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Mathematical Basics

Numerical Linear Algebra
Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).

Memory (in single precision): 4 · nx · ny bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X ≈ X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is ‖X − X̂‖2 = σr+1.

Idea for dimension reduction
Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = 4r × (nx + ny ) bytes.
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Mathematical Basics

Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kB

rank r = 50, ≈ 104 kB

rank r = 20, ≈ 42 kB
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Mathematical Basics

Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB

rank r = 100, ≈ 448 kB

rank r = 50, ≈ 224 kB
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Mathematical Basics

Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices
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Mathematical Basics

Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f (t) 7→ f (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (“frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).
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Mathematical Basics

Systems and Control Theory
The Laplace transform

Lemma

L{ḟ (t)}(s) = sF (s)− f (0).

if f(0)=0, then
L{ḟ (t)}(s) = sF (s).

Note: For ease of notation, in the following we will use lower-case letters for
both, a function f (t) and its Laplace transform F (s)!
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Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
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Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sE − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.
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Mathematical Basics

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in time domain

Approximate the dynamical system

Eẋ = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Ê , Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.
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Mathematical Basics

Systems and Control Theory
Properties of linear systems

Definition
A linear system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is stable if its transfer function G (s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C− := {z ∈ C | <(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the eigenvalues of the generalized eigenvalue problem
Ax = λEx , denoted by Λ (A,E ), satisfies Λ (A,E ) ⊂ C−.

Note that by abuse of notation, often stable system is used for asymptotically

stable systems.
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Mathematical Basics

Systems and Control Theory
Properties of linear systems

Further properties:

Controllability/reachability

Observability

will be discussed in the lecture on balanced truncation MOR method. For

Stabilizability

Detectability

See handout ”Mathematical Basics”.
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Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Max Planck Institute Magdeburg Lihong Feng, Mathematical Basics 12/27



Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Transfer function is invariant under state-space transformations,

T :

{
x → Tx ,

(A,B,C ,D) → (TAT−1,TB,CT−1,D),
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable
states:

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+ Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+ Du(t),

for arbitrary Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rq×n2 and any n1, n2 ∈ N.
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Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Hence,

(A,B,C ,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[
C 0

]
,D

)
,

(TAT−1,TB,CT−1,D),

([
A 0

0 A2

]
,

[
B
0

]
,
[
C C2

]
,D

)
,

are all realizations of Σ!
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Mathematical Basics

Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.
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Systems and Control Theory
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.

Theorem

A realization (A,B,C ,D) of a linear system is minimal ⇐⇒
(A,B) is controllable and (A,C ) is observable.
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Infinite Gramians

P =

∫ ∞
0

eAtBBT eATtdt.

Q =

∫ ∞
0

eATtCTCeAtdt.
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. Λ (A) ⊂ C−. Then:

Theorem

Given a stable minimal linear system Σ : (A,B,C ,D), a balanced
realization is obtained by the state-space transformation with

Tb := Σ−
1
2 V TR,

where P = STS , Q = RTR (e.g., Cholesky decompositions) and
SRT = UΣV T is the SVD of SRT .

Proof. Exercise!
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!
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Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Theorem

The infinite controllability/observability Gramians P/Q satisfy the
Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Proof. (For controllability Gramian only, observability case is analogous!)

AP + PAT + BBT = A

∫ ∞
0

eAt BBT eATt dt +

∫ ∞
0

eAt BBT eATt dt AT + BBT

=

∫ ∞
0

AeAt BBT eATt + eAt BBT eATt AT︸ ︷︷ ︸
= d

dt
eAt BBT eATt

dt + BBT

= lim
t→∞

eAt BBT eATt︸ ︷︷ ︸
= 0

− eA·0︸︷︷︸
= In

BBT eAT ·0︸ ︷︷ ︸
= In

+BBT

= 0.

Max Planck Institute Magdeburg Lihong Feng, Mathematical Basics 14/27



Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−T AT T T + TBBT T T .

This is equivalent to

0 = A(T−1P̂T−T ) + (T−1P̂T−T )AT + BBT .

The uniqueness of the solution of the Lyapunov equation (for stable systems) implies

that P̂ = TPT T and, analogously, Q̂ = T−T QT−1. Therefore,

P̂Q̂ = TPQT−1,

showing that Λ (P̂Q̂) = Λ (PQ) = {σ2
1 , . . . , σ

2
n}.
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Mathematical Basics

Systems and Control Theory
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Remark
For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0).

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
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Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

Definition

The Ln
2(−∞,+∞) space is the vector-valued function space f : R 7→ Rn,

with the norm

‖f ‖Ln
2

=

(∫ ∞
−∞
||f (t)||2dt

)1/2

.

Here and below, || · || denotes the Euclidean vector or spectral matrix
norm.

Definition

The frequency domain L2(R) space is the matrix-valued function space
F : C 7→ Cp×m, with the norm

||F ||L2 =

(
1

2π

∫ ∞
−∞
||F (ω)||2dω

)1/2

,

where  =
√
−1 is the imaginary unit.
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Mathematical Basics

Qualitative and Quantitative Study of the Approximation Error
System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let f (z) : Cn 7→ C be a regular analytic, or holomorphic, function of n
complex variables z = (z1, . . . , zn), n ≥ 1, defined on an (open) domain D
of the complex space Cn, which is not a constant, f (z) 6= const. Let

maxf = sup{|f (z)| : z ∈ D}.
If f (z) is continuous in a finite closed domain D, then maxf can only be
attained on the boundary of D.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let f (z) : Cn 7→ C be a regular analytic, or holomorphic, function of n
complex variables z = (z1, . . . , zn), n ≥ 1, defined on an (open) domain D
of the complex space Cn, which is not a constant, f (z) 6= const. Let

maxf = sup{|f (z)| : z ∈ D}.
If f (z) is continuous in a finite closed domain D, then maxf can only be
attained on the boundary of D.

Consider the transfer function

G (s) = C (sI − A)−1B + D

and input functions u ∈ L2(R), with the L2-norm

||u||2L2
:=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Assume A is (asymptotically) stable:Λ(A) ⊂ C− := {z ∈ C : Re (z) < 0}.
Then G is analytic in C+ ∪ R, and following the maximal modulus
theorem, G (s) is bounded: ||G (s)|| ≤ M <∞, ∀s ∈ C+ ∪ R. Thus we
have

∫∞
−∞ y(ω)Hy(ω) dω =

∫∞
−∞ u(ω)HG (ω)HG (ω)u(ω) dω

=
∫∞
−∞ ||G (ω)u(ω)||2 dω ≤

∫∞
−∞M2||u(ω)||2dω

= M2
∫∞
−∞ u(ω)Hu(ω) dω < ∞,

So that y = Gu ∈ L2(R).
Consequently, the L2-induced operator norm

||G ||L∞ := sup
||u||2 6=0

||Gu||L2

||u||L2

(1)

is well defined [Antoulas ’05].
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Error bound 1

||Gu||L2 ≤ ||G ||L∞ ||u||L2

Consequently,

||y − ŷ ||L2 = ||Gu − Ĝu||L2 ≤ ||G − Ĝ ||L∞ ||u||L2
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Qualitative and Quantitative Study of the Approximation Error
System Norms

It can be further proved that

||G ||L∞ = sup
ω∈R
||G (ω)|| = sup

ω∈R
σmax (G (ω)) .

With the above defined L∞-norm, the frequency domain L∞ space is
defined as

Definition

The frequency domain L∞(R) space is the matrix-valued function space
F : C 7→ Cp×m, with the norm

||F ||L∞ = sup
ω∈R
||F (ω)|| = sup

ω∈R
σmax (F (ω)) .
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Definition
The Hardy space H∞ is the function space of matrix-, scalar-valued
functions that are analytic and bounded in C+ := {z ∈ C : Re (z) > 0}.

The H∞-norm is defined as

||F ||H∞ := sup
z∈C+

||F (z)|| = sup
ω∈R
||F (ω)|| = sup

ω∈R
σmax (F (ω)) .

The second equality follows the maximum modulus theorem.
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System Norms

Definition

The Hardy space H2(C+) is the function space of matrix-, scalar-valued
functions that are analytic in C+ and bounded w.r.t. the H2-norm
defined as

||F ||2 := 1
2π

(
supreσ>0

∫∞
−∞ ||F (σ + ω)||2Fdω

) 1
2

= 1
2π

(∫∞
−∞ ||F (ω)||2F dω

) 1
2

.

The last equality follows maximum modulus theorem.

Theorem
Practical Computation of the H2-norm follows

||F ||22 = tr(BTQB) = tr(CPCT ),

where P,Q are the controllability and observability Gramians (the infinite
Gramians) of the corresponding LTI system.
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System Norms

Following [Antoulas, Beattie, Gugercin ’10]1 (pp. 15-16), the H2

approximation error gives the following bound

max
t>0
‖y(t)− ŷ(t)‖∞ ≤ ‖G − Ĝ‖H2 ,

where G and Ĝ are original and reduced transfer functions. || · ||∞ is the
vector norm in Euclidean space for any fixed t.
and

Error bound 2

‖y − ŷ‖∞ ≤ ||G − Ĝ ||H2 ||u||H2 .

1A. C. Antoulas, C. A. Beattie, S. Gugercin. Interpolatory Model Reduction of
Large-scale Dynamical Systems. J. Mohammadpour and K.M. Grigoriadis, Efficient
Modeling and Control, 3 of Large-Scale Systems, 3-58, Springer Science+Business
Media, LLC 2010.
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(Plancherel Theorem)

The Fourier transform of f ∈ Ln
2(−∞,∞):

F (ξ) =

∫ ∞
−∞

f (t)e−ξtdt

is a Hilbert space isomorphism between Ln
2(−∞,∞) and L2(R).

Furthermore, the Fourier transform maps Ln
2(0,∞) onto H2(C+). In

addition it is an isometry, that is, it preserves distances:

Ln
2(−∞,∞) ∼= L2(R), Ln

2(0,∞) ∼= H2(C+).

Consequently, Ln
2-norm in time domain and L2-norm, H2-norm in

frequency domain coincide.
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Approximation Problems

Therefore the Error bound 1,

||y − ŷ ||2 = ||Gu − Ĝu||2 ≤ ||G − Ĝ ||L∞ ||u||2, (2)

holds in time and frequency domain due to Plancherel theorem, i.e. the
|| · ||2 in (2) can be the Ln

2-norm in time domain, or the L2-norm in
frequency domain.
The transfer function is analytic, therefore

||G ||L∞ = ||G ||H∞ ,

so that,

||y − ŷ ||2 ≤ ||G − Ĝ ||H∞ ||u||2.
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Approximation Problems

Finally, we get two error bounds,

Output errors bounds

‖y − ŷ‖2 ≤ ||G − Ĝ ||H∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ||G − Ĝ ||H2‖u‖2 =⇒ ||G − Ĝ ||H2 < tol

Goal: ||G − Ĝ ||∞ < tol (2) or ||G − Ĝ ||H2 < tol (??).
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Approximation Problems

Finally, we get two error bounds,

Output errors bounds

‖y − ŷ‖2 ≤ ||G − Ĝ ||H∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ||G − Ĝ ||H2‖u‖2 =⇒ ||G − Ĝ ||H2 < tol

Goal: ||G − Ĝ ||∞ < tol (2) or ||G − Ĝ ||H2 < tol (??).

H∞-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable H∞-norm bound.

H2-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)
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Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

absolute errors ‖G(ωj )− Ĝ(ωj )‖2, ‖G(ωj )− Ĝ(ωj )‖∞ (j = 1, . . . ,Nω);

relative errors
‖G(ωj )−Ĝ(ωj )‖2

‖G(ωj )‖2
,
‖G(ωj )−Ĝ(ωj )‖∞
‖G(ωj )‖∞ ;

”eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:
for SISO system, log-log plot frequency vs. |G(ω)| (or |G(ω)− Ĝ(ω)|)
in decibels, 1 dB ' 20 log10(value).

For MIMO systems, q ×m array of plots Gij .
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