C,D) — (TAT ', TB,CT7} D),
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Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
X(t)

>
{ ()

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)~'B+ D,

| \

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable

states:
%[H - [3 ZHXXIF[BBI}““)’ y@=[¢ 0][2]+Du(t>,
%[:2] - {Q jz}[g%r[g]"(f), y(®)=[ C Cz][;;]-s-ou(t),

for arbitrary A; € R%*%, j =1,2, By € R"*™, G, € R9*™ and any ny, n> € N.
4
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Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system

5. X(t) = Ax(t)+ Bu(t), with transfer function
’ { y(t) = Cx(t) + Du(t), G(s) = C(sl — A)"*'B+ D,

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

| \

Realizations are not unique!

Hence,

(A,B,C,D), ([2 jl],{’i],[c 0],D>,

B

L ) A 0 B
(TAT ", TB,CT ", D), , ,[ cC G ],D ,

0 A 0

are all realizations of X!

v
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Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
x(t)

PEE
{ ()

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)"*'B+ D,

| A\

Definition
The McMillan degree of ¥ is the unique minimal number 71 > 0 of states

necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order #.
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Systems and Control Theory
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
5. x(t) = Ax(t)+ Bu(t), with transfer function
’ y(t) = Cx(t)+ Du(t), G(s) = C(sl — A)~'B+ D,

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

| A\

Definition
The McMillan degree of ¥ is the unique minimal number 71 > 0 of states

necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order #.

| \

Theorem

A realization (A, B, C, D) of a linear system is minimal <=
(A, B) is controllable and (A, C) is observable.

y
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Systems and Control Theory
Balanced Realizations

Infinite Gramians

o0 T,
P = / eMBBTe” tdt.
0

Q = / At CTCe M dt.
0
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,00} (w.log. oj>0j1,j=1,...,n—1).
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,00} (w.log. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,00} (w.log. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. A(A) C C~. Then:

Theorem

Given a stable minimal linear system X : (A, B, C, D), a balanced
realization is obtained by the state-space transformation with

T, =Y V'R,

where P = STS, Q = RTR (e.g., Cholesky decompositions) and
SRT = UX VT is the SVD of SRT.

Proof. Exercise!
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

The infinite controllability /observability Gramians P/Q satisfy the Lyapunov
equations

AP+ PAT +BBT =0, ATQ+QA+C'C=0.
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Systems and Control Theory
Balanced Realizations

The infinite controllability/observability Gramians P/Q satisfy the
Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C=0.

Proof. (For controllability Gramian only, observability case is analogous!)

AP+ PAT +BBT = A/ eAtBBTeATtdt—i—/ A BBTeA tdt AT + BBT
0 0

/ AeMBBT At 4 A BBT A AT dt + BBT
0

—d AtBRT ATt
=g€ BB'e

—  lim MBBTAt _eA0BBRT AT0 4 BRT

t—o00
—_— L, -,
=0
= 0.
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Systems and Control Theory
Balanced Realizations

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are /\(PQ)%. Now let
(A, B, C,D)=(TAT 1, TB,CT~1,D)
be any transformed realization with associated controllability Lyapunov equation
0=AP + PAT 4+ BBT = TAT P+ PT-TATTT + TBB'TT.
This is equivalent to
0=A(TPT- ")+ (T PT-TAT +BB'.

The uniqueness of the solution of the Lyapunov equation (for stable systems) implies
that P = TPT7 and, analogously, @ = T~ 7 QT 1. Therefore,

PQ=TPQT 1,
showing that A (PQ) = A (PQ) = {02,...,02}.
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P=Q=diag{o1,...,0,} (w.lo.g. oj>0ji1, j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading A X A submatrices equal to diag(o1,...,0s), and

IADQ:diag(af,...,a%,O,...,O).

see [LAUB/HEATH/PAIGE/WARD 1987, TOMBS/POSTLETHWAITE 1987].
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Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

The L5(—00,+00) space is the vector-valued function space f : R — R”,

with the norm
3] 1/2
I = ([ rcoieet)

Here and below, || - || denotes the Euclidean vector or spectral matrix
norm.

Definition

| \

The frequency domain L£3(jR) space is the matrix-valued function space
F:C+— CP*™ with the norm

1o 1/2
I1Flles= (5 [ IFGa)IPaw)

where 3 = +/—1 is the imaginary unit.
Lihong Feng, Mathematical Basics 15/27
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Qualitative and Quantitative Study of the Approximation Error
System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let f(z) : C" — C be a regular analytic, or holomorphic, function of n

complex variables z = (z,...,2,),n > 1, defined on an (open) domain D

of the complex space C", which is not a constant, f(z) # const. Let
maxg = sup{|f(z)| : z € D}.

If f(z) is continuous in a finite closed domain D, then max¢ can only be
attained on the boundary of .
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Qualitative and Quantitative Study of the Approximation Error
System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let f(z) : C" — C be a regular analytic, or holomorphic, function of n

complex variables z = (z,...,2,),n > 1, defined on an (open) domain D

of the complex space C", which is not a constant, f(z) # const. Let
maxg = sup{|f(z)| : z € D}.

If f(z) is continuous in a finite closed domain D, then max¢ can only be
attained on the boundary of .

Consider the transfer function
G(s)=C(sl —A)'B+D
and input functions u € L3(JR), with the Lo-norm
1 o0
ol =5 [ ) ua) do

=5 N
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Assume A is (asymptotically) stable:A(A) € C~ := {z € C: Re(z) < 0}.
Then G is analytic in C™ U jRR, and following the maximal modulus
theorem, G(s) is bounded: ||G(s)|| < M < oo, Vs € C* U yR. Thus we
have

Jooey)fy(w) dw = [72 u(jw) G(jw)" G (jw)u(w) dw
= [ ll6(w)u Jw)||2dw<f M?||u(yw)|[? dw
sz u(w)u(w) dw < oo,

So that y = Gu € Lo(JR).
Consequently, the £o-induced operator norm

G
||G||Lw = sup || u||E2
[lul|27#£0 ||U||£2

(1)

is well defined [ANToULAS "05].
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Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Error bound 1

llGullz, <IGll.llulle,

Consequently,

ly = 9lle, = [|Gu = Gulle, < |G = Gl |ull

Max Planck Institute Magdeburg Lihong Feng, Mathematical Basics 18/27



Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

It can be further proved that
1Gllo. = sup [[G(w)]| = sup omax (G(jw)) .-
w€eR weR

With the above defined L£.,-norm, the frequency domain L., space is
defined as

Definition

The frequency domain L (sR) space is the matrix-valued function space
F:C+— CP*™ with the norm

IFllz. = sup [|F(gw)l| = sup omax (F(sw)).
weR w€eR
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Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Definition
The Hardy space H, is the function space of matrix-, scalar-valued
functions that are analytic and bounded in C* := {z € C: Re(z) > 0}.

The Hoo-norm is defined as

[Fll#. == sup [|F(2)]| = sup [[F(jw)|| = sup omax (F(jw)) -
zeC+ weR weR

The second equality follows the maximum modulus theorem.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Definition

The Hardy space Hy(CT) is the function space of matrix-, scalar-valued
functions that are analytic in C* and bounded w.r.t. the H-norm
defined as

1

IFlle = 2 (SuPreso [ 720 IF (0 + )| Bdw)
1
2 (S NF G dw)’

The last equality follows maximum modulus theorem.

Theorem
Practical Computation of the H5-norm follows

||F||3 = tr(BTQB) = tr(CPCT),

where P, Q are the controllability and observability Gramians (the infinite
Gramians) of the corresponding LTI system.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Following [AnTouLas, BearTie, Gucere '10]1 (pp. 15-16), the Ha
approximation error gives the following bound

_5 <G =G
T§3<||Y(t) J()loo <11G = Glln,,

where G and G are original and reduced transfer functions. || - || is the
vector norm in Euclidean space for any fixed t.
and

Error bound 2

1y = Illeo <116 = Gll,llull,-

IA. C. Antoulas, C. A. Beattie, S. Gugercin. Interpolatory Model Reduction of
Large-scale Dynamical Systems. J. Mohammadpour and K.M. Grigoriadis, Efficient
Modeling and Control, 3 of Large-Scale Systems, 3-58, Springer Science+Business
Media, LLC 2010.
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System Norms

(Plancherel Theorem)

The Fourier transform of f € Lj(—o0, c0):

Fe) = / F(t)e=Etdt
is a Hilbert space isomorphism between Lj(—o00,00) and Lo(JR).
Furthermore, the Fourier transform maps L5(0, 00) onto H,(C*). In
addition it is an isometry, that is, it preserves distances:

L3(—00,00) = L2(JR),  L3(0,00) = H,(CF).

Consequently, L3-norm in time domain and Ly-norm, Hy-norm in
frequency domain coincide.
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Approximation Problems

Therefore the Error bound 1,
ly = 91l = [1Gu = Gull2 < [|G = Gz, ||ull2, (2)

holds in time and frequency domain due to Plancherel theorem, i.e. the
[| - ]]2 in (2) can be the L3-norm in time domain, or the L£y-norm in
frequency domain.

The transfer function is analytic, therefore

IGllze = 1G]l

so that,

ly = 9ll2 <116 = Glla. [[ull2:
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Approximation Problems

Finally, we get two error bounds,

Output errors bounds

ly =92 < N6 =Gllullull. =116~ Gllse < tol
[y =9lle < 1IG=Gllapllulz =116 — G|, < tol

Goal: ||G — G||s < tol (2) or ||G — G|, < tol (27).
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Finally, we get two error bounds,

Output errors bounds

ly =92 < N6 =Gllullull. =116~ Gllse < tol
[y =9lle < 1IG=Gllapllulz =116 — G|, < tol

Goal: ||G — G||s < tol (2) or ||G — G|, < tol (27).

Hoo-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable Ho-norm bound.

Ho-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)
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Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

@ absolute errors || G(jw;) = G(3wp)ll2, [1G(ws) = G(wi)lloe (=1, -, No);

16Gw)=6Gwpllz 166w~ Ewplloo .
I6Gw)ll2 ' I6Gwlleo 7

@ "eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:
for SISO system, log-log plot frequency vs. |G(jw)| (or |G(jw) — G(w)])
in decibels, 1 dB ~ 20 log,,(value).

For MIMO systems, g x m array of plots Gj;.

@ relative errors

Bode Diagram

Bode Diagram

1=348 (fullorder)
1226 (odaly 2 G-

LA

Magnitude (d8)
Magnitude (dB)

EELS 5
10 10

10° 10’
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10'
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