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Abstract

It is widely appreciated that the iterative solution of linear systems of equa-

tions with large sparse matrices is much easier when the matrix is symmet-

ric. It is equally advantageous to employ symmetric iterative methods when

a non-symmetric matrix is self-adjoint in a non-standard inner product. In

order to satisfy this criterion the adjoint of the system matrix plays a crucial

role, and in this thesis we will address three situations where the adjoint and

adjointness of a matrix arise.

The role of the adjoint is illustrated in this thesis, and we give general

conditions for such self-adjointness. A number of known examples for saddle

point systems are surveyed and combined to make new combination precon-

ditioners which are self-adjoint in different inner products. In particular, a

new method related to the Bramble-Pasciak cg method is introduced, and

it is shown that a combination of the two outperforms the widely used clas-

sical method in a number of examples. Furthermore, we combine Bramble



and Pasciak’s method with a recently introduced method by Schöberl and

Zulehner. The result gives a new preconditioner and inner product that can

outperform the original methods of Bramble-Pasciak and Schöberl-Zulehner.

The Bramble-Pasciak Conjugate Gradient algorithm is widely used in

the finite element community. It uses the efficient implementation of cg
in a non-standard inner product by using the self-adjointness of the sys-

tem matrix. Motivated by a reformulation of the linear system in saddle

point form, we introduce Bramble-Pasciak-like methods that can be used to

solve problems coming from optimization. We illustrate that the eigenvalues

for the preconditioned matrix in this setup have a very similar (sometimes

equivalent) structure to the preconditioned matrix of a method which uses

a constraint preconditioner. We furthermore give numerical results for opti-

mization examples.

The simultaneous solution of Ax = b and ATy = g where A is a non-

singular matrix is required in a number of situations. The algorithms pre-

sented in this thesis make use of the relationship between the matrixA and its

adjoint AT . Darmofal and Lu have proposed a method based on the Quasi-

Minimal residual algorithm (qmr) a method relating matrix and adjoint via

the non-symmetric Lanczos process. Here, we introduce a technique for the

same purpose based on the lsqr method and show how its performance can

be improved when using the Generalized lsqr method. These strategies are

based on the relationship with A and AT to a (Block-)Lanczos method. We

further show how preconditioners can be introduced to enhance the speed

of convergence and discuss different preconditioners that can be used. The

scattering amplitude gTx, a widely used quantity in signal processing for ex-

ample, has a close connection to the above problem since x represents the

solution of the forward problem and g is the right hand side of the adjoint

system. We show how this quantity can be efficiently approximated using

Gauss quadrature and introduce a Block-Lanczos process that approximates

the scattering amplitude and which can also be used with preconditioning.
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CHAPTER 1

INTRODUCTION

1.1 The problem

With the increasing availability of computing power, mathematical models

for processes coming from every application area have gained in popularity as

well as complexity. The mathematical description of problems arising in biol-

ogy, chemistry, automotive industry, etc., usually involves partial differential

equations (PDEs), Ordinary Differential Equations (ODEs) or the solution of

an optimization problem that might involve both ODEs and PDEs. In almost

every case, at the heart of the computation, the solution to a non-singular

linear system of the form

Ax = b with A ∈ RN,N , b ∈ RN (1.1)

is required. The discretized linear system is typically of very large dimension;

this could easily mean that N ∼ 109, and the matrix A is in general sparse

which means that only a small proportion of its entries will be non-zero.

For apparent reasons, it is crucial to solve these systems as fast as possible,

and the numerical methods should reflect this desire. For smaller systems,

11



1.1. THE PROBLEM

often the most effective methods are the direct methods based on the LU or

Cholesky factorizations (see [20] for details). These methods perform impres-

sively for systems up to certain dimensions. Eventually, these techniques will

fail due to storage requirements depending on the underlying application and

the corresponding sparsity pattern of the matrix. Recall also that the com-

putational work of Gaussian elimination is O(N3) for a dense matrix. Hence,

iterative techniques have to be employed. The most popular class is given

by the so-called Krylov subspace solvers which compute approximations to

the solution in a Krylov subspace

Kk(A, r0) = span
{
r0,Ar0, . . . ,Ak−1r0

}
(1.2)

with r0 = b − Ax0 an initial residual based on the initial guess x0. There

exists a vast amount of literature describing and analyzing Krylov subspaces;

here we only refer to [56, 96, 21] and the references mentioned therein. We

entirely focus on Krylov subspace solvers in this thesis but want to mention

that there exist alternatives such as the multigrid method [115,57] that can

perform outstandingly for certain problems.

In most practical applications, we cannot simply solve the system with A
since it would take too many iterations for the iterative scheme to converge.

In such cases, preconditioning has to be used to obtain an approximation to

x effectively. In more detail, a non-singular preconditioner P is chosen such

that an appropriate iterative method applied to

P−1A︸ ︷︷ ︸ x = P−1b

Â
(1.3)

has better convergence properties than with the original system. The system

(1.3) is called the left-preconditioned system. It is also possible to introduce a

right-preconditioned system AP−1x̂ = P−1b with x = P−1x̂. Another variant

is the so-called centrally preconditioned system where the system matrix is

P−1
1 AP−1

2 . Note that for P = P1P2 all three systems are similar. The analy-

Martin Stoll 12



1.1. THE PROBLEM

sis of right versus left preconditioning can be found in [96,95]. In essence, for

most problems the difference between left and right preconditioning is not

significant which is why we only consider left preconditioning in this thesis.

For the preconditioner to be efficient, it has to be a ‘good’ approximation

of A and a system with P needs to be easily solvable. A good preconditioner

takes the structure of the problem into account and therefore reflects the

underlying problem – this will be emphasized in later parts of this thesis. A

general introduction to preconditioning can be found in [96].

So far, we have not talked about the properties of A apart from it being

a non-singular, sparse matrix. In Section 1.3, we show two examples that

result in linear systems of the form (1.1). The systems arising in each prob-

lem resemble the nature of the problem and will result in different properties

of the matrix A, such as symmetry and definiteness. The structure of the

system matrix A also varies with the underlying application and also de-

pends on numerical issues such as discretization. More importantly, we can

pick iterative solvers based on the properties of A; some solvers should be

preferred to others (see Chapter 2). One of the most important solvers is

the Conjugate Gradient method (cg) [59] that we carefully explain later.

It needs not only symmetry but also definiteness of the matrix A. This can

be hard to achieve, especially if a certain type of preconditioner is used that

is known to be a ‘good’ approximation to A. In this thesis, we present ex-

amples where certain types of preconditioners can be used that destroy the

symmetry of the matrix A but with a certain choice of inner product enable

the use of cg.

One important question asked in the early 1980s was: for which matrices

can we guarantee that certain desirable solvers can be used? In 1984, Faber

and Manteuffel presented a milestone theorem that fully answers this ques-

tion. In Section 1.2, we discuss the main theorem and recent developments

based on it. It is not always easy to find a mathematical description that ac-

cording to the Faber-Manteuffel theorem enables the use of the sought after

solvers, e.g. when A is a symmetric matrix with AT = A. Hence, a more

general set of non-symmetric solvers has to be used, or the symmetry of the

Martin Stoll 13



1.1. THE PROBLEM

system matrix A in non-standard inner-products or bilinear forms

〈x, y〉H = xTHy (1.4)

with HT = H, i.e.

〈Ax, y〉H = 〈x,Ay〉H.

This will be underlined by the Faber-Manteuffel theory presented in 1.2.

In Chapter 2, some of the most important iterative methods are intro-

duced with special emphasis on the possibility of using non-standard inner

products or bilinear forms.

In Chapter 3, we discuss the concept of self-adjointness in non-standard

inner products/bilinear forms. We present basic results and properties.

Based on these, we introduce a technique called Combination Preconditioning

that was recently published in [109]. Using this technique, we combine dif-

ferent known methods and also introduce a new method based on a classical

result of Bramble and Pasciak [10].

The use of non-standard inner product solvers for problems coming from

optimization is at the heart of Chapter 4. The standard formulation of the

linear systems is reformulated with the alternative formulation representing

a framework for many well-known methods. Based on this observation we

analyze the convergence behavior of a non-standard inner product solver in

comparison to the reformulation. This results in the rewriting of a method

presented in [32] in terms of a non-standard inner product method. We show

that this setup is more flexible than the original and look at the eigenvalue

distribution. This work was submitted for publication [18].

Chapter 5 deals with the solution of the systems arising when one is

interested in computing the scattering amplitude, a function of the solution

of the linear system (1.1) (see Section 1.3). We present techniques well

established in the literature to solve Ax = b and ATy = g simultaneously

and introduce a method [52] based on a well-known algorithm by Saunders

et al. in [86, 85, 99]. In addition to discussing preconditioning, we look at

Martin Stoll 14



1.2. FABER-MANTEUFFEL THEOREM

the approximation of the scattering amplitude without approximating the

solution to the linear system first.

The iterative methods presented in earlier chapters of the thesis are all

thoroughly tested and the numerical results are presented in Chapter 6. The

methods are always compared to the best suited solvers available, and the

examples are mostly taken from freely available data sets.

1.2 Faber-Manteuffel theorem

In 1981, Gene Golub posed the question: for which matrices Â = P−1A
do there exist short-term recurrence solution methods to solve (1.1) (cf.

SIGNUM Newsletter, vol 16. no.4 1981)? This question was fully answered

by Faber and Manteuffel in 1984 (cf. [27]). Unfortunately, the proof of the

main theorem is complicated and non-constructive. Recently, Liesen and

Saylor [71] attempted a constructive proof which led to a survey paper in

2006 by Liesen and Strakoš (see [72]). Following up on this Faber et al. [26]

presented more accessible proofs for the Faber-Manteuffel theorem in terms of

linear operators. Note that we use the preconditioned matrix Â here but all

results also hold for A, i.e. by simply defining P = I for the preconditioner.

Here, we want to summarize the Faber-Manteuffel theorem and its appli-

cation to the solution of preconditioned linear systems of the form (1.3) by

staying close to the notation introduced in [72]. To define optimal short-term

recurrences, we need several basic definitions. Let d be the dimension of the

Krylov subspace Kk(Â, r0) when it becomes invariant under Â; then d is

called the grade of r0 with respect to Â. Another important tool not only for

the Faber-Manteuffel theorem is the bilinear form 〈·, ·〉H : Rn×Rn → R with

H being symmetric. Whenever H is also positive definite then 〈·, ·〉H defines

an inner product. Let us assume for the remainder of this section that H
defines an inner product. Then, for a given Â, r0 and H under the above as-
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1.2. FABER-MANTEUFFEL THEOREM

sumptions, we consider an H-orthogonal basis [v1, . . . , vn] of Kk(Â, r0) where

span{v1, . . . , vk} = Kk(Â, r0)

〈vi, vj〉H = 0 i 6= j

for all k smaller than the grade d. Such a set of basis vectors can be generated

by the Arnoldi algorithm with the H-inner product. The Arnoldi algorithm

[3,53] is a Gram-Schmidt process that creates anH-orthogonal basis v1, v2, . . .

for the Krylov space Kk(Â, r0). It can also be viewed as a method to compute

the QR decomposition of [v1, ÂVk] (see [83]). Its H-inner product form is

given by

v1 = r0

vk+1 = Âvk −
∑k

j=1 hj,kvj with hj,k =
( bAvk,vj)H
(vj ,vj)H

.

where k ≤ d−1. The normalization of the vk+1 is skipped for convenience. A

standard implementation of the Arnoldi algorithm including normalization

and classical Gram-Schmidt orthogonalization is given in Algorithm 1.1.

v1 = r0/‖r0‖
for j = 1, 2, . . . , k do

Compute hij = 〈Âvj, vi〉H for i = 1, 2, . . . , j

Compute wj = Âvj −
∑j

i=1 hijvi
hj+1,j = ‖wj‖2

vj+1 = wj/hj+1,j

end for

Algorithm 1.1: Arnoldi-Classical Gram-Schmidt

The implementation with modified Gram-Schmidt should be preferred in

practice since it is more stable (see [9]). The matrix representation of an

instance of the Arnoldi algorithm is given by

ÂVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk+1,k (1.5)

Martin Stoll 16



1.2. FABER-MANTEUFFEL THEOREM

where

Vk+1 = [Vk vk+1]

and

Hk+1,k =

 Hk

hk+1,ke
T
k


is an upper Hessenberg matrix. Note that for a symmetric matrix Â and

H = I the Arnoldi algorithm reduces to the well-known symmetric Lanczos

method [66], i.e.

ÂVk = VkTk + hk+1,kvk+1e
T
k = Vk+1Tk+1,k (1.6)

where Tk is a symmetric tridiagonal matrix. Algorithm 1.2 gives a typical

implementation of the Lanczos algorithm, with H = I.

v1 = r0/‖r0‖
for j = 1, 2, . . . , k do

Compute wj = Âvj − βjvj−1

αj = 〈wj, vj〉
Compute wj := wj − αjvj
βj+1 = ‖wj‖2

if βj+1 = 0 then
stop

end if
vj+1 = wj/βj+1

end for

Algorithm 1.2: Lanczos algorithm-Modified Gram-Schmidt

The matrix representation of the Arnoldi algorithm at step with the H-

inner product is now

ÂVd−1 = VdHd,d−1 (1.7)

where Vd−1 = [v1, . . . , vd−1], Vd = [v1, . . . , vd] have orthogonal columns in the

Martin Stoll 17



1.2. FABER-MANTEUFFEL THEOREM

H-inner product and

Hd,d−1 =



h1,1 · · · h1,d−1

1
. . .

. . . hd−1,d−1

1


.

If symmetry of Â is given in the H-inner product then an H symmetric

Lanczos, H-Lanczos can be implemented (see Algorithm 1.3).

Choose start vector v1 ∈ Rn with ‖v1‖ = 1.
Set β0 = 0
for k = 1, 2, . . . do
ṽk+1 = Âvk − βk−1vk−1

Compute αk = 〈ṽk+1, vk〉H
ṽk+1 := ṽk+1 − αkvk
Set βk = ‖ṽk+1‖H
Set vk+1 = ṽk+1/βk

end for

Algorithm 1.3: Algorithm for H-Lanczos

The band structure of Hd,d−1 is important for developing efficient algo-

rithms. Note in the symmetric case, i.e. ÂT = Â, the matrix Hd,d−1 is a

tridiagonal matrix [66, 88]. This leads to the following definition.

Definition 1.1. An unreduced upper Hessenberg matrix is called a (s + 2)-

band Hessenberg, when its s-th superdiagonal contains at least one non-zero

entry and all entries above the s-th superdiagonal are zero.

Let Hd,d−1 be now an (s+ 2)-band Hessenberg matrix. Then the Arnoldi

algorithm with H-inner product (1.7) reduces to

vk+1 = Âvk −
k∑

j=k−s

hj,kvj with hj,k =
〈Âvk, vj〉H
〈vj, vj〉H

.
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1.2. FABER-MANTEUFFEL THEOREM

The H-orthogonal basis of the Krylov subspace is then generated by an

(s + 2)-term recurrence. We need precisely the latest s + 1 basis vectors

vk, . . . , vk−s in the given iteration step. Furthermore, only one matrix vector

product per iteration with Â is required. We call such (s + 2)-term recur-

rences optimal. Note that in practice we want s to be small in order to obtain

efficient algorithms and so that the algorithm ‘deserves’ the term optimal.

Definition 1.2 (Definition 2.4 in [72]) states the condition when we say

the matrix Â admits an optimal short-term recurrence.

Definition 1.2. Let Â ∈ Rn,n be a non-singular matrix with the degree of the

minimal polynomial1 being dmin(Â). Let H be a symmetric positive definite

matrix and let s be an integer with s+ 2 ≤ dmin(Â).

1. If for an initial vector r0 the matrix Hd,d−1 is (s+ 2)-band Hessenberg,

then we say that Â admits for the given H and r0 an optimal (s + 2)-

term recurrence.

2. If Â admits for the given H and any initial vector r0 an optimal re-

currence of length at most s + 2, while it admits for the given H and

at least one r0 an optimal (s+ 2)-term recurrence, then we say that Â
admits for the given H an optimal (s+ 2)-term recurrence.

The interesting question, answered by Faber and Manteuffel, is now which

matrices Â admit such an optimal (s+2)-term recurrence. Once these classes

are identified we look for efficient solvers of the system (1.1). The Arnoldi

algorithm cannot produce more vectors than the degree of the minimal poly-

nomial of Â, dmin(Â), and therefore to look for s + 2 > dmin(Â) is mean-

ingless. Moreover, we are interested in finding a very small s for a given

H, i.e. s � dmin(Â) since dmin(Â) is usually very large. Before stating the

main theorems, we have to introduce some further instruments. We define

the H-adjoint Â+ of Â by

Â+ = H−1ÂTH
1The minimal polynomial pmin of A is the monic polynomial of minimal degree such

that pmin(A) = 0.
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and see that it satisfies

〈Âx, y〉H = 〈x, Â+y〉H ⇔ 〈HÂx, y〉 = 〈Hx, Â+y〉.

Using this adjoint we get the following important definition

Definition 1.3. Let Â ∈ Rn,n be non-singular with dmin(Â) the degree of

the minimal polynomial and let H be a symmetric positive definite matrix.

Suppose that

Â+ = ps(Â),

where ps(Â) is a polynomial of smallest possible degree s having this property.

Then Â is called normal of degree s with respect to H, or, H-normal(s).

The equivalence between Â is admitting for a given H an optimal (s+2)-

term recurrence and Â is H-normal(s) is given by the following two theorems

in [72] (see Lemma 2.7 and Theorem 2.9).

Theorem 1.4. Let Â ∈ Rn,n be non-singular with dmin(Â) the degree of the

minimal polynomial. Let H be a symmetric positive definite matrix and let s

be an integer with s + 2 < dmin(Â). If Â is H-normal(s) then it admits for

H and any given r0 an optimal recurrence of length at most s+ 2, while for

any r0 with grade with respect to Â at least s + 2 an optimal (s + 2)-term

recurrence.

This theorem states the sufficient condition for Â to admit for a given H
an optimal (s + 2)-term recurrence. The necessary conditions will be given

by the next theorem (Theorem 2.10 in [72]).

Theorem 1.5. Let Â ∈ Rn,n be non-singular with dmin(Â) the degree of

the minimal polynomial. Furthermore, let H be a symmetric positive definite

matrix and let s be an integer with s+ 2 < dmin(Â). If Â admits for a given

H an optimal (s+ 2)-term recurrence, then Â is H-normal(s).

For a long time, the only known proof was given by Faber and Manteuffel

in [27]. Recently, Faber et al. presented two new and more accessible proofs
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(see [26]). In [71], an attempt to prove this theorem in a linear algebra

based way is shown. Liesen and Saylor showed that the reducibility of Â
for a given H to (s + 2)-band Hessenberg form is equivalent to Â being H-

normal(s) in the case of a nonderogatory Â. We will now precisely define

what the reducibility of the original matrix Â is. The dimension of the

Krylov subspace generated by Â and r0 is supposed to be d. Then we know

by construction, Âvd ∈ Kd(Â, v1) and

Âvd =
d∑
i=1

hi,dvi where hi,d =
〈Âvd, vi〉H
〈vi, vi〉H

, i = 1, . . . , d.

Reformulated in matrix terms this becomes

ÂVd = VdHd

where Vd = [v1, . . . , vd] and

Hd =



h1,1 · · · h1,d−1 h1,d

1
. . .

...
...

. . . hd−1,d−1 hd−1,d

1 hd,d


.

All of this gives rise to the following definition.

Definition 1.6. Let Â ∈ RN,N be a non-singular matrix with a minimal

polynomial of degree dmin(Â). Let H be a symmetric positive definite matrix

and let s be an integer with s+ 2 ≤ dmin(Â).

1. If for any initial vector r0 the matrix Hd is (s + 2)-band Hessenberg,

then we say that Â is reducible for the given H and r0 to (s+ 2)-band

Hessenberg form.
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2. If Â is reducible for the given H and any initial vector r0 to at most

(s+ 2)-band Hessenberg form, while it is reducible for the given H and

at least one r0 to (s+ 2)-band Hessenberg form, then we say that Â is

reducible for the given H to (s+ 2)-band Hessenberg form.

Unfortunately, Liesen and Strakoš [72] were not able to show that if Â
admits for the given H an optimal (s+2)-term recurrence then Â is reducible

for a given H to (s+2)-band Hessenberg form. This relatively easy sounding

statement also reduces to an easy expression that has to be shown, i.e.

hi,d =
〈Âvd, vi〉H
〈vi, vi〉H

= 0 ∀i = 1, . . . , d− s− 1.

We know this is true due to the proof given by Faber and Manteuffel [27] and

the recently more accessible proof of Faber et al. [26] where Â is analyzed

as a linear operator. Faber et al. also present a linear algebra proof for the

assumption s + 3 < dmin(Â). In more detail, complex Givens rotations are

used to show that under the assumption of s+ 3 < dmin(Â) and h1,d 6= 0 the

matrix Â would admit a dmin(Â)−1-term recurrence. But since we assumed

that Â admits an s + 2-term recurrence, we get that dmin(Â) − 1 ≤ s + 2,

which contradicts the assumption that s + 3 < dmin(Â). Faber et al. also

note that there seems to be no linear algebra proof including the ‘missing

case’ s+ 3 = dmin(Â) but that for practical applications, it is desired to have

s+ 2� dmin(Â).

In the course of this section, we mentioned the Lanczos algorithm and

that for symmetric matrices the Arnoldi algorithm reduces to the symmetric

Lanczos process (cf. Algorithm 1.2). This also implies that for any symmetric

matrix Â we have to find a polynomial of degree s such that Â+ = ps(Â)

which is a trivial task since Â = ÂT . Hence s = 1 and every symmetric

matrix admits a 3-term recurrence. The class of solvers where s = 1 plays a

very important role since the methods based on a 3-term recurrence are very

efficient and reliable (see Chapter 2. Faber and Manteuffel showed that the

class of matrices that are diagonalizable and have eigenvalues on a straight

line in the complex plane admit 3-term recurrence methods [27, 72]. As
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already mentioned this is true for every symmetric matrix Â or A, and it is

easy to see that this also holds for skew-symmetric matrices, i.e. AT = −A
and p1(x) = −x. In [116,14] an iterative method for the matrix A+ I, where

A is skew symmetric, was proposed. It is easy to see that the eigenvalues of

A+αI for skew-symmetric A and α ∈ R have real part α and the imaginary

part consists of the eigenvalues of A which are purely imaginary. We can

now implement iterative methods for (shifted) skew-symmetric systems.

In many cases, it cannot be assumed that the preconditioned matrix Â
or even A itself is symmetric and we recall the Arnoldi process with H-inner

product. If a non-standard inner product matrix H can be found such that

Â is symmetric in the inner product 〈x, y〉H = 〈Hx, y〉 ∀x, y, i.e.

〈Âx, y〉H = 〈x, Ây〉H ∀x, y (1.8)

we can implement a short-term recurrence method.

Mathematically Equation (1.8) reduces to the relation

ÂTH = HÂ. (1.9)

Note that (1.9) relation also holds if H is a bilinear form (see Chapter 3).

If (1.9) holds with the inner product defined by H, a 3-term recurrence can

always be applied, i.e.

ÂTH = HÂ =⇒ Â+ = H−1ÂTH = Â.

1.3 Motivating examples

In this section we want to give two motivating examples that will both result

in a linear system of the form (1.1) and frequently appear in applications

from various areas.
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1.3.1 Stokes problem

The modelling of incompressible fluid flow problems is a problem arising

in many applications and is described by PDEs. When considering steady

flow problems, i.e. the time dependency of the velocity u is negligible, the

resulting PDEs [24, Section 0] are called the Navier-Stokes equations in a

region Ω ⊂ Rd

ν∇2u+ u· ∇u+∇p = 0

∇·u = 0
(1.10)

where u is the velocity of the fluid and p the pressure. The term ν is called

the kinematic viscosity. The Navier-Stokes equations are nonlinear. In situ-

ations when the velocity is small or the flow is tightly confined, the Navier-

Stokes equations can be simplified. Then the quadratic term in (1.10) can

be dropped, and by absorbing the constant ν into the velocity u, we obtain

the Stokes equations in a region Ω

−∇2u+∇p = 0

∇·u = 0.
(1.11)

Hence, we are now given a set of equations that model the slow flow of a

viscous fluid. On the boundary ∂Ω we assume Dirichlet boundary conditions

u = w on ∂ΩD

and Neumann boundary conditions

∂u

∂n
− np = s on ∂ΩN

such that

∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅.

In order to find approximations to u and p we employ the mixed finite

Martin Stoll 24



1.3. MOTIVATING EXAMPLES

element method [24]. Here the weak formulation

∫
Ω
∇uh· ∇vh −

∫
Ω
ph∇· vh =

∫
∂ΩN

s· vh∫
Ω
qh∇·uh = 0

(1.12)

is defined using two different finite-dimensional spaces for all vh and qh ap-

propriately chosen. In more detail, vh and qh are taken from independent

spaces which leads to the nomenclature ‘mixed approximation’. To find uh

and ph in the right spaces, we introduce velocity basis functions {φj} such

that

uh =
nu∑
j=1

ujφj +

nu+n∂∑
j=nu+1

ujφj

where the second sum ensures interpolation of the boundary data. Addition-

ally, introducing a set of pressure basis functions {ψj} and setting

ph =

np∑
j=1

pjψj

the discrete formulation (1.12) can be expressed as a system

 A BT

B 0


 u

p

 =

 f

g

 . (1.13)

The matrix A ∈ Rn,n is called the vector-Laplacian matrix and the matrix

B ∈ Rm,n is called the divergence matrix. Note that for the dimension of A
N = nu + np holds. The matrix entries are given by

aij =
∫

Ω
∇φi· ∇φj

bij = −
∫

Ω
ψi∇·φj
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and the right hand sides by

fi =
∫
∂ΩN

s·φi −
∑nu+n∂

j=nu+1 uj
∫

Ω
∇φi· ∇φj

gi =
∑nu+n∂

nu+1 uj
∫

Ω
ψi∇·φj.

The system with these definitions given in (1.13) is referred to as the discrete

Stokes problem. For stabilized elements (cf. [24]) the discrete Stokes problem

becomes  A BT

B −C


 u

p

 =

 f

g

 . (1.14)

where C ∈ Rm,m is called the stabilization matrix. The matrix

A =

 A BT

B −C


is called a saddle point matrix because problems of this kind arise in the

analysis of saddle points of a given function (see [19, 82]). Matrices of this

type play an important role in Numerical Linear Algebra and Numerical

Analysis (see [6] for a comprehensive survey). In the case of the Stokes

problem, the block A is usually symmetric and positive definite and C is

symmetric and positive semi-definite, often zero. Hence, the matrix A is

symmetric and indefinite. With the wide range of applications that can be

described by the Stokes equations in mind, it is important to find good solvers

and preconditioners that guarantee fast convergence.
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1.3.2 Linear programming, scattering and more

In linear programming [42] the primal linear programming problem:

minx∈RN gTx

s.t. Ax ≥ b, x ≥ 0
(1.15)

with g ∈ RN always has a corresponding dual problem

miny∈RM bTy

s.t. ATy ≥ g, y ≥ 0.
(1.16)

Here, we assume that A ∈ RN,N is a square matrix and hence N = M . The

duality theorem [82] states that if the primal problem has a finite optimal

solution x∗ then the dual problem has an optimal solution y∗ and gTx∗ =

bTy∗. In the case of all constraints being active constraints that is ATy = g

and Ax = b the problem of computing the minimiser of the objective function

comes down to computing the solution to the linear system

Ax = b (1.17)

or

ATy = g. (1.18)

We will refer to (1.17) as the forward problem and to (1.18) as the adjoint

problem. Instead of solving only one system of equations, the solution of

the corresponding adjoint system can prove useful for further analysis of

the problem such as a posteriori error estimation. Examples are given in

[113, 93, 90, 63, 41, 22, 5]. Approximating the solutions to the systems (1.17)

and (1.18) simultaneously is therefore desired. Solving

Ax = b and ATy = g
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at the same time can be reformulated as solving

 0 A

AT 0


 y

x

 =

 b

g

 . (1.19)

Note that the system matrix in this case describes a degenerated saddle point

and hence resembles the structure given in (1.14).

The solution of forward and adjoint system is not only important when

looking at optimization problems but also in the world of signal processing.

Here, we briefly discuss the scattering amplitude, which is a quantity that is

important when one wants to understand the scattering of incoming waves.

We assume that an incoming wave given by b impinges on an object. The

outgoing wave g then has information about the object, and the matrix A
relates the incoming and the scattered fields. The system Ax = b deter-

mines the field from the signal b, and the system ATy = g gives the field

for the received signal g. In many applications, such as radar, one is of

course interested in the amplitude of the scattered field which is given by the

quantity gTx the so-called scattering amplitude. The scattering amplitude is

also computed in optimization typically under the name primal linear output

Jpr(x) = gTx.

The problem of simultaneously solving forward and adjoint system and

approximating the quantity gTx not only arises in signal processing and op-

timization but also in quantum mechanics [68], nuclear physics [2] and many

more areas (see [90]).
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CHAPTER 2

ITERATIVE SOLVERS

In this chapter, we introduce a number of solvers that are well-suited to solve

a linear system of the form (1.1). The focus is here on methods that can be

tailored to efficiently solve systems constructed in Section 1.3, i.e. matrices

in saddle point form. This chapter neither represents a conclusive list nor

will it give all the details for each method; instead, it is supposed to explain

the idea behind each method and why this method could be chosen from a

practitioners’ point of view. The literature about iterative solvers is vast and

many good books exists that we recommend for the interested reader, such

as [56, 96, 29, 53, 76]. We also recommend [58] where Hageman and Young

discuss how to symmetrize iterative methods.

2.1 Symmetric solvers

In this section, the symmetric methods classical Conjugate Gradient (cg)

method of Hestenes and Stiefel [59] and minres [84] are introduced. They

are the most popular choice when people want to solve symmetric linear

systems, and their performance motivates one to look for symmetric formu-

lations of mathematical models.
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2.1.1 cg (Conjugate Gradient)

The Conjugate Gradient (cg) method introduced by Hestenes and Stiefel

in [59] is the method for symmetric and positive definite systems of the form

(1.1). Due to its property of converging in at most N steps (in infinite

precision), many considered cg to be a direct method although even the

original paper (see [59]) points out the use as an iterative solver. When

Reid [92] analyzed it as an iterative solver for symmetric and positive definite

systems, the popularity of cg as an iterative solver took off. In [46], the

history of the cg algorithm and its rise to one of the most popular iterative

solvers for linear systems is described.

For symmetric and positive definite A, the solution of the linear system

Ax = b

can be identified with the unique minimiser x of the quadratic form

f(x) =
1

2
xTAx− bTx+ c

(c ∈ RN is some constant vector) for which

f ′(x) = Ax− b.

Note that for notational convenience we use the notation x for the actual

solution of the linear system and quadratic form.

To introduce cg, we start with the method of steepest descent. In more

detail, the steepest descent from a given point xk is given in the direction of

the negative gradient −f ′(xk) = rk = b−Axk.
With a line search technique and the update xk+1 = xk + αkrk, we can

compute αk such that f(xk+1) is minimal. Setting ∂f(x)
∂αk

= 0 yields

αk =
〈rk, rk〉
〈rk,Ark〉

.
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Note that if we premultiply xk+1 = xk + αkrk by A and subtract b we get

rk+1 = rk − αkArk

which is used in Algorithm 2.1. The line search parameter αk is also com-

rk = b−Axk
for k = 0, 1, . . . do
αk = 〈rk,rk〉

〈rk,Ark〉
xk+1 = xk + αkrk
rk+1 = rk − αkArk

end for

Algorithm 2.1: Steepest descent

puted in such a way that the A-norm of the error along this line is minimized,

i.e. ‖ek+1‖A with ek+1 = x − xk+1. This can be shown with the same tech-

nique by considering
∂ek+1(αk)

∂αk
= 0

or by considering the relation

f(xk+1) = f(x) +
1

2
eTk+1Aek+1,

which identifies the equivalence of minimizing the A-norm to minimizing

f(xk+1).

The method of steepest descent might often take steps into previously

used search directions [103] and therefore introducing a set of orthogonal

search directions is desirable. It would be desirable to choose search di-

rections pj that are orthogonal. Using the condition that the error ek+1 is

orthogonal to the previous search direction, i.e. 〈pk, ek+1〉 = 0, so we precisely

make one step towards any search direction leads to αk = − 〈pk,ek〉
〈pk,pk〉

which is

not computable without knowing the solution x.

Unfortunately, one cannot use orthogonal search directions since their

computation would require the knowledge of the solution x. Instead a set
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of A-conjugate search directions p1, . . . , pN is used. The iterates can now be

described by

xk+1 = xk + αkpk.

We have to compute αk such that ek+1 is A-orthogonal to pk since the or-

thogonality gives that we make only one step into this search direction. From

〈ek+1, pk〉A = 0, we get

αk =
〈pk, rk〉
〈pk, Apk〉

.

To create the set of search directions pk, we use a conjugate Gram-Schmidt

process that takes a set of independent vectors uk to create A-orthogonal

direction vectors using a standard Gram-Schmidt technique (see [103] for

details). Recall that we introduced a Gram-Schmidt process for the Krylov

space in (1.7). For general vectors uk, this process is called the method of

conjugate directions. With the particular choice of uk being equal to the

residual rk we can derive the cg method. This choice gives that the residual

rk is also orthogonal to the previous search directions. To see this, we note

that the error ek is A-orthogonal to all previous search directions pj ∀j 6= k,

i.e. 〈pj,Aek〉 = 0 so only one step towards every direction is made, and

because of rk = −Aek, we get that 〈pj, rk〉 = 0. Remembering that the

pk are generated from uk = rk via a Gram-Schmidt process, we get that

pj = rj −
∑j−1

i=1 βipi. Now looking at

〈pj, rk〉 = 〈rj, rk〉 −
j−1∑
i=1

βi〈pi, rk〉

with the knowledge that 〈pj, rk〉 = 0, we see that 〈rj, rk〉 = 0 ∀j 6= k. Having

chosen the uk to be equal to the residuals gives

span {p0, p1, . . .} = span {r0, r1, . . .} ,

and using the fact that

rk+1 = rk − αkApk, (2.1)
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it is clear that the search space is equal to the Krylov subspace Kk(A, r0) =

span
{
r0,Ar0, . . . ,Ak−1r0

}
. Because the Krylov subspaces define a nested

sequence and the next residual rk+1 is orthogonal to the space spanned by

p0, . . . , pk and because of (2.1), rk+1 is A-orthogonal to the space spanned by

p0, . . . , pk−1. This means that the Gram-Schmidt process for rk+1 only has

to orthogonalize against pk. In more detail, the Gram-Schmidt recurrence

becomes

pk+1 = rk+1 − βk+1pk

where βk+1 = 〈rk+1,Apk〉
〈pk,Apk〉

. This can be further rewritten when taking the inner

product of (2.1) and rk+1 which gives

〈rk+1, rk+1〉 = 〈rk+1, rk〉 − αk〈rk+1,Apk〉.

Since the residuals are orthogonal, this reduces to 〈rk+1, rk+1〉 = −αk〈rk+1,Apk〉.
Given the definition of αk and

〈rk+1,Apk〉 = −〈rk+1, rk+1〉
αk

,

we get

βk+1 =
〈rk+1, rk+1〉
〈pk, rk〉

.

Using pk = rk − βkpk−1 and the previous results, we show that 〈pk, rk〉 =

〈rk, rk〉 − βk〈pk−1, rk〉 = 〈rk, rk〉, and the parameters finally become

βk+1 =
〈rk+1, rk+1〉
〈rk, rk〉

and αk =
〈rk, rk〉
〈pk, Apk〉

.

Bringing all the pieces together, we get the cg method given in Algorithm

2.2.

Similar to the steepest descent method, cg minimizes the error in the

A-norm over the current Krylov subspace, i.e. ‖ek‖A. For a more detailed

discussion of the further properties of cg we refer to [59]. This method is
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r0 = b−Ax0

p0 = r0

for k = 0, 1, . . . do
αk = 〈rk,rk〉

〈pk,Apk〉
xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk+1 = 〈rk+1,rk+1〉

〈rk,rk〉
pk+1 = rk+1 − βk+1pk

end for

Algorithm 2.2: Conjugate Gradient (cg) method

also closely connected to the symmetric Lanczos process given in Algorithm

1.2 or [66] which is carefully explained in [53]. Hence, as a method based on

the Lanczos process, cg fulfills all the requirements of an optimal 3-term

recurrence method that we described in Section 1.2.

So far, we have introduced cg as a solver for the system matrix A, but

in practice we would be interested in solving a preconditioned system (1.3).

Since cg is a method only for positive definite symmetric systems, it is easy

to see that the preconditioner P has to be positive definite to be applicable.

In more detail, consider the system

P−1Ax = P−1b

and with P being symmetric and positive definite we can compute the Cholesky

decomposition P = RTR. Then, we get the spectrally equivalent, centrally

preconditioned system

R−TAR−1x̂ = R−T b, with x̂ = Rx

with a symmetric and positive definite system matrix. The preconditioned

version of the cg algorithm is given in Algorithm 2.3. The preconditioned

cg (pcg) is the most common method to solve preconditioned symmetric

and positive definite systems, and we refer to the literature for a more detailed

discussion (see [24, 96, 56, 75]). The preconditioned cg still minimizes the
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r0 = b−Ax0

Solve Pz0 = r0

for k = 0, 1, . . . do
αk = 〈rk,zk〉

〈pk,Apk〉
xk+1 = xk + αkpk
rk+1 = rk − αkApk
Solve Pzk+1 = rk+1

βk+1 = 〈rk+1,zk+1〉
〈rk,zk〉

pk+1 = zk+1 − βk+1pk
end for

Algorithm 2.3: Preconditioned Conjugate Gradient (cg) method

A-norm of the error regardless of the choice of P as long as it is symmetric

and positive definite.

For some problems, the preconditioned matrix Â = P−1A might not

fulfill the requirements of the cg method, i.e. all matrix symmetries are

destroyed when A is preconditioned, in which case the Faber-Manteuffel the-

orem (Section 1.2) suggests that no short-term recurrence method can be

applied. Introducing an appropriate inner product 〈., .〉H the matrix Â may

be symmetric and positive definite in this alternative inner product, in which

case the Hessenberg matrix of the H-inner product Arnoldi algorithm (1.7)

will be tridiagonal. This means that under these circumstances cg is ap-

plicable. Such methods play a major role in this thesis and we come back

to cg with such non-standard inner products in Chapters 3 and 4. There,

we also show that cg with a non-standard inner product is equivalent to a

special pcg. A straightforward implementation of cg with non-standard

inner product is given in Algorithm 2.4. In the case of cg with non-standard

inner product, the preconditioner P is chosen such that the eigenvalues of

the preconditioned matrix Â = P−1A are clustered since the inner product

does not influence the eigenvalues of preconditioned system.

At iteration k of Algorithm 2.4,

span {p0, p1, . . . , pk−1} = span {r0, r1, . . . , rk−1} ,
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Given x0 = 0, set r0 = P−1 (b−Ax0) and p0 = r0

for k = 0, 1, . . . do
α = 〈rk,pk〉H

〈P−1Apk,pk〉H
xk+1 = xk + αpk
rk+1 = rk − αP−1Apk
β = 〈P−1Ark+1,pk〉H

〈P−1Apk,pk〉H
pk+1 = rk+1 − βpk

end for

Algorithm 2.4: Non-standard inner-product cg (variant 1)

〈rk, rj〉H = 0, 〈rk, pj〉H = 0 and 〈P−1Apk, pj〉H = 0 for all j < k, (see [70,

Theorem 3.2]). This will lead to a simplification of Algorithm 2.4. To see

this, we look at

〈rk, pk〉H = 〈rk, rk + βpk−1〉H = 〈rk, rk〉H

using the H-orthogonality between rk and pk−1. The expression for β can be

simplified by looking at

〈rk+1, rk+1〉H = 〈rk+1, rk〉H − α〈rk+1,P−1Apk〉H

using the definition of rk+1. Furthermore, if we use the definition of α and

the H-orthogonality between rk+1 and rk we get

〈rk+1, rk+1〉H = −〈rk, pk〉H〈rk+1,P−1Apk〉H
〈P−1Apk, pk〉H

.

Finally, this gives

β =
〈rk+1, rk+1〉H
〈rk, rk〉H

using the previous result 〈rk, rk〉H = 〈rk, pk〉H and the update pk+1 = rk+1 +

βpk. Hence, we can now reformulate Algorithm 2.4 as Algorithm 2.5.

cg and pcg both minimize the A-norm of the error. For cg with
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Given x0 = 0, set r0 = P−1 (b−Ax0) and p0 = r0

for k = 0, 1, . . . do
α = 〈rk,rk〉H

〈P−1Apk,pk〉H
xk+1 = xk + αpk
rk+1 = rk − αP−1Apk
β = 〈rk+1,rk+1〉H

〈rk,rk〉H
pk+1 = rk+1 + βpk

end for

Algorithm 2.5: Non-standard inner-product cg (variant 2)

inner product defined by H the error, ek+1 is now minimized in the norm

defined by the matrix HÂ, i.e. ‖ek+1‖H bA. Note that cg with inner product

is only applicable if HÂ is symmetric and positive definite and hence defines

a norm. In (1.9) we showed that this matrix has to be symmetric for the

preconditioned matrix to be symmetric in the inner product defined by H.

If we also want the matrix to be positive definite in this inner product, we

get 〈Âx, x〉H > 0 ⇔ 〈HÂx, x〉 > 0, which is only true if HÂ is a positive

definite matrix itself. For more details, see [70, 24].

2.1.2 minres

The minimal residual method (minres) [84] is an iterative solver for sym-

metric systems which may be indefinite, such as the saddle point system

(1.14) introduced in Section 1.3. minres is not the preferred method for

symmetric and positive definite systems as it is marginally more expensive

than cgand it does not minimize the A-norm of the error. The minres
method is based on the symmetric Lanczos procedure (see 1.6), which can

be expressed as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Tk+1,k

Martin Stoll 37



2.1. SYMMETRIC SOLVERS

with

Tk+1,k =



α1 β2

β2 α2
. . .

. . . . . . βk

βk αk

βk+1


.

The quantity that is minimized in minres, namely the 2-norm of the resid-

ual, differs from the one minimized in cg. The approximate solution xk is

of the form

xk = x0 + Vkzk (2.2)

for some vector zk where the columns of Vk form an orthogonal basis of the

Krylov subspace Kk(A, r0). We refer to the condition (2.2) as the space

condition because the current approximation xk is a linear combination of

the starting vector x0 and the actual basis of the Krylov space Kk(A, r0).

The vector zk is computed such that the 2-norm of the current residual

rk = b−Axk is minimized. Mathematically, this is expressed as

‖rk‖2 = ‖b−Axk‖2

= ‖b−A(x0 + Vkzk)‖2

= ‖r0 −AVkzk‖2

= ‖r0 − Vk+1Tk+1,kzk‖2

(2.3)

and with the typical choice of v1 = r0/ ‖r0‖2 we get

‖rk‖2 = ‖Vk+1(‖r0‖2 e1 − Tk+1,kzk)‖2

= ‖ ‖r0‖2 e1 − Tk+1,kzk‖2.
(2.4)
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The term Vk+1 inside the norm can be ignored because its columns are or-

thogonal in exact arithmetic. In order to compute the vector zk, we have to

solve the least squares problem (2.4), i.e.

min ‖rk‖2 = min ‖ ‖r0‖2 e1 − Tk+1,kzk‖2.

A well-known technique to solve such a least squares system is the QR de-

composition (cf. [84]). Computing a QR decomposition at every step would

pose serious computational cost to the algorithm, but, since the matrix Tk+1,k

changes from step to step simply by adding one column and one row, its QR

decomposition can be updated at every step. The factorization can be up-

dated at each step using just one Givens rotation. In more detail, we assume

that the QR factorization of Tk,k−1 = Qk−1Rk−1 is given with

Rk−1 =

 R̂k−1

0


and R̂k−1 is an upper triangular matrix. To obtain the QR factorization of

Tk+1,k we eliminate the element βk+1 from

 QT
k−1 0

0 1

Tk+1,k =

 QT
k−1 0

0 1


 Tk,k−1 αkek

0 βk+1



=

 Rk−1 QT
k−1αkek

0 βk+1


(2.5)

by using one Givens rotation in rows k, k + 1. There is no need to store

the whole basis Vk in order to update the solution. The matrix Rk of the

QR decomposition of the tridiagonal matrix Tk+1,k has only three non-zero

diagonals. Let us define Ck = [c0, c1, . . . , ck−1] = VkR̂
−1
k . Note that c0 is a
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multiple of v1 and we can compute successive columns using that CkR̂k = Vk,

i.e.

ck−1 = (vk − r̂k−1,kck−2 − r̂k−2,kck−3)/r̂k,k (2.6)

where the r̂i,j are elements of R̂k. Therefore, we can update the solution

xk = x0 + ‖r0‖2Ck
(
QT
k e1

)
k×1

= xk−1 + ak−1ck−1 (2.7)

where ak−1 is the kth entry of ‖r0‖QT
k e1. The complete method is given in

Algorithm 2.6. When considering minres in finite precision, we have to deal

r0 = b−Ax0

Set v1 = r0/‖r0‖2

while residual norm > tolerance do
Compute vk+1, Tk+1,k via Lanczos algorithm
Update QR decomposition
Solve min ‖‖r0‖2e1 − Tk+1,kzk‖2

if Convergence criterion fulfilled then
xk = x0 + Vkwk using (2.7)
stop

end if
end while

Algorithm 2.6: minres

with the loss of orthogonality of the vectors generated by the Lanczos process.

This can result in non-convergence of the method. In [56,77] the problems of

dealing with minres in finite precision are explained very carefully. In [106]

it is explained why minres is more prone to roundoff errors than its close

relative, symmlq [84].

Again, in practice the method is hardly ever used without precondition-

ing due to the conditioning of the system matrices and the poor clustering

of the eigenvalues. Therefore, a preconditioner P is introduced and we are

working with the system matrix Â = P−1A, which is spectrally equivalent

to the centrally preconditioned system R−TAR−1 with P = RTR. Note

that the preconditioner has to be positive definite in order to be able to

use a method for symmetric matrices because for indefinite P there is no
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spectrally equivalent centrally preconditioned symmetric system. A precon-

ditioned minres method can be implemented such that one solve with P
and one multiplication with A has to be performed (see the preconditioned

Lanczos in Algorithm 2.7). The preconditioned implementation would dif-

fer from Algorithm 2.6 only in the first statement of the while loop where a

preconditioned Lanczos process generates the Lanczos vector and the tridiag-

onal matrix. For more details, we refer to [24,56,84]. Note that the quantity

minimized in the preconditioned minres is the P−1-norm of the residual or,

equivalently, the pseudoresidual in the 2-norm. To see this, we look at norm

of the pseudoresidual r̂k = R−T rk, i.e. ‖r̂k‖, for the centrally preconditioned

system

R−TAR−1x̂ = R−T b, with x̂ = Rx

and get

‖r̂k‖2 =
∥∥R−T (b−Axk)

∥∥
2

= ‖b−Axk‖R−TR−1 = ‖rk‖P−1 .

Note that in contrast to cg the minimized quantity changes when minres
is considered with preconditioning.

Set v1 = r0/ ‖r0‖ , solve Pw̃1 = v1, compute β1 = 〈v1w̃1〉1/2
Set q1 = v1/β1, w1 = w̃1/β1 and q0 = 0
for k = 1, 2, . . . do

Compute vk+1 = Awk − βk−1qk−1

Compute αk = 〈vk, wk〉
Compute vk+1 = vk+1 − αkqk
Solve Pw̃k+1 = vk+1

Compute βk+1 = 〈vk+1, w̃k+1〉1/2
Set qj+1 = vk+1/βk+1 and wk+1 = w̃k+1/βk+1

end for

Algorithm 2.7: Preconditioned Lanczos (Modified Gram-Schmidt)

The preconditioned minres method is a very popular method when

solving symmetric but indefinite systems such as the saddle point problem
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(1.14). A typical preconditioner in that case is given by

P =

 A0 0

0 S0


where A0 is a preconditioner for the (1, 1) block of the saddle point system

(1.14) and S0 a Schur-complement preconditioner (see [114,104] for details).

Note that A0 and S0 have to be positive definite in order for minres to be

applicable. We will revisit this preconditioner in Chapter 6.

Again, an inner product defined by H as used in Section 1.2 about the

Faber-Manteuffel theorem can also be used in minres. We call this method

H-minres and briefly discuss its properties here. We assume that the

preconditioned matrix Â is symmetric in the inner product induced by H.

Hence, we can use an H-Lanczos version of the classical Lanczos method (Al-

gorithm 1.3) to generate a basis for the Krylov subspace and then minimize

the H-norm of the preconditioned residual. Using the H-Lanczos method we

get

‖rk‖H = ‖b− Axk‖H

= ‖b− Ax0 − AVkyk‖H

= ‖r0 − Vk+1Tk+1yk‖H

=
∥∥Vk+1(V T

k+1Hr0 − Tk+1yk)
∥∥
H

=
∥∥V T

k+1Hr0 − Tk+1yk
∥∥
H

= ‖‖r0‖H e1 − Tk+1yk‖H .

(2.8)

Based on (2.8), a H-minres process which minimizes the H-norm of the

preconditioned residual (2.8) can be implemented in complete analogy to the

standard minres method given in Algorithm 2.6.
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2.2 Non-symmetric solvers

Due to the effectiveness of solvers such as minres and cg obtaining sym-

metric matrices from models and applications is desirable. Unfortunately,

there are many problems where it is not possible to obtain a symmetric rep-

resentation of the mathematical problem apart from the normal equations.

For these cases, non-symmetric solvers have to be introduced. In this Chap-

ter, we only scratch the surface of methods available and point the interested

reader to [96,56,24,76,86] for a more detailed description or a larger variety

of solvers.

2.2.1 GMRES (Generalized Minimal Residual Method)

The most popular non-symmetric solver is probably the generalized minimal

residual method (gmres) which was introduced by Saad and Schultz in [97].

It is based on the Arnoldi matrix relation

AVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk+1,k,

which we introduced in (1.7). Again, using the space condition

xk = x0 + Vkzk

the vector zk is computed such that the 2-norm of the current residual rk =

b − Axk is minimized. As mentioned earlier, minres represents a special

case of gmres in the same way the symmetric Lanczos process is a special

case of the Arnoldi algorithm (see Section 1.2). In more detail, we can use

the space condition and the Arnoldi process to obtain for the residual

‖rk‖2 = ‖r0 − Vk+1Hk+1,kzk‖2 (2.9)
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and with the choice v1 = r0/‖r0‖2 (2.9) becomes

‖rk‖2 = ‖‖r0‖2e1 −Hk+1,kzk‖2. (2.10)

Minimizing equation (2.10) means solving the least squares problem

min ‖rk‖2 = min
zk

‖‖r0‖2e1 −Hk+1,kzk‖2.

In the same fashion as discussed for minres, the least squares problem can

be solved by using an updated QR decomposition that needs one Givens ro-

tation at every step. A very simple implementation of the gmres method

is shown in Algorithm 2.8. A drawback of this method is that the underlying

Arnoldi process is expensive because it performs a full Gram-Schmidt or-

thogonalization process at every step. This entails more evaluations of scalar

products and also more storage requirements. Therefore, restarting tech-

niques have been introduced for gmres (see [97] for details). Convergence

of such restarted methods is, however, not guaranteed (see [25]).

Compute r0 = b−Ax0

Set v1 = r0/‖r0‖
while residual norm > tolerance do

Compute vk+1, Hk+1,k via Arnoldi algorithm
Update QR decomposition
Solve min ‖‖r0‖2e1 −Hk+1,kzk‖2

if Convergence criterion fulfilled then
Compute xk = x0 + Vkwk
stop

end if
end while

Algorithm 2.8: gmres

Again, for most problems, preconditioning the linear system is necessary

and can be incorporated without many difficulties into the algorithm. An

implementation of the preconditioned gmres that needs only one evaluation

of the preconditioner and one multiplication with A can be found in [96]. In
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the context of the Faber-Manteuffel theorem it could be suggested to use the

Arnoldi algorithm with an H-inner product to obtain a gmres version with

a non-standard inner product. At this stage we are not aware of any research

devoted to this particular problem and feel that this is an interesting project

for further research.

2.2.2 qmr and itfqmr

The disadvantage of gmres is that orthogonalization against all the previ-

ous vectors in the Krylov subspace is needed, which means significant storage

requirements for the method when more than just a few iterations are re-

quired. Other alternatives are based on the non-symmetric Lanczos process.

The non-symmetric Lanczos process (cf. [96, 35, 38, 39, 56]) for the pre-

conditioned matrix Â generates two sequences of vectors vk and wk that are

bi-orthogonal, i.e. 〈vi, wj〉 = 0 ∀i 6= j and are generated by

ρk+1vk+1 = Âvk − µkvk − νk−1vk−1 (2.11)

for the first sequence and

ζk+1wk+1 = ÂTwk − µkwk − νk−1ρk

ζk
wk−1 (2.12)

for the second sequence with µk = wTk Âvk/wTk vk and νk = ζkw
T
k vk/w

T
k−1vk−1.

There is more than one way to scale the two vectors in every iteration step

and hence how to determine ζk and ρk. Note that the method is introduced

for the preconditioned matrix Â.

Here, we use ‖vj‖ = 1 and ‖wj‖ = 1. The biorthogonality condition

between Wk and Vk, i.e. W T
k Vk = Dk, gives

Dk = diag(δ1, δ2, . . . , δk) where δj = 〈wj, vj〉. (2.13)

Note that Dk = I can also be chosen but then ‖vj‖ = 1 6= ‖wj‖ 6= 1.
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Furthermore, we can now write the recursions in terms of matrices and get

ÂVk = Vk+1Tk+1,k

ÂTWk = Wk+1Γ−1
k+1Tk+1,kΓk+1

(2.14)

where Γk = diag(1, γ2, . . . , γk). One advantage of the non-symmetric Lanczos

process is that Tk+1,k is a tridiagonal matrix

Tk,k =



µ1 ν2

ρ2 µ2
. . .

. . . . . . νk

ρk µk


,

which is typically non-symmetric.

There are different cases where the non-symmetric Lanczos process can

break down. The first case is the so-called lucky breakdown, that is, when

vj and/or wj are zero. This indicates that the solution lies already in the

current Krylov space. In the case of 〈wj, vj〉 = 0 and neither vj nor wj

are zero the so-called serious breakdown occurs. In these cases it might be

possible to recover by increasing the number of vectors used to generate

new Lanczos vectors. This gives the so-called look-ahead strategies where

the next Lanczos vectors are computed without needing the existence of the

current ones (see [89, 36] for more details). The drawback of this approach

is that additional cost are imposed on the algorithm. There are also cases

where the look-ahead strategies will not be of any use since no solution can

be obtained, the so-called incurable breakdowns.

One method using the non-symmetric Lanczos process is the quasi mini-

mal residual (qmr) algorithm. It was developed by Freund and Nachtigal in

1991 (cf. [37]). The method can be derived in a very similar way to gmres
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by starting with the space condition

xk = x0 + Vkyk.

Then, the residual can be expressed as

rk = b− Âxk

= b− Â(x0 + Vkyk)

= r0 − ÂVkyk

= r0 − Vk+1Tk+1,kyk

= Vk+1(‖r0‖2e1 − Tk+1,kyk).

(2.15)

In the case of an orthonormal Vk+1, we obtain gmres. In the case of a

non-orthogonal matrix Vk+1, such as that generated by the non-symmetric

Lanczos method, the idea of ignoring the Vk+1-part of (2.15) and solving the

least squares problem

min ‖‖r0‖2e1 − Tk+1,kyk‖2 (2.16)

seems reasonable. Here, rQk = ‖r0‖e1 − Tk+1,kyk is called the quasi-residual.

If furthermore the columns of Vk+1 are normalized we get that ‖Vk+1‖2 ≤√
k + 1 (see [56]). From [80] we also get that when no weights are used in

the non-symmetric Lanczos process the relation

∥∥∥rQk ∥∥∥
2
≤ κ(Vk+1) ‖rk‖2

holds, where κ(Vk+1) is the condition number of Vk+1. This shows that the

for a reasonable basis the qmr residual rQk is not too far away from the

gmres residual. It is easy to see that the residual for the solution with

qmr can never be smaller than the residual coming from gmres. On the

other hand, qmr is much cheaper since it uses less storage and also fewer

Martin Stoll 47



2.2. NON-SYMMETRIC SOLVERS

evaluation of inner products. The solution of the least squares problem (2.16)

can be obtained in the same way as presented for minres, i.e. an updated

QR decomposition can be computed using only one Givens rotation. An

implementation of the qmr method is given in [37] and also in [96].

In [35, 34, 39] a simplified version of qmr based on a simplification of

the non-symmetric Lanczos process is introduced. The resulting method is

called ideal transpose-free qmr (itfqmr) or simplified qmr. The basis

for the simplification of the Lanczos process is when Â is self-adjoint in the

bilinear form defined by H, i.e. where

ÂTH = HÂ.

In [38] Freund and Nachtigal observe that for the Lanczos vectors the relation

vj = φj(Â)v1 and wj = γjφj(ÂT )w1 (2.17)

holds where φ is the so-called Lanczos polynomial which is of a polynomial

of degree j − 1. Using Equation (2.17) and setting w1 = Hv1, we get

wj = γjφj(ÂT )w1 = γjφj(ÂT )Hv1 = γjHφj(Â)v1 = γjHvj,

by repeatedly using ÂTH = HÂ to shift the matrix H from one side of

the polynomial to the other. Hence, we can compute the vector wj without

multiplying by ÂT . Instead,

wj+1 = γj+1Hvj+1 (2.18)

can be used. The parameter γj+1 = γjρj+1/ζj+1 involves ζj+1 which cannot

be computed at that time. Thus the relation (2.18) has to be reformulated

to

w̃j+1 = ζj+1wj+1 = γjρj+1Hvj+1 = γjHṽj+1
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which gives us now a computable version of the simplified Lanczos method

(see Algorithm 2.9).

Choose v1 and compute w1 = Hv1

Compute ρ1 = ‖v1‖ and ζ1 = ‖w1‖
Set γ1 = ρ1

ζ1
for k = 1, 2, . . . do

Compute µk = (wTk Âvk)/(wTk vk)
Set νk = ζk(w

T
k vk)/(w

T
k−1vk−1)

vk+1 = Avk − µkvk − νkvk−1

wk+1 = γkHvk+1

Compute ρk+1 = ‖vk+1‖ and ζk+1 = ‖wk+1‖
Set γk+1 = γkρk+1/ζk+1.

end for

Algorithm 2.9: Simplified Lanczos method

Freund’s itfqmr implementation is based on a qmr-from-bicg pro-

cedure and coupled two term recurrence relations (details can be found

in [35, 39]). Another way of implementing itfqmr is to omit multiplica-

tions with ÂT and replace them by multiplications with the matrix H in the

standard qmr implementation. When using qmr and similar methods, we

have to keep in mind that the quantities minimized here, the quasi-residual in

the case of itfqmr, are not as well understood as the corresponding quan-

tities used in minres and cg. Furthermore, as a method based on the

non-symmetric Lanczos process itfqmr can break down and look-ahead

strategies have to be employed (see [89,36] for more details). There are also

incurable breakdowns, but from our experience, it is hard to find them in

practical applications. The itfqmr method is based on the simplification

using the self-adjointness in H. There are more methods based on the non-

symmetric Lanczos process that avoid the multiplication with ÂT . One of

the earliest to consider such methods is Sonneveld in [107].

2.2.3 bicg

The bicg algorithm was derived in [31,67] as a non-symmetric version of cg.

It can be derived from the non-symmetric Lanczos process in the same way
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Choose x0 and compute r0 = b− Âx0

Set v1 = r0/ ‖r0‖ and compute w1 = Hv1

for k = 1, 2, . . . do
Perform one step of the simplified Lanczos (Algorithm 2.9)
Update QR decomposition
Update solution
Convergence check

end for

Algorithm 2.10: Non-symmetric Lanczos implementation itfqmr

that cg can be derived from the symmetric Lanczos process (cf. [53]). Let

us assume that no breakdowns occur in the non-symmetric Lanczos process.

If xk is taken to be of the form

xk = x0 + Vkzk

there exist several ways to choose zk. One choice is to force orthogonality be-

tween the residual rk and the sequence associated withAT , i.e. w1, w2, . . . , wk

coming from the non-symmetric Lanczos process. In more detail, this results

in

W T
k rk = W T

k r0 −W T
k AVkzk = 0. (2.19)

Using the non-symmetric Lanczos process given in (2.14), the biorthogonality

of the two generated sequences and the fact that W T
k r0 = δ1 ‖r0‖ e1 since we

set v1 = r0/ ‖r0‖, (2.19) becomes

Tk,kzk = ‖r0‖ e1. (2.20)

In the case of A being symmetric this would reduce to the cg algorithm (see

Section 2.1.1 or [59,56]). For non-symmetric A, an algorithm that calculates

zk in order to satisfy (2.20) is bicg (biconjugate gradient algorithm). Algo-

rithm 2.11 shows an implementation of bicg. In addition to the residual for

the forward problem rk, bicg also uses the adjoint residual sk = g −ATyk.
Whenever the relation HÂT = HÂ holds with Â = P−1A, the simpli-
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fication of the non-symmetric Lanczos process that was used for qmr can

also be used for bicg. Since the H-symmetric version of bicg will not be

discussed in this thesis, we refer the interested reader to [95].

for k = 0, 1, . . . do
αk = 〈sk,rk〉

〈qk,Apk〉
xk+1 = xk + αkpk
yk+1 = yk + αkqk
rk+1 = rk − αkApk
sk+1 = sk − αkAT qk
βk+1 = 〈sk+1,rk+1〉

〈sk,rk〉
pk+1 = rk+1 + βk+1pk
qk+1 = sk+1 + βk+1qk

end for

Algorithm 2.11: Biconjugate Gradient Method (bicg)
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CHAPTER 3

COMBINATION PRECONDITIONING

In Section 1.2, we discussed that the ability to solve linear systems with short-

term recurrence methods is desirable. In the case of the saddle point problem

(1.14), we can always apply minres since this matrix is symmetric and

indefinite but as we pointed out earlier it might be necessary to precondition

the linear system (1.1). Some very effective preconditioners might destroy the

(symmetric) structure of the original matrix and hence it is no longer possible

to apply a short-term recurrence method. But whenever an inner product

can be found in which the matrix is symmetric, we can applyH-minres and

if it is also positive definite, we can apply cg with this inner product. In this

chapter, we discuss preconditioners of this type when used for saddle point

problems and introduce a technique proposed by Stoll and Wathen in [109].

We give a careful analysis of the self-adjointness relations and then present

the technique that allows the combination of different preconditioners and

inner products; hence the name combination preconditioning.

3.1 Basic properties

We start by reviewing some of the basic mathematics. We consider here only

real Euclidean vector spaces; we see no reason that our theory should not
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apply in the complex case or indeed for other vector spaces, but we have not

tried to do so.

We say that

〈·, ·〉 : Rn × Rn → R (3.1)

is a symmetric bilinear form if

• 〈w, y〉 = 〈y, w〉 for all w, y ∈ Rn

• 〈αw + y, z〉 = α〈w, z〉+ 〈y, z〉 for all w, y, z ∈ Rn and all α ∈ R.

With the addition of a non-degeneracy condition, i.e. 〈x, y〉H = 0∀y ⇒ x = 0,

Gohberg et al. (cf. [44]) use the term ‘indefinite inner product’; general

properties of such forms can also be found here.

If additionally, the positivity conditions

〈w,w〉 > 0 for w 6= 0 with 〈w,w〉 = 0 if and only if w = 0

are satisfied, then (3.1) defines an inner product on Rn as mentioned in the

Introduction and Chapter 2.

For any real symmetric matrix, H, 〈·, ·〉H defined by

〈w, y〉H := wTHy (3.2)

is easily seen to be a symmetric bilinear form which is an inner product if

and only if H is positive definite.

A matrix A ∈ Rn×n is self-adjoint in 〈·, ·〉 if and only if

〈Aw, y〉 = 〈w,Ay〉 for all w, y.

Self-adjointness of the matrix A in 〈·, ·〉H thus means that

wTATHy = 〈Aw, y〉H = 〈w,Ay〉H = wTHAy
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for all w, y so that

ATH = HA

is the basic relation for self-adjointness of A in 〈·, ·〉H as already mentioned

in (1.9). Remember, this relation was needed when we introduced iterative

solvers in Chapter 2.

Furthermore, we want to describe basic properties of bilinear forms and

non-standard inner products. This can also be viewed in terms of real sym-

metric matrices since Equation 1.9 states that ATH is a real symmetric ma-

trix. Here, we prefer the language of inner products since we feel it indicates

more of the mathematical structure which leads to the development of new

methods based on non-standard inner products.

We emphasize that 〈·, ·〉, 〈·, ·〉H must be symmetric bilinear forms here,

but we do not require them to be inner products for the theory presented in

this section. For practical reasons, we will consider positivity/non-positivity

of symmetric bilinear forms and positive definiteness/indefiniteness of self-

adjoint matrices separately from our considerations of symmetry and self-

adjointness. Whenever we write 〈·, ·〉H, H will be symmetric.

Lemma 3.1. If A1 and A2 are self-adjoint in 〈·, ·〉H then for any α, β ∈ R,

αA1 + βA2 is self-adjoint in 〈·, ·〉H.

Proof. Using the self-adjointness of A1 and A2 we get that

〈(αA1 + βA2)x, x〉h = α〈A1x, x〉H + β〈A2x, x〉h

= α〈x,A1x〉H + β〈x,A2x〉h

= 〈x, (αA1 + βA2)x〉h.

Also

Lemma 3.2. If A is self-adjoint in 〈·, ·〉H1 and in 〈·, ·〉H2 then A is self-

adjoint in 〈·, ·〉αH1+βH2 for every α, β ∈ R.
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Proof. Using the definition of 〈., .〉H1 and 〈., .〉H1 as well as the self-adjointness

of A in these two bilinear forms we get

〈Ax, x〉αH1+βH2 = 〈αH1A+ βH2Ax, x〉

= α〈H1Ax, x〉+ β〈H2Ax, x〉

= α〈x,Ax〉H1 + β〈x,Ax〉H2

= α〈H1x,Ax〉+ β〈H2x,Ax〉

= 〈αH1x+ βH2x,Ax〉

= 〈x,Ax〉αH1+βH2

Now if A is preconditioned on the left by P , then from (1.9), Â = P−1A
is self-adjoint in 〈·, ·〉H if and only if

(P−1A)TH = HP−1A (3.3)

which is

ATP−TH = HP−1A

or

AT (P−TH) = (P−TH)TA

since H is symmetric. Thus if A is also symmetric we get

(P−TH)TA = A(P−TH) (3.4)

and so

Lemma 3.3. For symmetric A, Â = P−1A is self-adjoint in 〈·, ·〉H if and

only if P−TH is self-adjoint in 〈·, ·〉A.

Proof. Follows directly from the above and (1.9).
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Remark 3.4. Lemma 3.3 includes the even more simple situations that

P−1A is self-adjoint in 〈·, ·〉P and AP−1 is self-adjoint in 〈·, ·〉A−1 when both

A and P are symmetric since I is trivially self-adjoint in any symmetric bi-

linear form. Clearly invertibility of P and A respectively are needed in these

two cases.

Now for symmetric A, if P1 and P2 are such that P−1
i A is self-adjoint in

〈·, ·〉Hi
, i = 1, 2 for symmetric matrices H1, H2, then

(P−1
1 A)TH1 = H1(P−1

1 A) and (P−1
2 A)TH2 = H2(P−1

2 A). (3.5)

Using Lemma 3.3, P−Ti Hi is self-adjoint in 〈·, ·〉A for i = 1, 2 and thus by

Lemma 3.1

αP−T1 H1 + βP−T2 H2

is also self-adjoint in 〈·, ·〉A for any α, β ∈ R. Now, if for some α, β we are able

to decompose the matrix (αP−T1 H1+βP−T2 H2) = P−T3 H3 for some symmetric

matrix H3, then P−T3 H3 is self-adjoint in 〈·, ·〉A and a further application of

Lemma 3.3 yields that P−1
3 A is self-adjoint in 〈·, ·〉H3 . We have proved

Theorem 3.5. If P1 and P2 are left preconditioners for the symmetric matrix

A for which symmetric matrices H1 and H2 exist with P−1
1 A self-adjoint in

〈·, ·〉H1 and P−1
2 A self-adjoint in 〈·, ·〉H2 and if

αP−T1 H1 + βP−T2 H2 = P−T3 H3

for some matrix P3 and some symmetric matrix H3 then P−1
3 A is self-adjoint

in 〈·, ·〉H3.

We want to emphasize that Theorem 3.5 shows a possible way to generate

new preconditioners for A. In Section 3.5 we show practical examples of its

use.

The construction of P3, H3 in Theorem 3.5 also allows straightforward

inheritance of positive definiteness — for this to be a useful property it is
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essential that 〈·, ·〉H defines an inner product, i.e. that H is positive defi-

nite. It is trivial to construct examples of indefinite diagonal matrices A and

H for which 〈Aw,w〉H > 0 for all non-zero w, but in order to be able to

take advantage of positive definiteness, for example by employing Conjugate

Gradients, it is important that 〈w,w〉H = wTHw > 0 for all non-zero w.

Lemma 3.6. If the conditions of Theorem 3.5 are satisfied and additionally

if P−1
i A is positive definite in 〈·, ·〉Hi

, i = 1, 2 then P−1
3 A is positive definite

in 〈·, ·〉H3 at least for positive values of α and β.

Proof. Positive definiteness of P−1A in 〈·, ·〉H means that

〈P−1Aw,w〉H > 0, for w 6= 0

i.e. that wTAP−THw > 0 so that AP−TH is a symmetric matrix with

all eigenvalues positive. Thus AP−T1 H1 and AP−T2 H2 are symmetric and

positive definite and it follows that

αAP−T1 H1 + βAP−T2 H2 = AP−T3 H3

must also be symmetric and positive definite at least for positive values of α

and β.

We note that there will in general be some negative values of α or β for

which P−1
3 A remains positive definite, but at least one of α and β needs to be

positive in this case. The precise limits on the values that α and β can take

whilst positive definiteness is preserved depend on the extreme eigenvalues

of AP−T1 H1 and AP−T2 H2. Unfortunately, even if H1 and H2 are positive

definite, there is no guarantee that H3 will be also.

We can also consider right preconditioning: if Â = AP−1 is self-adjoint

in 〈·, ·〉H then

(AP−1)TH = H(AP−1)
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or equivalently

P−TATH = HAP−1 which is (P−1)T (ATH) = (ATH)TP−1. (3.6)

Thus

Lemma 3.7. If the right preconditioner P is symmetric and Â = AP−1 is

self-adjoint in 〈·, ·〉H for some symmetric matrix H, then ATH is self-adjoint

in 〈·, ·〉P−1.

Lemma 3.7 shows that we could combine problem matrices and symmetric

bilinear forms for the same preconditioner. This is obviously more a theoret-

ical than a practical result compared to obtaining new preconditioners for a

given problem as in the case of left preconditioning above.

One of the decompositions as P−T3 H3 introduced in Section 3.5 will pro-

vide not only a symmetric inner product matrix but also a symmetric pre-

conditioner and therefore fulfills the conditions of Lemma 3.7.

We now want to discuss very briefly the eigenvalues of matrices which

are self-adjoint according to our definition which allows indefinite symmetric

bilinear forms. Assume that ATH = HA holds and that (λ, v) is a given

eigenpair of A. Thus,

Av = λv, v 6= 0. (3.7)

Multiplying (3.7) from the left by v∗H where v∗ is the conjugate transpose

of v gives

v∗HAv = λv∗Hv. (3.8)

Notice that the left hand side of (3.8) is real since HA is real symmetric. On

the right-hand side, v∗Hv is also real since H is real symmetric; therefore

the eigenvalue must be real unless v∗Hv = 0. A matrix H always exists such

that ATH = HA since any matrix is similar to its transpose (see for example

Section 3.2.3 in [62]). The interesting case when v∗Hv = 0 is discussed in [12].

Note that the above arguments establish that there is no inner product

in which A is self-adjoint unless A has real eigenvalues.
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It is also known that for a real diagonalizable matrix A which has only

real eigenvalues, inner products always exist in which A is self-adjoint.

Lemma 3.8. If A = R−1ΛR is a diagonalization of A with the diagonal

matrix Λ of eigenvalues being real, then A is self-adjoint in 〈·, ·〉RT ΘR for any

real diagonal matrix Θ.

Proof. The conditions (1.9) for self-adjointness of A in 〈·, ·〉H are

RTΛR−TH = HR−1ΛR

which are clearly satisfied for H = RTΘR whenever Θ is diagonal because

then Θ and Λ commute. Clearly H is positive definite whenever the diagonal

entries of Θ are positive.

This result is not of great use in practice since knowledge of the complete

eigensystem of A is somewhat prohibitive.

3.2 An example and implementation details

In 1988, Bramble and Pasciak [10] introduced a block triangular precondi-

tioner for the discrete Stokes problem (1.14), i.e.

A =

 A BT

B −C


where we assume for the remainder of this chapter that A ∈ Rn,n is symmetric

and positive definite, B has full rank and C ∈ Rm,m is symmetric and positive

semi-definite. This had the almost-magical effect of turning the original

indefinite symmetric matrix problem into a non-symmetric matrix which is

both self-adjoint and, in certain practical circumstances, positive definite in

a non-standard inner product; thus the conjugate gradient method could be

Martin Stoll 59



3.2. AN EXAMPLE AND IMPLEMENTATION DETAILS

used in the non-standard inner product. To be precise, the symmetric saddle

point problem (1.14) if preconditioned on the left by

P =

 A0 0

B −I

 with P−1 =

 A−1
0 0

BA−1
0 −I

 (3.9)

results in the non-symmetric matrix

Â = P−1A =

 A−1
0 A A−1

0 BT

BA−1
0 A−B BA−1

0 BT + C

 (3.10)

which turns out to be self-adjoint in the symmetric bilinear form defined by

H =

 A− A0 0

0 I

 . (3.11)

If the block A−A0 is positive definite, H obviously defines an inner product

and we write A − A0 > 0 or A > A0. This means that the eigenvalues of

A−A0 are all positive. The positivity can be achieved by scaling the matrix

A0 appropriately. In more detail by computing the minimal eigenvalue of the

matrix A−1
0 A or an estimate to it, the matrix A0 can be scaled in order to

guarantee the definiteness of A − A0. We will now show that under certain

conditions on the preconditioner Â is positive definite in the inner product

defined by H, i.e. 〈Âw,w〉H > 0 for all w 6= 0.

First, by using the definition of the inner product induced byH we notice,

that the condition 〈Âw,w〉H > 0 is equivalent to 〈HÂw,w〉 > 0, which tells

us that the matrix HÂ has to be positive definite. To show that HÂ is

positive definite, we introduce a splitting of HÂ also used by Klawonn in [65]
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where the matrix

HÂ =

 AA−1
0 A− A AA−1

0 BT −BT

BA−1
0 A−B BA−1

0 BT + C

 = ÂTH (3.12)

can be factorized as I 0

BA−1 I


 AA−1

0 A− A 0

0 BA−1BT + C


 I A−1BT

0 I

 (3.13)

which is a congruence transformation. Now using Sylvester’s law of inertia

[53] we know that the number of positive, negative and zero eigenvalues is

determined by the eigenvalues of the diagonal blocks of

 AA−1
0 A− A 0

0 BA−1BT + C

 .
The Schur complement block BA−1BT+C is obviously positive definite under

the assumptions made earlier that A is positive definite and C positive semi-

definite. The block AA−1
0 A− A can be rewritten as

A(A−1
0 − A−1)A

which will be positive definite if A−1
0 −A−1 is positive definite or equivalently

yTA0y < yTAy. (3.14)

Note, the condition (3.14) is precisely that required for H to be positive

definite in this case, which is needed if methods such as cg or H-minres
should be applied. Since both BA−1BT + C and AA−1

0 A − A are positive
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definite, Sylvester’s Law of inertia applied to (3.13) guarantees that HÂ is

positive definite, i.e. that Â is self-adjoint and positive definite in 〈·, ·〉H .
Hence, the applicability of cg is guaranteed. If one is not willing to pay

the price of the (sometimes) costly eigenvalue analysis to guarantee the def-

initeness of H, it is always possible to employ itfqmr, which only needs

the self-adjointness in the bilinear form or inner product H. This is also

recommended in [105].

In Section 2.1.1, we introduced the cg method with non-standard inner

product (see Algorithm 2.5). Here, we want to show that the Bramble-

Pasciak cg can also be viewed as the Preconditioned Conjugate Gradient

method (pcg) [56,24] applied to the matrix HP−1A. In more detail, solving

system (1.14) is equivalent to solving the system

HP−1Ax = HP−1b. (3.15)

The sequence of approximations {xk} generated by the Bramble-Pasciak cg
method satisfies xk ∈ span

{
P−1Ar0, . . . , (P−1A)k−1r0

}
. This again empha-

sizes the fact that P needs to be chosen to cluster the eigenvalues of P−1A
since the inner product H does not effect the Krylov subspace. Applying

the (unpreconditioned) conjugate gradient method to solve the linear sys-

tem with HP−1A will result in xk ∈ span
{
HP−1Ar0, . . . , (HP−1A)k−1r0

}
.

Thus, the Krylov subspaces will be different and a different sequence of iter-

ates will be formed. Suppose we apply the preconditioned cg method with

a symmetric and positive definite preconditioner L to solve (3.15). Using

the classical pcg implementation given in [56,24] we obtain Algorithm 3.1.

Obviously, both algorithms are identical when L = H.

We now want to examine whether we should work with Algorithm 2.5 and

hence with the matrix P−1H or Algorithm 3.1 and hence with the matrix

HP−1A for computational purposes. The preconditioner P was constructed

to alter the spectrum of the preconditioned matrix A such that good conver-

gence can be achieved for Â. On the other hand, if we premultiply Â by H, a

further convergence enhancement cannot necessarily be expected. Moreover,
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Given x0 = 0, set z0 = L−1HP−1 (b−Ax0) and p0 = z0

for k = 0, 1, . . . do
α = 〈zk,Lzk〉

〈pk,HP−1Apk〉
xk+1 = xk + αpk
zk+1 = zk − αL−1HP−1Apk
β = 〈zk+1,Lzk+1〉

〈zk,Lzk〉
pk+1 = zk+1 + βpk

end for

Algorithm 3.1: pcg for solving HP−1Ax = HP−1b with preconditioner L

we expect the convergence with HÂ to be poorer since the premultiplica-

tion by H will destroy the eigenvalue structure achieved by applying the

preconditioner P .

An alternative would be to useH as a preconditioner forHÂ, as explained

above, which would result in the eigenstructure of the preconditioned matrix

Â. In Figure 3.1, we plot the convergence history of the Bramble-Pasciak cg
for (1.14) and the classical pcg without preconditioning and with precondi-

tioning for (3.15) when applied to a Stokes problem of dimension 59 that was

generated by ifiss [23]. Note that the matrix HP−1A is explicitly formed

for the small example used here. This is prohibitive for practical setups.

As predicted, the unpreconditioned cg method for HP−1A is outper-

formed by the Bramble-Pasciak cg method. When the preconditioner L =

H is used within pcg, the convergence curves are almost identical: the slight

deviation in Figure 3.1 between the two dashed lines is due to round-off error.

Another issue that arises when implementing the Bramble-Pasciak cg
method is whether multigrid preconditioners can be used. These precondi-

tioners are never explicitly available, which means that we are only equipped

with a function that represents the multiplication with the inverse. Precon-

ditioners of this type are very often used in practice, e.g. when solving the

Stokes problem (1.13). The action of multiplying with the inner product

matrix H can still be implemented for that case and we will explain this pro-

cedure now in some detail. This is already mentioned in the original work

by Bramble and Pasciak [10].
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Figure 3.1: cg for HÂ and the Bramble-Pasciak cg for a Stokes problem
generated with ifiss [23] of dimension 59.

Let us assume that the preconditioner A0 is not explicitly given and only

the action of A−1
0 is available as a procedure. To compute the pareme-

ters α and β in Algorithm 2.4, inner products with H have to be eval-

uated. In more detail, evaluating 〈P−1Ark+1, pk〉H reduces to expressing

HP−1Ark+1 in full expanded form without using A0. Hence, by introducing

Ark+1 =
[
(r̂

(1)
k+1)T (r̂

(2)
k+1)T

]T
, where the blockdimensions of r̂k+1 correspond
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to the blockdimensions of the saddle point matrix (1.14), we get

HP−1Ark+1 =

 A− A0 0

0 I


 A−1

0 r̂
(1)
k+1

BA−1
0 r̂

(1)
k+1 − r̂

(2)
k+1



=

 AA−1
0 r̂

(1)
k+1 − r̂

(1)
k+1

BA−1
0 r̂

(1)
k+1 − r̂

(2)
k+1

 .
Note that for the last expression there is no need for the matrix A0; only

the application of its inverse A−1
0 is used. The same can be done whenever

〈P−1Apk, pk〉H has to be evaluated. Note that Apk does not need to be

evaluated explicitly since the relation Apk = Ark + βApk−1 holds. The

evaluation of 〈rk, pk〉H can be similarly simplified by exploiting rk = P−1r̃k

where r̃k is the unpreconditioned residual. Finally, using the factorization

r̃k =
[
(r̃

(1)
k+1)T (r̃

(2)
k+1)T

]T
, which is again split according to the dimensions of

the saddle point matrix, we obtain

HP−1r̃k =

 A− A0 0

0 I


 A−1

0 r̃
(1)
k

BA−1
0 r̃

(1)
k − r̃

(2)
k

 =

 AA−1
0 r̃

(1)
k+1 − r̃

(1)
k

BA−1
0 r̃

(1)
k+1 − r̃

(2)
k

 .
This shows that multigrid preconditioners can be used very efficiently within

the Bramble-Pasciak cg.

3.3 More Saddle point examples

The first example was given by Bramble and Pasciak, and a straightforward

extension of this method can be made by introducing a Schur-complement

type preconditioner S0, i.e. S0 approximates the Schur-complement C +

BA−1BT . This was done in [78, 65, 105]. The result of putting a Schur

Martin Stoll 65



3.3. MORE SADDLE POINT EXAMPLES

complement preconditioner S0 into P is given by

P =

 A0 0

B −S0

 and P−1 =

 A−1
0 0

S−1
0 BA−1

0 −S−1
0

 ; (3.16)

under certain conditions positive definiteness of the preconditioned saddle-

point system can still be guaranteed in a non-standard inner product similar

to (3.11), i.e.

H =

 A− A0 0

0 S0

 . (3.17)

With this setup, we look at the matrix

HÂ =

 AA−1
0 A− A AA−1

0 BT −BT

BA−1
0 A−B BA−1

0 BT + C

 ,
which is symmetric and under certain conditions positive definite. Note that

this is the same matrix as the one obtained for the Bramble-Pasciak case

where no Schur complement preconditioner was used (cf. (3.12)). There-

fore, the conditions imposed on A0 are the same and we only need the pos-

itivity of S0 to guarantee that H defines an inner product. Note that the

Bramble-Pasciak method with Schur-complement preconditioner can still be

used when S0 is not explicitly given. We only show this for the inner product

〈P−1Ark+1, pk〉H. As seen before, we have to evaluate HP−1Ark+1 without
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using A0, which by introducing Ark+1 =
[
(r̂

(1)
k+1)T (r̂

(2)
k+1)T

]T
gives

HP−1Ark+1 =

 A− A0 0

0 S0


 A−1

0 r̂
(1)
k+1

S−1
0 (BA−1

0 r̂
(1)
k+1 − r̂

(2)
k+1)



=

 AA−1
0 r̂

(1)
k+1 − r̂

(1)
k+1

BA−1
0 r̂

(1)
k+1 − r̂

(2)
k+1

 .
Note, there is no need for the Schur-complement preconditioner S0 at all.

In an analogous way, we can analyze 〈P−1Apk, pk〉H. Finally, by using the

unpreconditioned residual, it can be shown that the Schur-complement pre-

conditioner is not used for the evaluation of the inner product 〈rk, pk〉H.

A similar form to (3.17) was provided by Zulehner in 2002 (see [117]).

Zulehner considered a preconditioner of the form (3.16) for an inexact Uzawa

method which under certain conditions can admit the usability of a cg accel-

eration (see [76] for the connection of cg and the inexact Uzawa algorithm

as a Richardson iteration method).

In 2006 Benzi and Simoncini gave a further example for the system (1.14)

with C = 0 (see [7]) which is an extension of earlier work by Fischer et al.

(cf. [30]). Namely,

P = P−1 =

 I 0

0 −I

 (3.18)

and

H =

 A− γI BT

B γI

 . (3.19)

The parameter γ depends on the eigenvalues of the block A and the Schur-

complement BA−1
0 BT .

Recently, Liesen and Parlett made an extension to this result taking a
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non-zero matrix C in (1.14) into account (see [69,70]). In the language used

here, the preconditioner is again

P = P−1 =

 I 0

0 −I

 (3.20)

but the symmetric bilinear form is now defined by

H =

 A− γI BT

B γI − C

 . (3.21)

There are certain conditions which must be satisfied by the parameter

γ in order to guarantee positive definiteness of H so that cg in the inner

product 〈·, ·〉H can be reliably employed (see [7], [69, 70]).

Liesen and Parlett also show in [70] that the matrix Â = P−1A is self-

adjoint in every bilinear form of the type Hp(Â) where H = P and p(Â)

is any real polynomial in Â. The proof is based on a technique introduced

by Freund (cf. [33]) where the matrix H can be shifted from one side of the

polynomial p(A) to the other side by successively using ÂTH = HÂ, see

also Section 2.2.2. Trivially, this observation holds for any real symmetric H
whenever the condition ÂTH = HÂ is satisfied and not just for the matrix

H = P . Through the choice of the polynomial p the approach presented by

Liesen and Parlett provides a whole set of interesting bilinear forms that may

give useful examples.

Another example was given in Zulehner [117] in the context of inexact

Uzawa methods and in [102] by Schöberl and Zulehner where the saddle point

problem with C = 0 is preconditioned by

P =

 A0 BT

B BA−1
0 BT − Ŝ
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with A0 and Ŝ being symmetric and positive definite. A preconditioner of

this form is typically called constraint preconditioner [64] due to the presence

of the blocks B and BT in the preconditioner, which represent the constrains

in problems coming from optimization. Then the preconditioned matrix is

self-adjoint in the bilinear form defined by

H =

 A0 − A 0

0 BA−1
0 BT − Ŝ

 .
The definiteness of H as well as the definiteness of Â in the bilinear form

defined by H depends again on the eigenvalues of the block A and the eigen-

values of the Schur-complement BA−1
0 BT .

Another example using a constraint preconditioner was given by Dohrmann

and Lehoucq in [17]. They consider the general saddle point problem given

in (1.14) with the constraint preconditioner

P =

 ŜA BT

B Ĉ


where ŜA is an approximation to a penalized primal Schur complement SA =

A+BT Ĉ−1B and Ĉ is symmetric and positive definite. The bilinear form in

which the preconditioned matrix is self-adjoint in this case is given by

H =

 SA − ŜA 0

0 Ĉ − C

 .
Again, the obvious conditions are SA > ŜA and Ĉ − C > 0 for H to define

an inner product.

In this section we presented a number of examples where the precondi-

tioned saddle point matrix Â is self-adjoint in a non-standard inner product.
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Hence, these examples represent potential candidates for combination pre-

conditioning and we will show results in Section 3.5.

3.4 A modified Bramble-Pasciak preconditioner

The original Bramble-Pasciak cg method requires that the matrix

H =

 A− A0 0

0 I


is positive definite. The obvious drawback of this method is the necessity

to scale the matrix A0 such that A − A0 is positive definite. Usually an

eigenvalue problem for A−1
0 A, or at least an eigenvalue estimation problem

has to be solved which can be costly (see [108] for a survey of methods that

could be applied).

By contrast, we introduce the Bramble-Pasciak+ preconditioner

P+ =

 A0 0

−B S0

 and
(
P+
)−1

=

 A−1
0 0

S−1
0 BA−1

0 S−1
0

 (3.22)

and obtain by left preconditioning with P+

Â =
(
P+
)−1A =

 A−1
0 A A−1

0 BT

S−1
0 BA−1

0 A+ S−1
0 B S−1

0 BA−1
0 BT − S−1

0 C

 . (3.23)

Simple algebra shows that Â is self-adjoint in the inner product induced by

H+ =

 A+ A0 0

0 S0

 (3.24)
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where S0 is a symmetric and positive definite Schur-complement precondi-

tioner. An inner product of similar form to (3.24) was used by Zulehner

in [117] in the analysis of inexact Uzawa methods. Note that for a positive

definite preconditioner A0, the matrix H+ is always positive definite due to

the positive definiteness of the matrices A, A0 and S0. Thus, we are always

equipped in this case with an inner product and not just a symmetric bilin-

ear form whatever symmetric and positive definite A0 is chosen, and so the

appropriate Krylov subspace method can be used in this inner product.

The definiteness of H and the preconditioned matrix in the new inner

product has to be shown for the new preconditioner P+ in order to use cg.

Using the approach presented in Section 3.2, we find a splitting of

ÂTH+ =

 AA−1
0 A+ A AA−1

0 BT +BT

BA−1
0 A+B BA−1

0 BT − C

 (3.25)

as  I 0

BA−1 I


 AA−1

0 A+ A 0

0 −BA−1BT − C


 I A−1BT

0 I

 . (3.26)

By Sylvester’s law of inertia this shows that ÂTH+ is indefinite since−BA−1BT−
C is always negative definite and AA−1

0 A+A is positive definite. Therefore,

the reliable applicability of the cg method cannot be guaranteed.

We want to mention that the Bramble-Pasciak+ preconditioner can also

be interpreted as the classical Bramble-Pasciak preconditioner applied to

the matrix JA where J = diag(In,−Im) with Ij the identity of dimension

j = m,n.

Different methods can be employed for solving the P+-preconditioned

system. Since H+ defines an inner product, the H-minres method given

in Section 2.1.2 should be used. As was shown in (3.26), cg with H-inner

product cannot be reliably used, but applying Algorithm 2.5 quite often gives
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good results. For the applicability of itfqmr not even the definiteness of

H+ is needed (see Algorithm 2.10).

For a better understanding of the convergence behavior when using the

P+ preconditioner, we analyze the eigenvalues of (P+)−1A by looking at the

generalized eigenvalue problem Av = λP+v, i.e.

 A BT

B −C


 v1

v2

 = λ

 A0 0

−B S0


 v1

v2

 . (3.27)

From (3.27) we get

Av1 +BTv2 = λA0v1 (3.28)

and

Bv1 − CTv2 = −λBv1 + λS0v2. (3.29)

We first analyze the case where A0 = A and get for λ = 1 from (3.28) that

BTv2 = 0 and therefore v2 = 0 under the condition that Bv1 = 0. Since the

kernel of B is n − m dimensional, we have λ = 1 with multiplicity n − m.

For the case λ 6= 1, (3.28) gives

v1 =
1

λ− 1
A−1BTv2

which we substitute into (3.29) to get

BA−1BTv2 =
λ(λ− 1)

λ+ 1
S0v2 +

λ− 1

λ+ 1
Cv2.

For C = 0 the remaining 2m eigenvalues of the preconditioned matrix Â are

given by the eigenvalues σ of

S−1
0 BA−1BT
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and the relationship

σ =
λ(λ− 1)

λ+ 1
.

Hence, the eigenvalues of Â become

λ1,2 =
1 + σ

2
±
√

(1 + σ)2

4
+ σ. (3.30)

Obviously, σ > 0, and therefore, we have m negative eigenvalues given by

(3.30) and n−m+m = n positive eigenvalues. This shows that there are at

most 2m+1 different eigenvalues, and we expect the method to terminate in

at most 2m + 1 steps in finite precision. A similar analysis for the classical

Bramble-Pasciak can be found in [105].

In contrast, the eigenvalues of the preconditioned saddle point problem

P−1A in the case of P being the block diagonal preconditioner (cf. Section

2.1.2)

P =

 A0 0

0 S0


with A0 = A and C = 0 are given by n −m unit eigenvalues and again the

eigenvalues σ of

S−1
0 BA−1BT

via the relation

σ = λ(λ− 1) with λ1,2 =
1

2
±
√

1

4
+ σ

Since we want S0 to be a good preconditioner for BA−1BT under the assump-

tion that C = 0, we expect the eigenvalues not to differ too much from unit

eigenvalues which would give a similar convergence for the block-diagonal and

the Bramble-Pasciak+ preconditioner. Figure 3.2 illustrates how the eigen-

values of the preconditioned matrix in the case of block-diagonal precondi-

tioning (dashed line) and in the case of Bramble-Pasciak+ preconditioning
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(solid line) depend on the eigenvalues σ of BA−1BT in a region around 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

λ

f(
λ)

 

 

λ(λ−1)/ (λ+1)
λ(λ−1)

Figure 3.2: Eigenvalues of Â as a function of the eigenvalues of S−1
0 BA−1BT

The indefiniteness of (P+)
−1A indicates thatH-minres should be used.

We illustrate the convergence behavior in Chapter 6 by applying the pre-

sented methods to Stokes examples from the ifiss software [23].

Following the analysis presented in [105], we also want to analyze the

case A0 6= A. The resulting bounds will only be of practical use if further

knowledge about the preconditioner can be employed, e.g. eigenvalue in-

formation about A0 and S0 are at hand. We consider the symmetric and

positive-definite block-diagonal preconditioner

P =

 A0 0

0 S0


and the generalized eigenvalue problem Au = λP+u. Using v = P1/2u we

get P−1/2AP−1/2v = λP−1/2P+P−1/2v. This gives rise to a new generalized
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eigenvalue problem Ãv = λP̃v with

Ã ≡

 A
−1/2
0 AA

−1/2
0 A

−1/2
0 BTS

−1/2
0

S
−1/2
0 BA

−1/2
0 −S−1/2

0 CS
−1/2
0

 ≡
 Ã B̃T

B̃ −C̃


and

P̃ ≡

 I 0

−S−1/2
0 BA

−1/2
0 I

 ≡
 I 0

−B̃ I

 .
The eigenvalue problem can hence be reformulated as

Ãv1 + B̃Tv2 = λv1 (3.31)

B̃v1 − C̃v2 = −λB̃v1 + λv2. (3.32)

Assuming now that v2 = 0 yields Ãv1 = λv1 with λ an eigenvalue of the

symmetric positive definite matrix Ã if only (1+λ)B̃v1 = 0. The case v1 = 0

implies that B̃Tv2 = 0, but since B̃T is of full rank v2 = 0 based on the fact

that we assumed B to have full rank. Thus, we assume that v1 6= 0 and

v2 6= 0. If we multiply (3.31) on the left by the conjugate transpose v∗1, we

obtain

v∗1Ãv1 + v∗1B̃
Tv2 = λv∗1v1 =⇒ v∗1B̃

Tv2 = λv∗1v1 − v∗1Ãv1 (3.33)

The conjugate transpose of (3.32) multiplied on the right by v2 gives

v∗1B̃
Tv2 − v∗2C̃v2 = −λ̄v∗1B̃Tv2 + λ̄v∗2v2. (3.34)

Using (3.33) gives for (3.34)

(1 + λ̄)(λv∗1v1 − v∗1Ãv1)− v∗2C̃v2 = λ̄v∗2v2
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which can be further simplified

(λ+ |λ|2) ‖v1‖2 − (1 + λ̄)v∗1Ãv1 − v∗2C̃v2 − λ̄ ‖v2‖2 = 0. (3.35)

Assuming that λ = a + ib, we can analyze the imaginary part of (3.35) and

get

b(‖v1‖2 + v∗1Ãv1 + ‖v2‖2) = 0

which implies that b = 0, and therefore we again see that eigenvalues must be

real. This underlines the argument made earlier about the use of short-term

recurrence methods such as minres since all eigenvalues of the precondi-

tioned matrix are on the real line.

We analyze (3.35) further knowing that λ is real and under the assumption

that ‖v‖ = 1 with ‖v2‖2 = 1− ‖v1‖2 and get

(λ+ λ2) ‖v1‖2 − λv∗1Ãv1 − λ+ λ ‖v1‖2 − v∗1Ãv1 − v∗2C̃v2 = 0. (3.36)

We then get for λ

λ± =
v∗1Ãv1 + 1− 2 ‖v1‖2

2 ‖v1‖2 ±

√
(v∗1Ãv1 + 1− 2 ‖v1‖2)2

4 ‖v1‖4 +
v∗1Ãv1 + v∗2C̃v2

‖v1‖2 .

(3.37)

Note that v∗1Ãv1 + v∗2C̃v2 ≥ 0 for all v1 and v2. Since Ã and C̃ are both

symmetric matrices and ‖v1‖ ‖v2‖ ≤ 1, we have the following bounds:

µ̂C̃min := v∗2v2µ
C̃
min ≤ v∗2C̃v2 ≤ µC̃maxv

∗
2v2 =: µ̂C̃max

and

µ̂Ãmin := v∗1v1µ
Ã
min ≤ v∗1Ãv1 ≤ µÃmaxv

∗
1v1 =: µ̂Ãmax

with µC̃min and µÃmin the minimal eigenvalue of C̃ and Ã respectively and µC̃max

and µÃmax the maximal eigenvalue of C̃ and Ã respectively.
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We first assume that v∗1Ãv1 + 1− 2 ‖v1‖2 > 0 and get

µ̂Ãmin + 1− 2 ‖v1‖2

2 ‖v1‖2 +

√
(µ̂Ãmin + 1− 2 ‖v1‖2)2

4 ‖v1‖4 + µ̂Ãmin + µ̂C̃min ≤ λ+

and

λ+ ≤
µ̂Ãmax + 1− 2 ‖v1‖2

2 ‖v1‖2 +

√
(µ̂Ãmax + 1− 2 ‖v1‖2)2

4 ‖v1‖4 + µ̂Ãmax + µ̂C̃max

as well as

µ̂Ãmin + 1− 2 ‖v1‖2

2 ‖v1‖2 −

√
(µ̂Ãmax + 1− 2 ‖v1‖2)2

4 ‖v1‖4 + µ̂Ãmax + µ̂C̃max ≤ λ−

and

λ+ ≤
µ̂Ãmax + 1− 2 ‖v1‖2

2 ‖v1‖2 −

√
(µ̂Ãmin + 1− 2 ‖v1‖2)2

4 ‖v1‖4 + µ̂Ãmin + µ̂C̃min.

A similar analysis can be made for the case v∗1Ãv1 + 1 − 2 ‖v1‖2 < 0. The

results here are rather complicated and only of practical use once a solid

knowledge of the eigenvalues of the preconditioned blocks Ã and C̃ is at

hand.

3.5 Combination Preconditioning Examples

In this section we will present a few combinations of the methods that were

introduced in Section 3.3. The possible combinations represent methods that

might prove a good choice when solving practical problems in the future.

At this point, we feel that the presented methods and the corresponding

numerical results in Chapter 6 are a proof of concept that the combination

preconditioning approach can give competitive methods.
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3.5.1 Bramble-Pasciak Combination preconditioning

Using Theorem 3.5 we want to analyze the possibility of combining the classi-

cal Bramble-Pasciak configuration with the Bramble-Pasciak+ preconditioner

introduced in the last section. Therefore, we have the preconditioners

P1 =

 A0 0

B −I

 and P2 =

 A0 0

−B I


and for the inner products or bilinear forms

H1 =

 A− A0 0

0 I

 and H2 =

 A+ A0 0

0 I

 .
Instead of α, β ∈ R we use the combination parameters α and 1− α and get

αP−T1 H1 + (1− α)P−T2 H2 =

 A−1
0 A+ (1− 2α)I A−1

0 BT

0 (1− 2α)I

 .
If we find a decomposition as described in Theorem 3.5 then a new pre-

conditioner and bilinear form are given. One factorization possibility would

be

P−T3 =

 A−1
0 A−1

0 BT

0 (1− 2α)I

 =⇒ P3 =

 A0 0

1
(2α−1)

B 1
1−2α

I


as the new preconditioner and the bilinear form is then defined by

H3 =

 A+ (1− 2α)A0 0

0 I

 .
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Note that for α = 1, we obtain the classical Bramble-Pasciak configuration,

and α = 0 gives the Bramble-Pasciak+ setup. Note that for the choice

α = 1/2 the preconditioner degenerates. The obtained preconditioner can

also be viewed as a special instance of an inexact Uzawa preconditioner (see

[117]).

We now have to analyze if positivity in the new bilinear form can be

achieved and if the bilinear form is an inner product which can be exploited

for short-term recurrence methods. Hence, the matrix

ÂTH3

with Â = P−1
3 A has to be analyzed. The matrix

ÂTH3 =

 AA−1
0 A+ (1− 2α)A AA−1

0 BT + (1− 2α)BT

BA−1
0 A+ (1− 2α)B BA−1

0 BT − (1− 2α)C


can, similarly to the Bramble-Pasciak case, be factorized as the congruence

transform

ÂTH3 =

 I 0

BA−1 I


 AA−1

0 A+ (1− 2α)A 0

0 (2α− 1)(BA−1BT + C)


 I A−1BT

0 I

 .
The Sylvester Law of Inertia indicates that the number of positive and neg-

ative eigenvalues is determined by the eigenvalues of the matrix

 AA−1
0 A+ (1− 2α)A 0

0 (2α− 1)(BA−1
0 BT + C)
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which we can analyze in a similar manner to (3.12), (3.13) above. It is easy to

see that the block (2α− 1)(BA−1
0 BT +C) is positive for α > 1/2. With this

choice for α we have to find conditions such that the block AA−1
0 A+(1−2α)A

is also positive definite. Similar to the analysis made in Section 3.4, we note

the equivalence

A
(
A−1

0 + (1− 2α)A−1
)
A

and therefore positivity is given if yTA0y < (2α− 1)yTAy which can also be

written as

A0 < (2α− 1)A.

In addition we want the matrix H3 to define an inner product which will be

satisfied if the block A+ (1− 2α)A0 > 0 which is equivalent to

1

2α− 1
A > A0.

Again, the case α = 1 gives the Bramble Pasciak configuration and α = 0

shows that there is no configuration that makes the Bramble-Pasciak+ setup

positive definite and cg reliably applicable. It is still possible to obtain a

reliable cg method in the combination preconditioning case, i.e. if

A0 < min

{
(2α− 1)A,

1

2α− 1
A

}

which is a more general restriction on A0 than the Bramble and Pasciak case,

α = 1.

3.5.2 Bramble Pasciak and Benzi-Simoncini

As a less practical example,in order to show how even very different methods

can be combined, we consider P1,H1 defined by the classical Bramble-Pasciak

method (3.9), (3.11) and P2,H2 defined by the Benzi-Simoncini approach
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Figure 3.3: Value of min
{

(2α− 1), 1
2α−1

}

(3.18), (3.19). From Theorem 3.5 we get

(αP−T1 H1 + βP−T2 H2) =

 (αA−1
0 + βI)A− (α + βγ)I (αA−1

0 + βI)BT

−βB −(α + βγ)I


which is self-adjoint ∀α, β ∈ R in 〈·, ·〉A. If we are able to split this into a

new preconditioner P3 and a symmetric matrix H3, Theorem 3.5 guarantees

that P−1
3 A will be self-adjoint in 〈·, ·〉H3

.

One possibility is

P−T3 =

 αA−1
0 + βI 0

0 −βI

 (3.38)

and

H3 =

 A− (α + βγ)(αA−1
0 + βI)−1 BT

B α+βγ
β
I

 . (3.39)

Numerical results we have computed with this combination were less
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promising and we have omitted them. The bilinear form 〈·, ·〉H3 is not so

convenient to work with.

3.5.3 Bramble-Pasciak and Schöberl-Zulehner

We now combine the Bramble-Pasciak cg and the method proposed by

Schöberl and Zulehner in [102]. Therefore, we consider the preconditioners

P1 =

 A0 0

B −S0

 and P2 =

 A0 BT

B BA−1
0 BT − Ŝ


and the inner products or symmetric bilinear forms

H1 =

 A− A0 0

0 S0

 and H2 =

 A0 − A 0

0 BA−1
0 BT − Ŝ

 .
Again, we look for a factorization of αP−T1 H1 +βP−T2 H2 as P−T3 H3. Setting

S0 = BA−1
0 BT − Ŝ

yields

αP−T1 H1 + βP−T2 H2 = α

 A−1
0 A−1

0 BTS−1
0

0 −S−1
0


 A− A0

S0



+β

 I −A−1
0 BT

0 I


 A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1


 A0 − A

S0


(3.40)
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which can be reformulated using

 −I 0

0 I


 A0 − A 0

0 S0

 =

 A− A0 0

0 S0

 (3.41)

and I −A−1
0 BT

0 I


 −A−1

0 0

0 −S−1
0

 =

 −A−1
0 A−1

0 BTS−1
0

0 −S−1
0

 . (3.42)

Hence, (3.40) simplifies to

 I −A−1
0 BT

0 I


α

 −A−1
0 0

0 −S−1
0

+ β

 A−1
0 0

Ŝ−1BA−1
0 −Ŝ−1




 A− A0 0

0 S0


with

P−1
3 =

 (β − α)A−1
0 βA−1

0 BT Ŝ−1

0 −(αS−1
0 + βŜ−1)


 I 0

−BA−1
0 I

 (3.43)

as the inverse of the new preconditioner, and as an inner product matrix we

get

H3 =

 A− A0 0

0 S0

 .
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The block −(αS−1
0 + βŜ−1) of P−1

3 is not well suited for numerical purposes

since it involves the inverse of S0 = BA−1
0 BT − Ŝ. Therefore, we try a

different approach combining Schöberl’s and Zulehner’s method with the

Bramble-Pasciak cg. Thus, we consider the preconditioners

P1 =

 A0 0

B −Ŝ

 and P2 =

 A0 BT

B BA−1
0 BT − Ŝ


and the inner products

H1 =

 A− A0 0

0 Ŝ

 and H2 =

 A0 − A 0

0 BA−1
0 BT − Ŝ


where we chose S0 = Ŝ rather than S0 = BA−1

0 BT − Ŝ. Once more, we try

to find a decomposition as P−T3 H3 of

αP−T1 H1 + βP−T2 H2 = α

 A−1
0 A−1

0 BT Ŝ−1

0 −Ŝ−1


 A− A0 0

0 Ŝ



+β

 I −A−1
0 BT

0 I


 A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1


 A0 − A 0

0 BA−1
0 BT − Ŝ

 .
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Using a simple modification of (3.41) then gives for the last expression

α
 A−1

0 A−1
0 BT Ŝ−1

0 −Ŝ−1

+ β

 I −A−1
0 BT

0 I


 A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1


 −I 0

0 (BA−1
0 BT − Ŝ)Ŝ−1



 A− A0 0

0 Ŝ

 .
This can be further simplified using a modification of (3.42) and the result

is  I −A−1
0 BT

0 I


 (α− β)A−1

0 0

−βŜ−1BA−1
0 (β − α)Ŝ−1 + βŜ−1BA−1

0 BT Ŝ−1


 A− A0 0

0 Ŝ

 .
The preconditioner is then given by

P−1
3 =

 (α− β)A−1
0 −βA−1

0 BT Ŝ−1

0 (β − α)Ŝ−1 − βŜ−1BA−1
0 BT Ŝ−1


 I 0

−BA−1
0 I

(3.44)

with

H3 =

 A− A0 0

0 Ŝ

 (3.45)

defining the bilinear form. It is also possible to reformulate the preconditioner

presented by Schöberl and Zulehner using (3.44), i.e. β = 1 and α = 0. In
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Chapter 6, results that show the competitiveness of the setup introduced in

(3.44) and (3.45) are given. In order to achieve the inner product given in

(3.45) one could try and replace S0 by Ŝ in (3.40) but since the Schöberl and

Zulehner method is not self-adjoint in

 A− A0 0

0 Ŝ


we would have to introduce an extra factor in (3.40) to achieve the desired

form. This means that we cannot simply replace S0 by Ŝ in (3.43).

The method generated by combination preconditioning has a slightly

more expensive preconditioner (3.44), i.e. one additional solve with Ŝ, but

the inner product matrix (3.45) is less expensive to apply than the one used

by Schöberl and Zulehner because there is no need to solve with A0. We here

assume that Ŝ and A0 are explicitly given, which might not be the case when

working with multigrid preconditioning, for example.
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CHAPTER 4

SADDLE POINT PROBLEM IN OPTIMIZATION

The properties of the saddle point system (1.14) can change when the under-

lying application changes, and hence, in this Chapter, we look at matrices

with different definiteness properties coming from optimization problems.

The strong connection between optimization and saddle point problems is

beautifully explained in [19, 42]. The first major observation presented in

this chapter is a general framework for saddle point problems that allows for

many methods to be represented by it. The second new point presented is

the reformulation of a recently introduced method as a method with non-

standard inner products. This new method allows more flexibility than the

known form. The results given in this Chapter were recently submitted

in [18].

4.1 Reformulation

Assume that a saddle point problem of the form (1.14) is given where A is

symmetric and positive definite on the kernel of B which we assume to be

of full rank. The block C is assumed to be positive (semi)definite. It follows
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directly that any solution x to (1.14) also satisfies

σ
 A BT

B −C

+

 A BT

B −C


 D F T

F E


 A BT

B −C



 x(1)

x(2)



= σ

 f

g

+

 A BT

B −C


 D F T

F E


 f

g


(4.1)

for arbitrary σ, symmetric matricesD ∈ Rn×n and E ∈ Rm×m and any matrix

F ∈ Rm×n. We denote the coefficient matrix and right-hand side of (4.1) as

K(σ,D,E, F ) and b(σ,D,E, F ), respectively, and note that K = K(1, 0, 0, 0)

and b = b(1, 0, 0, 0) gives the original saddle point system (1.14). Many well-

known methods can be represented using this reformulation. For example,

• K(0, I, I, 0) gives the normal equations for (1.14);

• K(−1, A−1, 0, 0) gives the Schur-complement method for finding y when

A is nonsingular;

• K(0, A−1, C−1, 0) gives the primal-dual Schur complement method for

finding x and y simultaneously when both A and C are nonsingular;

and

• K(1, 0, (1+ν)C−1, 0) for a given ν (in particular ν = 1) gives the system

to which Forsgren, Gill, Griffin apply the preconditioned conjugate

gradient (pcg) method (see [32]). The matrices C and A + BTC−1B

are assumed to be positive definite.

There are also a variety of methods that solve (1.14) by applying the conju-

gate gradient (cg) method within a non-standard inner-product. In Section

3.2 we introduced the Bramble-Pasciak preconditioner and showed that for

the applicability of such a non-standard inner product method, it is impor-

tant to look at the matrix HP−1A and its definiteness properties. We saw
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that it is possible to apply pcg whenever this matrix is positive definite.

The matrix K(σ,D,E, F ) given in the general framework (4.1) represents

exactly the system matrix HP−1A given in Equation (3.15), i.e.

HP−1Ax = HP−1b.

We now give a list of examples and in the next section discuss the represen-

tation in the reformulated form in more detail.

• The setup K(−1, A−1
0 , 0, 0) gives (3.15) for the well-respected Bramble-

Pasciak configuration for a given A0 (see Section 3.2 for a detailed

description). The matrices A and BA−1BT + C are assumed to be

positive definite, and A0 is such that A − A0 is also symmetric and

positive definite.

• The setup K(−γ, I,−I, 0) gives (3.15) for Liesen and Parlett’s method

for a given γ (see Section 3.3) [69, 70]. The matrix A is assumed to

be positive definite and γ lies in the interval [λmax(C), λmin(A)] . This

method extends that of Benzi and Simoncini presented in Section 3.3

to the case where C 6= 0.

• The setup K(−(α+ βγ), αA−1
0 + βI,−βI, 0) gives (3.15) for one of the

combination preconditioners introduced in Chapter 3. The assump-

tions of both Bramble-Pasciak and Liesen et al. must hold, and α, β

and γ must be chosen such that K(−(α + βγ), αA−1
0 + βI,−βI, 0) =

αK(−1, A−1
0 , 0, 0) + βK(−γ, I,−I, 0) is positive definite.

• The setupK(1, A−1
0 (BTC−1

0 B−A−1
0 )A−1

0 , C−1
0 ,−C−1

0 BA−1
0 ) gives (3.15)

of the method presented by Schöberl and Zulehner for the case C = 0

used in Sections 3.3 and 3.5 for given A0 and C0. The matrix A is

assumed to be positive definite on the kernel of B, A0 is such that A0−A
is symmetric and positive definite, and C0 is such that BA−1

0 BT − C0

is symmetric and positive definite.
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In Section 3.2, we showed that for the Bramble-Pasciak case solving system

(1.3) is equivalent to solving (3.15) with preconditioner H. In Section 4.2, we

will clarify this point once more with regard to the general framework (4.1),

since it may not be obvious why the above formulations produce algorithms

that (in exact arithmetic) produce iterates which are equivalent to those

produced by the cg methods within a non-standard inner-product.

Before considering the non-standard inner-product conjugate gradient

methods, we will consider what properties need to hold to guarantee that

K(σ,D,E, F ) is symmetric and positive definite (and thus one may use meth-

ods such as cg rather than minres). Clearly, D and E both need to be

symmetric. Furthermore, we may factorize K(σ,D,E, F ) as

K(σ,D,E, F ) =

 Θ1 ΘT
2

Θ2 Θ3

 =

 I ΘT
2 Θ−1

3

0 I


 Θ1 −ΘT

2 Θ−1
3 Θ2 0

0 Θ3


 I 0

Θ−1
3 Θ2 I


(4.2)

or

K(σ,D,E, F ) =

 I 0

Θ2Θ−1
1 I


 Θ1 0

0 Θ3 −Θ2Θ−1
1 ΘT

2


 I Θ−1

1 ΘT
2

0 I

 ,
(4.3)
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where

Θ1 = σA+ ADA+BTFA+ AF TB +BTEB, (4.4)

Θ2 = σB +BDA− CFA+BF TB − CEB, (4.5)

Θ3 = BDBT − CFBT −BF TC + CEC − σC. (4.6)

Using Sylvester’s law of inertia [53], we obtain the following theorem:

Theorem 4.1. Let Θ1, Θ2 and Θ3 be as defined in (4.4)–(4.6). K(σ,D,E, F )

is symmetric and positive definite if and only if

• D and E are symmetric,

• Θ3 is positive definite and

• Θ1 −ΘT
2 Θ−1

3 Θ2 is positive definite.

Alternatively, K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Θ1 is positive definite and

• Θ3 −Θ2Θ−1
1 ΘT

2 is positive definite.

Proof. The proof follows from the decompositions (4.2) and (4.3) and the

use of Sylvester’s law of inertia.

Clearly, K(σ,D,E, F ) is symmetric and positive definite if and only if

A−1K(σ,D,E, F )A−1 is symmetric and positive definite. This is equivalent

to requiring that

σA−1 +

 D F T

F E
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is symmetric and positive definite. We will consider different cases for A and

C separately. Let

σA−1 +

 D F T

F E

 =

 Ω1 ΩT
2

Ω2 Ω3

 (4.7)

for given matrices of Ω1, Ω2 and Ω3. With Ω3 invertible, we may factorize

(4.7) as

 Ω1 ΩT
2

Ω2 Ω3

 =

 I ΩT
2 Ω−1

3

0 I


 Ω1 − ΩT

2 Ω−1
3 Ω2 0

0 Ω3


 I 0

Ω−1
3 Ω2 I

 .
(4.8)

Using Sylvester’s law of inertia,

σA−1 +

 D F T

F E


is positive definite if and only if Ω3 and Ω1 − ΩT

2 Ω−1
3 Ω2 are both positive

definite. Equivalently for invertible Ω1, we may use the factorization

 Ω1 ΩT
2

Ω2 Ω3

 =

 I 0

Ω2Ω−1
1 I


 Ω1 0

0 Ω3 − Ω2Ω−1
1 ΩT

2


 I Ω−1

1 ΩT
2

0 I

 .
(4.9)

Again with Sylvester’s law of inertia it is easy to see that

σA−1 +

 D F T

F E
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is positive definite if and only if Ω1 and Ω3 − Ω2Ω−1
1 ΩT

2 are both positive

definite.

Corollary 4.2. If A is symmetric and nonsingular, and

SA = C +BA−1BT ,

Υ1 = D + σA−1 − σA−1BTS−1
A BA−1,

Υ2 = σF + S−1
A BA−1,

Υ3 = E − σS−1
A ,

then K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Υ3 is positive definite and

• Υ1 −ΥT
2 Υ−1

3 Υ2 is positive definite.

Proof. If A is nonsingular, then

A−1 =

 A−1 − A−1BTS−1BA−1 A−1BTS−1

S−1BA−1 −S−1

 ,
where S = C +BA−1BT . Use of factorization (4.8) completes the proof.

Corollary 4.3. If C is symmetric and nonsingular, and

SC = A+BTC−1B,

∆1 = D + σS−1
C ,

∆2 = F + σC−1BS−1
C ,

∆3 = E + σC−1BS−1
C BTC−1 − C−1,

then K(σ,D,E, F ) is symmetric and positive definite if and only if
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• D and E are symmetric,

• ∆1 is positive definite, and

• ∆3 −∆2∆−1
1 ∆T

2 is positive definite.

Proof. If C is nonsingular, then

A−1 =

 S−1 S−1BTC−1

C−1BS−1 C−1BS−1BTC−1 − C−1

 ,
where S = A+BTC−1B. Use of factorization (4.9) completes the proof.

Corollary 4.4. If C = 0, the columns of Z ∈ Rn×(n−m) span the nullspace

of B, and if B† is the Moore-Penrose inverse of B [53], then

SZ = ZTAZ,

Γ1 = D + σZS−1
Z ZT ,

Γ2 = F + σB†T
(
I − AZS−1

Z ZT
)
,

Γ3 = E + σB†T
(
AZSZZ

TA− A
)
B†.

K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Γ1 is positive definite,

• Γ3 − Γ2Γ−1
1 ΓT2 is positive definite.

Proof. If C = 0, the columns of Z ∈ Rn×(n−m) span the nullspace of B, and

B† be the Moore-Penrose inverse of B, then

A−1 =

 ZS−1ZT
(
I − ZS−1ZTA

)
B†

B†T
(
I − AZS−1ZT

)
B†T

(
AZS−1ZTA− A

)
B†

 ,
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where S = ZTAZ. Use of factorization (4.9) completes the proof.

Conditions for the case where C is rank-deficient but nonzero may be

derived by factoring C as

C = UT

 Ĉ 0

0 0

U,

where Ĉ is nonsingular and U is unitary. Premultiplying A by

 I 0

0 U

 and

post multiplying by the inverse of this matrix reveals a saddle point system

to which either Corollary 4.3 or Corollary 4.4 could be applied.

4.2 Reformulation and non-standard inner prod-

ucts

We illustrated earlier in Section 3.2 that the cg method with non-standard

inner product is equivalent to a preconditioned cg method. Figure 3.1

showed that only by preconditioning the matrix HP−1A on the left with

H−1 do we get the same convergence as the cg with the non-standard inner

product. Nevertheless, it is very interesting to look at the matrix HP−1A
especially when comparing the reformulation (4.1) and methods with non-

standard inner products as presented in Section 3.3. In the last section we

noticed that in the presence of non-standard inner products the reformulation

K(σ,E,D, F ) corresponds to the matrix HP−1A, and using this we see that

the matrix HP−1 is equivalent to

σI +

 A BT

B −C


 D F T

F E

 .
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As we saw earlier, for each non-standard inner product method (cf. Section

3.3) it has to be shown that the matrix HP−1A is symmetric and positive

definite. Once this is proven the applicability of cg for P−1A in 〈., .〉H is

guaranteed. For the methods of Bramble-Pasciak, Benzi-Simoncini, etc. this

means that the corresponding alternative formulation K(σ,D,E, F ), which

corresponds to the matrix HP−1A, must be positive definite as well. This

guarantees the applicability of cg to the matrix K(σ,D,E, F ) (cf. Section

3.2).

In the last section we presented a number of non-standard inner product

methods that can be represented in the reformulated form. We want to

discuss this here for the Bramble-Pasciak cg, such that solving system (1.14)

is equivalent to solving the system (3.15), i.e.

HP−1A

 x(1)

x(2)

 = HP−1

 f

g

 ,
which can be obtained from (4.1) via

K(−1, A−1
0 , 0, 0) =

−1

 A BT

B −C

+

 A

B

A−1
0

[
A BT

]

=

 AA−1
0 A− A AA−1

0 BT −BT

BA−1
0 A−B BA−1

0 BT + C

 = ÂTH = HÂ.

Now this shows that the reformulation (4.1) gives the matrix HÂ from the

Bramble-Pasciak cg. Remember that we illustrated in Section 3.2 that

pcg with preconditioner H applied to the system with the matrix HÂ =

K(−1, A−1
0 , 0, 0) gives the identical Krylov subspace to the Bramble-Pasciak

setup (cf. Figure 3.1). Hence, the approximation to the solution will be the

same for both methods. In a similar fashion, the non-standard inner product
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methods given in Section 3.3 can be obtained from (4.1). And pcg applied

to the matrix K(σ,D,E, F ) with preconditioner H will give the same results

as the ones obtained from the non-standard inner product version of the same

method.

4.3 Using the reformulation

In Section 4.1, we illustrated that different methods for solving saddle point

problems can be presented within the same framework (see Equation (4.1)).

Furthermore, we showed that for a Bramble-Pasciak setup it would not be

feasible to use the alternative formulation for numerical experiments due to

the fact that we first multiply by H and then use it as a preconditioner (cf.

Section 3.2). In this section we want to show how the alternative formulation

can be used to generate a Bramble-Pasciak-like method for another method

that lies within the same framework. We therefore quickly summarize the

method of Forsgren et al. introduced in [32].

4.3.1 The method of Forsgren, Gill and Griffin (FGG)

Forsgren, Gill and Griffin work with a saddle point problem of the general

form

A(ν)

 x(1)

x(2)

 =

 A+ (1 + ν)BTC−1B −νBT

−νB νC


 x(1)

x(2)

 =

 f

g


(4.10)

where ν ∈ R which is K(1, 0, (1 + ν)C−1, 0) in our general setting. We want

to emphasize the fact that C must be definite in this formulation, as already

observed. For ν = −1, A(ν) gives the classical saddle point formulation,

for ν = 0 we obtain a condensed system, which is equivalent to the Schur-

complement method for finding the solution, and for ν = 1 the result is a
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doubly augmented system

A(1) =

 A+ 2BTC−1B −BT

−B C

 . (4.11)

Using the splitting

 A+ (1 + ν)BTC−1B −νBT

−νB νC

 =

 I −BTC−1

0 I


 A+BTC−1B 0

0 νC


 I 0

−BTC−1 I


Sylvester’s law of inertia tells us that the matrix A(ν) is positive definite if

A+BTC−1B > 0, C > 0 and ν > 0. In addition, a general preconditioner

P(ν) =

 G+ (1 + ν)BTC−1B −νBT

−νB νC

 (4.12)

is introduced where G is an approximation to A and G + BTC−1B > 0.

Again, P(ν) represents different preconditioners for different instances of ν.

In practice, it is often useful to use the decomposition

 G+ (1 + ν)BTC−1B −νBT

−νB νC

 =

 I (1 + ν)BTC−1

0 −νI


 G BT

B −C


to solve a system with the preconditioner P(ν). The eigenvalues of the

preconditioned system P(ν)−1A(ν) can be analyzed by assuming that an
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eigenpair (λ, [xTyT ]T ) is given. Hence, we get

Ax+ (1 + ν)BTC−1Bx− νBTy = λGx+ λ(1 + ν)BTC−1Bx− λνBTy

−νBx+ νCy = −λνBx+ λνCy

(4.13)

and assuming that λ = 1 the first Equation in (4.13) reduces to Ax = Gx

which gives x = 0 and the second equation gives an arbitrary choice for y.

Since y can be taken from an m-dimensional space, we have m eigenvalues

at 1. Assuming now that λ 6= 1, we get from the second Equation in (4.13)

that y = C−1Bx, which put into the first equation results in

(A+BTC−1B)x = λ(G+BTC−1B)x.

Therefore, n eigenvalues of the preconditioned matrix P(ν)−1 are given by

the eigenvalues of

(G+BTC−1B)−1(A+BTC−1B).

Therefore, in exact arithmetic, convergence is given in at most n+ 1 steps.

4.3.2 A Bramble-Pasciak-like approach

In this section we show the equivalence of the method proposed by Forsgren

et al. and a Bramble-Pasciak-like method. In order to construct a Bramble-

Pasciak-like method we consider the preconditioner

P− =

 A0 BT

0 −C0

 with P−1
− =

 A−1
0 A−1

0 BTC−1
0

0 −C−1
0

 (4.14)
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and the bilinear form

H− =

 A0 0

0 C − C0

 . (4.15)

It is easy to see that the preconditioned matrix Â = P−1
− A is self-adjoint in

this bilinear form by verifying that ÂTH− = H−Â holds. In more detail, we

get that

ÂTH− =

 AA−1
0 +BTC−1

0 BA−1
0 −BTC−1

0

BA−1
0 − CC−1

0 BA−1
0 CC−1

0


 I 0

0 C − C0



=

 A+BTC−1
0 B −BTC−1

0 C +BT

B − CC0B CC−1
0 C − C


is identical to

H−Â =

 A0 0

0 C − C0


 A−1

0 A+ A−1
0 BTC−1

0 B A−1
0 BT − A−1

0 BTC−1
0 C

−C−1
0 B C−1

0 C



=

 A+BTC−1
0 B −BTC−1

0 C +BT

B − CC0B CC−1
0 C − C

 .
The connection to the method by Forsgren et al. can be made by looking at
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(4.1) in the setup

K(1, 0, (1 + ν)C−1, 0) =

 A+ (1 + ν)BTC−1B −νBT

−νB νC

 .
This matrix can also be expressed as

H−P−1
− A =

 I 0

0 C − (1 + ν)−1C


 A+BT (1 + ν)C−1B BT −BT (1 + ν)C−1C

−(1 + ν)C−1B (1 + ν)C−1C



=

 I 0

0 C − (1 + ν)−1C


 I (1 + ν)BTC−1

0 (1 + ν)C−1


 A BT

B −C



=

 A+ (1 + ν)BTC−1B −νBT

−νB νC


(4.16)

which corresponds to the Bramble-Pasciak-like setting with C0 = (1 + ν)−1C

and A0 = I. We wish to stress the fact that for the method of Forsgren et

al. the matrix C is assumed to be definite. Note that the symmetry and

definiteness of C implies symmetry and definiteness of C0.

First, we analyze the Bramble-Pasciak-like method for the case when C

is definite and show that it is possible to choose A0 and C0 such that H−
defines an inner product and Â is positive definite within this inner product.

This would enable the use of cg for the Bramble-Pasciak-like equivalent of

the method introduced [32].

The matrix

H− =

 A0 0

0 C − C0
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defines an inner product whenever A0 is symmetric and positive definite

and whenever the symmetric block C − C0 becomes positive definite, i.e.

C − C0 > 0 where C is a positive definite matrix. In addition, we need all

the eigenvalues of

ÂTH− =

 A+BTC−1
0 B −BTC−1

0 C +BT

B − CC0B CC−1
0 C − C


to be positive. We use a technique employed in Section 3.4 where we split

ÂTH− as

ÂTH− =

 I −BTC−1

0 I


 A+BTC−1B 0

0 CC−1
0 C − C


 I 0

−C−1B I

 .
Since this is an congruence transformation, Sylvester’s law of inertia gives

that we only have to look at the eigenvalues of

 A+BTC−1B 0

0 CC−1
0 C − C

 .
Depending on the properties of A, the first block A + BTC−1B will be

positive definite and CC−1
0 C−C is positive definite whenever C0 < C. Note

that optimality conditions usually imply that A+BTC−1B should be positive

definite. The block CC−1
0 C−C is equivalent to C(C−1

0 −C−1)C, which gives

that C−1
0 −C−1 has to be positive definite. Hence, positivity is given whenever

C − C0 is a positive definite matrix.

Therefore, we are able to reliably apply the cg method to the linear

system. The case given in [32] where C0 = (1 + ν)−1C fulfills this criterion if

the matrix C is definite.

In Section 3.4, we introduced a preconditioner and bilinear form very
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similar to the classical Bramble-Pasciak one but with different numerical

properties. The main motivation was to have a bilinear form

H+ =

 A0 0

0 C + C0

 (4.17)

that defines an inner product whenever the preconditioners A0 and C0 are

positive definite. The preconditioner can also be modified and we get

P+ =

 A0 BT

0 C0

 with P−1
+ =

 A−1
0 −A−1

0 BTC−1
0

0 C−1
0

 . (4.18)

Hence, the preconditioned matrix

Â = P−1
+ A =

 A−1
0 A− A−1

0 BTC−1
0 B A−1

0 BT + A−1
0 BTC−1

0 C

C−1
0 B −C−1

0 C


is self-adjoint in the inner product H+.

The applicability of cg can be determined by studying the eigenvalues

of

ÂTH+ =

 I −BTC−1

0 I


 A+BTC−1B 0

0 −CC−1
0 C − C


 I 0

−C−1B I

 .
Again Sylvester’s law of inertia tells us that the eigenvalues of A+BTC−1B

and −CC−1
0 C −C will determine the number of positive, negative and zero-

eigenvalues of the matrix ÂTH. The block A + BTC−1B will be positive

definite for all C0 whereas the block −(CC−1
0 C + C) will be negative for C0

being positive definite. Therefore, we cannot reliably apply the cg method

in this case. As an alternative, the H-minres method given in Section 2.1.2
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can always be implemented since an inner product is always at hand due to

the definiteness of A0 and C0. Another possibility is to use the itfqmr
method introduced in Section 2.2.2.

In the case of the block C being positive semi-definite, e.g. C = 0, we

can use H-minres whenever H± defines an inner product and itfqmr
whenever ÂTH± = H±Â holds.

It should be mentioned here that the preconditioner A0 in

P± =

 A0 BT

0 ±C0


can be chosen such that A0 resembles the structure given by Forsgren et al.,

i.e. A0 = G + BTC−1
0 B which we will call FGG setup. The preconditioner

then becomes

P± =

 G+BTC−1
0 B BT

0 ±C0


which is a block triangular matrix and therefore allows for the efficient

solution of linear systems involving P±. In case a factorization of A0 =

G+BTC−1
0 B should be avoided, the preconditioner can be decomposed as

P− =

 G+BTC−1
0 B BT

0 −C0

 =

 G BT

B −C0


 I 0

C−1
0 B I


or

P+ =

 G+BTC−1
0 B BT

0 C0

 =

 G BT

−B C0


 I 0

C−1
0 B I

 .
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4.4 Preconditioning

4.4.1 C positive definite

The case where C is positive definite can sometimes be found in optimization

[32] (as well as other areas [6]) and usually occurs because of some explicit

regularization [98]. Optimality conditions imply that A + BTC−1B should

be positive definite. Suppose that we set C0 = C; then the eigenvalues of

P−1A are given by the following theorem:

Theorem 4.5. Let

A =

 A BT

B −C

 and P =

 A0 BT

0 −C


with nonsingular A0 and C. Then P−1A has

• m eigenvalues at 1,

• the remaining n eigenvalues are defined by the generalized eigenvalue

problem (
A+BTC−1B

)
x = λA0x.

Proof. It is straightforward to show that

P−1A =

 A−1
0

(
A+BTC−1B

)
0

−C−1B I

 .
Hence, there are m eigenvalues equal to 1 and the remaining eigenvalues

satisfy (
A+BTC−1B

)
x = λA0x.
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Figure 4.1: Eigenvalue distribution for P(ν)−1A(ν) and P−1A, where C0 = C
and A0 = G+BTC−1B.

Note that if A0 = G+BTC−1B, then P−1A will have the same eigenval-

ues as P(ν)−1A(ν), where A(ν) and P(ν) are defined by equations (4.10) and

(4.12), respectively (see Section 4.3.1). We illustrate these results by consid-

ering the matrix CVXQP3 S of dimension 175 taken from the CUTEr [55]

test set and comparing the eigenvalues of P(ν)−1A(ν) and P−1A (see Figure

4.1). In this example, C = I and G = diag(A).

However, if C0 = C, then H− in (4.15) will be singular and, therefore,

Algorithms 2.4 and 2.5 may breakdown. Suppose that we instead choose

C0 = (1 + ν)−1C, where ν 6= −1. If A0 is chosen to be a symmetric and

positive definite matrix, H− will be symmetric and positive definite if and

only if ν > 0 or ν < −1. Applying Corollary 4.3 with σ = 1, D = 0,

E = C−1
0 , and F = 0, we find that H−P−1A is positive definite if and only if

A+BTC−1B and C−1
0 −C−1 are both positive definite. If C0 = (1 + ν)−1C,

then C−1
0 − C−1 is positive definite if and only if ν > 0. This illustrates the

result by Forsgren et al. that A(ν) is positive definite if A+BTC−1B > 0 and

ν > 0 (see Section 4.3.1). Theorem 4.6 provides results on the eigenvalues of

the resulting matrix P−1A :

Theorem 4.6. Let B have rank r > 0 and Z ∈ Rn×(n−r) be such that its
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columns span the nullspace of B. Additionally, let

A =

 A BT

B −C

 and P =

 A0 BT

0 −(1 + ν)−1C


with nonsingular A0 and C, where ν 6= 0 and ν 6= −1. Suppose that the

generalized eigenvalue problem ZTAZxz = λZTA0Zxz has j (0 ≤ j ≤ n− r)
eigenvalues equal to 1 + ν. Then P−1A has

• at least j eigenvalues at 1 + ν,

• the remaining eigenvalues satisfy the quadratic eigenvalue problem (QEP)

(λ2A0−λ
(
A+ (1 + ν)

(
A0 +BTC−1B

))
+(1 + ν)

(
A+BTC−1B

)
)x = 0

subject to λ 6= 0 and λ 6= 1 + ν.

Proof. Assume that

(
λ,

[
xT yT

]T)
represents an eigenpair of P−1A.

Then

Ax+BTy = λ
(
A0x+BTy

)
, (4.19)

Bx− Cy = − λ

1 + ν
Cy. (4.20)

(4.21)

Let λ = 1 + ν. Equation (4.20) implies that Bx = 0. Let Z ∈ Rn×(n−r)

be such that its columns span the nullspace of B and Y ∈ Rn×r be such

that its columns span the range of the columns of BT . If x = Y xy + Zxz,

then Bx = 0 implies that xy = 0. Premultiplying (4.19) by

[
Y Z

]T
and

substituting in x = Zxz we obtain

Y TAZxz + (BY )T y = (1 + ν)
(
Y TA0Zxz + (BY )T y

)
, (4.22)

ZTAZxz = (1 + ν)ZTAZxz.
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Hence, xz 6= 0 if and only if 1+ν is an eigenvalue of the generalized eigenvalue

problem ZTAZxz = λZTA0Zxz. Given such an xz, y can be defined using

(4.22).

Let λ 6= 1 + ν. Equation (4.20) implies that

y =
1 + ν

1 + ν − λ
C−1Bx.

Substituting this into (4.19) and rearranging the result gives the quadratic

eigenvalue problem

λ2A0x− λ
(
A+ (1 + ν)

(
A0 +BTC−1B

))
x+ (1 + ν)

(
A+BTC−1B

)
x = 0.

This completes the proof.

Figure 4.2 shows the eigendistribution for P(ν)−1A(ν) and P−1A, where

ν = 0.1, C0 = (1 + ν)−1C and A0 = diag(A) +BTC−1B. The 2n eigenvalue

predictions coming from the quadratic eigenvalue problem given in Theorem

4.6 are also plotted. As before, we consider the matrix CVXQP3 S from the

CUTEr test set with C = I.

In summary, based on the eigenvalue analysis presented here we expect

that for a positive definite C the convergence of the Bramble-Pasciak-like

method will be similar to the convergence of the algorithm proposed by Fors-

gren and coauthors. Numerical results are shown in Chapter 6. In contrast

to the method given in [32], we could work with a block-triangular precon-

ditioner for the Bramble-Pasciak-like method, which should be favored over

solving systems with a constraint preconditioner of the form (4.12). We

illustrate the performance of this method by showing numerical results in

Chapter 6.
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Figure 4.2: Eigenvalue distribution for P(ν)−1A(ν), P−1A, and the 2n eigen-
values of QEP, see Theorem 4.6, where ν = 0.1, C0 = (1 + ν)−1C and
A0 = G+BTC−1B.

4.4.2 A positive definite and C positive semi-definite

If A is positive definite, then we may let A0 = A; the analysis presented here

is not based on the assumption that C is positive definite. The eigenvalues

of P−1A are defined by Theorem 4.7.

Theorem 4.7. Let

A =

 A BT

B −C

 and P =

 A BT

0 −C0


where A is symmetric and non-singular, C is symmetric and positive semi-

definite, C0 is symmetric and (positive or negative) definite, and C − C0 is

nonsingular. Then P−1A has

• n eigenvalues at 1,

• the remaining m eigenvalues are defined by the generalized eigenvalue

problem (
C +BA−1BT

)
y = λC0y.
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Proof. Assume that

(
λ,

[
xT yT

]T)
represents an eigenpair of P−1A.

Then

Ax+BTy = λ
(
Ax+BTy

)
(4.23)

Bx− Cy = −λC0y. (4.24)

Let λ = 1. Equation (4.23) trivially holds. Equation (4.24) implies that

Bx = (C − C0) y.

By assumption, C − C0 is nonsingular and, hence, there are n linearly inde-

pendent eigenvectors of the form

 x

(C − C0)−1Bx


associated with λ = 1.

Let λ 6= 1. Equation (4.23) implies that Ax + BTy = 0. Therefore,

x = −A−1BTy. Substituting this into (4.24) gives the generalized eigenvalue

problem (
C +BA−1BT

)
y = λC0y.

This completes the proof.

Theorem 4.7 implies that the convergence of the Bramble-Pasciak-like

setup (4.14) with A0 = A is given in at most m + 1 steps. If C + BA−1BT

and C0 are both positive definite, then all of the eigenvalues of P−1A will be

positive, however, C0 in this case must be chosen such that C−C0 is positive

definite in order to guarantee that H is positive definite. If C + BA−1BT is

positive definite and C0 is negative definite, then P−1A will have m negative
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eigenvalues. Hence, cg with non-standard inner product cannot be applied

reliably.

The case of A definite and C semi-definite typically occurs when working

with the mixed finite element formulation of the Stokes problem (see Section

1.3 or [24]). Such examples can be easily generated using the ifiss package

(cf. [23]). Instead of setting A0 = A, A0 is generally chosen to be a symmet-

ric and positive definite approximation to A, e.g. an Incomplete Cholesky

decomposition or a multigrid cycle [57] and C0 an approximation to the pos-

itive or negative Schur-complement. A very general eigenvalue analysis for

the Bramble-Pasciak-like setup is given in Appendix A; the results are only

of practical use if a solid knowledge of the eigenvalues of A0 and C0 is at

hand.

4.4.3 Neither A nor C are positive definite

The case where neither A nor C are positive definite is a more difficult case

since we cannot set A0 = A or C0 = (1 + ν)−1C and expect to obtain a

positive definite matrix H. One remedy is to use a technique introduced by

Gill et al. in [43] where a modified Bunch-Parlett factorization LDLT can be

used [11]. In more detail, we first compute the Bunch-Parlett factorization of

the indefinite block A = LDLT where the D is a block diagonal matrix with

1× 1 or 2× 2 blocks on the main diagonal. It might not always be feasible

to compute a Bunch-Parlett decomposition, in particular if the problems are

very large. Note that we first assume that all of the eigenvalues of A are

nonzero. Due to the indefiniteness of A, the elements of D represent inertia

in the left and right half plane. As mentioned earlier, we are interested

in a positive definite preconditioner for A which then also gives a Schur-

complement preconditioner for further convergence improvement. Gill et

al. [43] obtain a modified factorization LD̂LT as follows. In the case of a

1× 1 block α on the main diagonal with α < 0, the sign of α is reversed. In
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the case of a 2× 2 block  α β

β γ


we compute a Givens rotation such that

 α β

β γ

 =

 c s

−s c


 λ1 0

0 λ2


 c s

−s c

 .
We then change the appropriate block in D̂ to be

 c s

−s c


 |λ1| 0

0 |λ2|


 c s

−s c


which gives a symmetric positive D̂. Therefore, the preconditioner A0 =

LD̂LT is symmetric and positive definite, and we can also use the Schur-

complement approximation C0 = C +BA−1
0 BT .

In the case of A being indefinite with zero-eigenvalues, there are several

strategies proposed in the literature (see [28] for an overview). We want to

mention the method by Moré and Sorensen [79] where again a Bunch-Parlett

factorization is used with D a block diagonal matrix. In more detail, the

1 × 1 block α is replaced by a modified block α̂ such that α̂ = max (δ, |α|)
and for the 2× 2 block the spectral decomposition is computed

 α β

β γ

 =

 c s

−s c


 λ1 0

0 λ2


 c s

−s c
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and then replaced by

 c s

−s c


 λ̂1 0

0 λ̂2


 c s

−s c


where λ̂i = max (δ, |λi|)∀i = 1, 2. The result is a factorization LD̂LT . Moré

and Sorensen choose δ = εM with εM machine epsilon. Another choice for

δ is given in [13] by δ =
√
εM/2 ‖A‖∞ where Cheng and Higham analyze a

method similar to the one presented by Moré and Sorensen.

This setup completes the analysis of the Bramble-Pasciak-like method

and emphasizes that it can be used for all practical setups of the saddle

point matrix, which is indicated by the numerical results in Chapter 6.

4.4.4 Summary of the methods

Here, we quickly want to summarize the methods derived in this section and

also mention the possible competitors. Starting with the setup where A is

indefinite and C is positive definite, the methods of choice would be the

Bramble-Pasciak-like method with P− setup and the method of Forsgren et

al. [32]. Note that if C0 is a multiple of C the scaling of C0 to guarantee

positivity of H− becomes trivial.

The second setup withA being positive definite and C being positive semi-

definite can typically be solved with the classical Bramble-Pasciak method.

Our setup with P− is not guaranteed to work with cg but if one is not willing

to scale in the classical Bramble-Pasciak method then both configurations can

be used with itfqmr.

The last setup is given when A is indefinite and C is positive semi-definite,

for which case we can use minres with block-diagonal preconditioning.

Furthermore, the Bramble-Pasciak-like method with the P+ preconditioner

is always guaranteed to work with hminres. Numerical results for all three

cases are given in Chapter 6.
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CHAPTER 5

APPROXIMATING THE SCATTERING

AMPLITUDE

In this Chapter we describe how to approximate the scattering amplitude

introduced in Section 1.3, i.e. the scattering amplitude is gTx where x is the

solution of Ax = b and g is the right hand side of ATy = g. First, we show

how the scattering amplitude can be approximated via solving the associated

linear systems (1.17) and (1.18). This can be done with a variety of methods,

but our focus here is on a general form of the well-known lsqr method, the

so-called glsqr. In the second part, we show that the scattering amplitude

can be approximated directly using the connection to Gauss quadrature. The

methods proposed in this Chapter are published in [52]. Whereas in the

Chapter illustrating combination preconditioning and the Chapter on using

the Bramble-Pasciak-like method for optimization problems the adjoint of Â
was never explicitly used due to the self-adjointness in a non-standard inner

product, we will make use of the adjoint in this Chapter in an explicit way.
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5.1. REWRITING THE PROBLEM AND MINRES

5.1 Rewriting the problem and minres

In Section 1.3, the scattering amplitude was discussed as well as how it is

important to approximate the systems

Ax = b and ATy = g

at the same time. Note that we slightly change the notation here and use

A instead of A for the system matrix. This is due to the fact that for most

parts of the thesis we used A for matrices in saddle point form. In Section

1.3, we saw that this problem can be reformulated to solve the special system

with saddle point structure also given in (1.19)

 0 A

AT 0


︸ ︷︷ ︸

 y

x

 =

 b

g

 .
A

Having the Faber-Manteuffel theorem in mind, it is obvious that for the

symmetric matrix

A =

 0 A

AT 0

 ∈ R2N,2N

a short-term recurrence methods can be applied. Note that the 2N eigenval-

ues of A are given by the singular values of A; i.e. N eigenvalues correspond

to the singular values σi of A and the other N eigenvalues correspond to

the N values −σi. For such a symmetric but indefinite system, we can use

minres, but since the eigenvalues of A are symmetric about the origin,

minres will only make progress in every other step. Intuitively, the poor

convergence can be motivated by looking at the polynomial approximation

that is part of minres where we want to find a polynomial that is small

on all eigenvalues and has the value 1 at zero. Due to the symmetry of
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the eigenvalues about the origin, the odd order polynomials cannot benefit

the convergence because they will not present a better approximation to the

eigenvalues than the previous even order polynomial. The result is the typi-

cal staircasing behavior shown in Figure 5.1 where minres is applied to a

random sparse matrix1 A of dimension 100 × 100. In [73] Liesen and Tichý

give residual bounds for a setup where the eigenvalues are on both side of

the origin in intervals of equal length.

As mentioned earlier, an iterative scheme is not of great use in practice if

preconditioning cannot be embedded unless the matrix is well conditioned.

Therefore, we need to find a preconditioner that enables the use of minres
and enhances the convergence properties of the system (1.19). Hence, we

could look at  M−1
1 0

0 M−T
2


 0 A

AT 0


 M−T

1 0

0 M−1
2

 =

 0 M−1
1 AM−1

2

M−T
2 ATM−T

1 0


(5.1)

with

P =

 M1M
T
1 0

0 M2M
T
2

 . (5.2)

The preconditioner P given in (5.2) is symmetric and positive definite and

hence minres can be used with this preconditioner. Again, the eigenvalues

of the matrix  0 M−1
1 AM−1

2

M−T
2 ATM−T

1 0


1Creates a sparse randomly perturbed matrix where the random entries are normally

distributed. The MATLAB command is A=sprandn(n,n,0.2)+speye(n);
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are symmetric about the origin, which means that minres can only make

progress every other step. We will therefore present different approaches in

the remainder of this chapter.
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Figure 5.1: Staircasing for minres applied to (1.19)

5.2 Solving the linear systems

5.2.1 The qmr approach

In [74], Lu and Darmofal present a technique using the standard qmr

method given in Section 2.2.2 to obtain an algorithm that would approx-

imate the solution of the forward and the adjoint problem at the same time.

As seen in Section 2.2.2, qmr is based on the non-symmetric Lanczos pro-

cess, i.e.

AVk = Vk+1Tk+1,k

ATWk = Wk+1T̂k+1,k,

where Tk+1,k and T̂k+1,k are tridiagonal. The idea presented by Lu and Dar-

mofal is to choose v1 = r0/ ‖r0‖ and w1 = s0/ ‖s0‖2, where s0 = g − ATy0
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and yk = y0 +Wkdk, to obtain the norm of the adjoint quasi-residual

∥∥∥sQk ∥∥∥
2

=
∥∥∥‖s0‖2 e1 − T̂k+1,kdk

∥∥∥
2
,

in a similar fashion to the forward quasi-residual
∥∥∥rQk ∥∥∥

2
given in Section 2.2.2.

Again, the least-squares solutions for both quasi-residuals can be obtained

via updated QR factorizations (see [84, 37] for details). It is also possible

to introduce weights to improve the convergence behavior, though it is not

always clear how these weights should be chosen [37].

5.2.2 The bidiagonalization or lsqr approach

We stressed earlier that the system matrix of (1.19)

 0 A

AT 0


is symmetric and indefinite. Furthermore, it is used when computing singular

values of the matrix A (see MATLAB’s svds command) and is also very

important in the context of linear least squares problems. The main tool

used for either purpose is the Golub-Kahan bidiagonalization (cf. [45]) which

is also the basis for the well-known lsqr method introduced by Paige and

Saunders in [86, 85]. lsqr is not necessarily considered a solver for linear

systems and hence we introduce this method here and not in Chapter 2.

In more detail, we assume that the bidiagonal factorization

A = UBV T (5.3)

is given, where U and V are orthogonal and B is bidiagonal. Hence, we can
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express forward and adjoint systems as

UBV Tx = b

and

V BTUTy = g.

So far we have assumed that an explicit bidiagonal factorization (5.3)

is given which is a rather unrealistic assumption for large sparse matrices.

In practice, we need an iterative procedure that represents instances of the

bidiagonalization process (cf. [53,45,86,85]). This is done using the following

matrix relationships

AVk = Uk+1Bk

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1

(5.4)

where Vk = [v1, . . . , vk] and Uk = [u1, . . . , uk] are orthogonal matrices and

Bk =



α1

β2 α2

β3
. . .

. . . αk

βk+1


.

The Golub-Kahan bidiagonalization is nothing than the Lanczos process ap-

plied to the matrix ATA; i.e. we multiply the first part of (5.4) by AT on the

left and then use the second part to get the Lanczos relation for ATA

ATAVk = ATUk+1Bk =
(
VkB

T
k + αk+1vk+1e

T
k+1

)
Bk = VkB

T
k Bk+α̂k+1vk+1e

T
k+1
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with α̂k+1 = αk+1βk+1 (see [8,61] for details). Note that lsqr is algebraically

equivalent to cg for the normal equations (cgne) but with better numerical

properties (see [86, 85] for details). Note that the convergence of cgne is

governed by the singular values of the matrix A [81]. The initial vectors of

both sequences vj and uj are linked by the relationship

ATu1 = α1v1. (5.5)

We now use the iterative process described in (5.4) to obtain approximations

to the solutions of the forward and the adjoint problem. The residuals at

step k can be defined as

rk = b− Axk (5.6)

and

sk = g − ATyk (5.7)

with

xk = x0 + Vkzk

and

yk = y0 + Uk+1wk.

A typical choice for u1 would be the normalized initial residual u1 = r0/ ‖r0‖.
Hence, we get for the residual norms that

‖rk‖2 = ‖b− Axk‖2

= ‖b− A(x0 + Vkzk)‖2

= ‖r0 − AVkzk‖2

= ‖r0 − Uk+1Bkzk‖2

= ‖‖r0‖2 e1 −Bkzk‖2

(5.8)

using (5.4) and the orthogonality of Uk+1. The adjoint residual can now be
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expressed as

‖sk‖2 =
∥∥g − ATyk∥∥2

=
∥∥g − AT (y0 + Uk+1wk)

∥∥
2

=
∥∥g − ATy0 − ATUk+1wk

∥∥
2

=
∥∥s0 − VkBT

k wk − αk+1vk+1e
T
k+1wk

∥∥
2
.

(5.9)

Notice that (5.9) cannot be simplified to the desired structure

∥∥‖s0‖2 e1 −BT
k wk

∥∥
2

since the initial adjoint residual s0 is not in the span of the current and all

the following vj-s.

The classical lsqr [86] method is an algorithm created to obtain an

approximation that minimizes only the residual for the forward problem

‖rk‖2 = ‖b− Axk‖2. The method is very successful and widely used in

practice but is limited due to the restriction given by (5.5) in the case of

simultaneous iteration for the adjoint problem. In more detail, we are not

able to choose the second starting vector independently and therefore can-

not obtain the desired least squares structure for the adjoint problem as the

one obtained for the forward residual. Figure 5.2 illustrates the behavior we

could observe for all our examples with the lsqr method. Here, we are

working with a random matrix2 of dimension 100×100. Convergence for the

forward solution could be observed when a large number of iteration steps

was executed, whereas the convergence for the adjoint residual could not be

achieved at any point which is illustrated by the stagnation of the adjoint

solution. As already mentioned, this is due to the coupling of the starting

vectors and hence the sequence vj does not have any information about the

right hand side of the adjoint equation. In the next section, we present a

different approach that overcomes this drawback.

2A matrix with random normally distributed entries MATLAB command randn

Martin Stoll 121



5.2. SOLVING THE LINEAR SYSTEMS

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

2−
no

rm
 o

f t
he

 r
es

id
ua

l

 

 

LSQR adjoint
LSQR forward

Figure 5.2: Solving a linear system of dimension 100 × 100 with the lsqr
approach.

5.2.3 Generalized lsqr (glsqr )

The simultaneous computation of forward and adjoint solutions based on

the classical lsqr method is not very successful in the context of solving

both problems together since the starting vectors u1 and v1 depend on each

other through (5.5). In [99] Saunders et al. introduced a more general lsqr
method that was also recently analyzed by Reichel and Ye (see [91]). Saun-

ders and coauthors also mention in their paper that the method presented can

be used to solve forward and adjoint problem at the same time. We discuss

this here in more detail. We present further analysis of the method described

in [99, 91]. The method of interest makes it possible to choose the starting

vectors u1 and v1 independently, e.g. u1 = r0/ ‖r0‖2 and v1 = s0/ ‖s0‖2. The
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algorithm stated in [99,91] is based on the following factorization

AVk = Uk+1Tk+1,k = UkTk,k + βk+1uk+1e
T
k

ATUk = Vk+1Sk+1,k = VkSk,k + ηk+1vk+1e
T
k

(5.10)

where

Vk = [v1, . . . , vk]

and

Uk = [u1, . . . , uk]

are orthogonal matrices and

Tk+1,k =



α1 γ1

β2 α2
. . .

. . . . . . γk−1

βk αk

βk+1


as well as

Sk+1,k =



δ1 θ1

η2 δ2
. . .

. . . . . . θk−1

ηk δk

ηk+1


.

In the case of no breakdown3, the following relation holds

STk,k = Tk,k.

3We discuss breakdowns later in this section.
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The matrix factorization given in (5.10) can be used to produce simple

algorithmic statements of how to obtain new iterates for uj and vj:

βk+1uk+1 = Avk − αkuk − γk−1uk−1

ηk+1vk+1 = ATuk − δkvk − θk−1vk−1

. (5.11)

The parameters αk, γk−1, δk, θk−1 can be determined via the Gram-Schmidt

orthogonalization process in the classical version given by

αk = 〈Avk, uk〉, γk−1 = 〈Avk, uk−1〉, δk = 〈ATuk, vk〉 and θk−1 = 〈ATuk, vk−1〉.

It is also possible to employ a modified Gram-Schmidt process. Furthermore,

βk+1 and ηk+1 are determined from the normalization of the vectors in (5.11).

Since it is well understood that the classical Golub-Kahan bidiagonal-

ization process introduced in [45] can be viewed as the Lanczos algorithm

applied to the matrix ATA, we want to analyze whether a similar connec-

tion can be made for the glsqr method given in [99, 91]. Note that if the

Lanczos process is applied to the matrix

 0 A

AT 0


with starting vector [u1, 0]T we get equivalence to the Golub-Kahan bidiag-

onalization (see [8, 61] for details).

The generalized lsqr method (glsqr) given in [99,91] looks very sim-

ilar to the Lanczos process applied to the matrix

 0 A

AT 0



Martin Stoll 124



5.2. SOLVING THE LINEAR SYSTEMS

and we will now show that in general glsqr can not be seen as a Lanczos

process applied to this matrix. The Lanczos iteration then gives

νk+1

 uk+1

vk+1

 =

 0 A

AT 0


 uk

vk

− ξk
 uk

vk

− %k−1

 uk−1

vk−1

 (5.12)

and the resulting recursions are then

νk+1uk+1 = Avk − ξkuk − %k−1uk−1

νk+1vk+1 = ATuk − ξkvk − %k−1vk−1.
(5.13)

The parameters %k−1, ξk and νk+1 are related to the parameters from the

glsqr process via

ξk = uTkAvk + vTkA
Tuk = αk + δk

%k−1 = uTk−1Avk + vTk−1A
Tuk = γk−1 + ηk−1

and since the Lanczos process generates a symmetric tridiagonal matrix we

also get

νk+1 = %k = γk + ηk.

The orthogonality condition imposed by the symmetric Lanczos process en-

sures that [
uTk+1 vTk+1

] uk

vk

 = 0

which reduces to uTk+1uk + vTk+1vk = 0. This criteria would be fulfilled by the

vectors coming from the glsqr method because it creates two sequences

of orthonormal vectors. In general, the vectors coming from the symmetric

Lanczos process do not satisfy uTk+1uk = 0 and vTk+1vk = 0.

In the following, we study the similarity of glsqr and a special Block-
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Lanczos method. In [99], a connection to a Block-Lanczos for the matrix

ATA was made. Here we will discuss a method based on 0 A

AT 0

 .
Hence, we assume the complete matrix decompositions

AV = UT and ATU = V T ∗

with S = T ∗ are given. Using this we can rewrite the linear system (1.19) as

 U 0

0 V


 0 T

T ∗ 0


 UT 0

0 V T


 y

x

 =

 b

g

 . (5.14)

We now introduce the perfect shuffle permutation

Π = [e1, e3, . . . , e2, e4, . . .] (5.15)

and use Π to modify (5.14) which becomes

 U

V

ΠTΠ

 0 T

T ∗ 0

ΠTΠ

 UT 0

0 V T


 y

x

 =

 b

g

 . (5.16)

We now further analyze the matrices given in (5.16). The first two matrices
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can also be written as

| | | | | |

u1 u2
... 0 0 0

| | | | | |

| | | | | |

0 0 0 v1 v2
...

| | | | | |


ΠT =



| | | | | |

u1 0 u2 0
...

...

| | | | | |

| | | | | |

0 v1 0 v2
...

...

| | | | | |


= U .

Next, we are going to study the similarity transformation on

 0 T

T ∗ 0


using Π which results in

T = Π

 0 T

T ∗ 0

ΠT =



Θ1 ΨT
1

Ψ1 Θ2 ΨT
2

Ψ2
. . . . . .

. . . . . .


(5.17)

with

Θi =

 0 αi

αi 0

 and Ψi =

 0 βi+1

γi 0

 .

It is easy to see using the properties of the Reichel and Ye lsqr method
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that the matrix U is an orthogonal matrix and furthermore that if we write

U = [U1,U2, · · · ] where

Ui =



| |

ui 0

| |

| |

0 vi

| |


that UTi Ui = I for all i. Thus, one particular instance at step k of the

reformulated Block-method reduces to

Uk+1Ψk+1 =

 0 A

AT 0

Uk − UkΘk − Uk−1ΨT
k−1.

Hence, we have shown that the glsqr method can be viewed as a special

Block-Lanczos method with stepsize 2 (see [53,76] for more details on Block-

methods).

5.2.4 glsqr and linear systems

The glsqr process analyzed above can be used to obtain approximate

solutions to the linear and the adjoint systems. With glsqr, we are now

able to set u1 and v1 independently and choose for initial guesses x0, y0 with

residuals r0 = b− Ax0, s0 = g − ATy0

u1 =
r0

‖r0‖2

and

v1 =
s0

‖s0‖2

.
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Hence, our approximations for the solution at each step are given by

xk = x0 + Vkzk (5.18)

for the forward problem and

yk = y0 + Ukwk (5.19)

for the linear system involving the adjoint. Using this and (5.10) we can

express the residual at step k as follows: for the forward problem

‖rk‖2 = ‖b− Axk‖2

= ‖b− A(x0 + Vkzk)‖2

= ‖r0 − AVkzk‖2

= ‖r0 − Uk+1Tk+1,kzk‖2

=
∥∥UT

k+1r0 − Tk+1,kzk
∥∥

2

= ‖‖r0‖2 e1 − Tk+1,kzk‖2
(5.20)

and in complete analogy

‖sk‖2 =
∥∥g − ATyk∥∥2

=
∥∥V T

k+1s0 − Sk+1,kwk
∥∥

2

= ‖‖s0‖2 e1 − Sk+1,kwk‖2 . (5.21)

The solutions zk and wk can be obtained by solving the least squares systems

(5.20) and (5.21) respectively. We established earlier that such a least squares

system can be solved using the updated QR factorization (see also [84]).

Hence, we have to compute two Givens rotations at every step to solve the

systems (5.20) and (5.21) efficiently. Remembering Section 2.1.2, there is no

need to store the whole basis Vk or Uk in order to update the solution as

described in (5.18) and (5.19).
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The storage requirements for the glsqr method are similar to the stor-

age requirements for a method based on the non-symmetric Lanczos process

as proposed by Lu and Darmofal in [74]. We need to store the vectors uj,

vj, uj−1 and vj−1 to generate the basis vectors for the next Krylov space.

Furthermore, we need to store the sparse matrices Tk+1,k and Sk+1,k. This

can be done in a parameterized fashion–remember that they are tridiago-

nal matrices– and since, until the first breakdown occurs, Tk,k = STk,k holds

the storage requirement can be reduced even further. The triangular factors

of Tk+1,k and Sk+1,k can also be stored very efficiently since they only have

three nonzero diagonals. According to (2.6) the solutions xk and yk can be

updated with only storing two vectors ck−2 and ck−3 for the forward problem

and another two vectors for the adjoint solution. Thus the solutions can be

obtained by storing only a minimal amount of data in addition to the original

problem.

In [91], Reichel and Ye solve the forward problem and introduce the term

breakdown in the case that the matrix Sk+1,k associated with the adjoint

problem has a zero entry on the subdiagonal. Note that until a breakdown

occurs it is not necessary to distinguish between the parameters of the for-

ward and adjoint sequence, since Tk,k = STk,k. We will discuss these break-

downs and show that they are indeed lucky breakdowns which means that

the solution can be found in the current space. When the breakdown occurs,

we assume that the parameter βk+1 = 0 whereas ηk+1 6= 0, in which case

Reichel and Ye proved in Theorem 2.2 that the solution xk for the forward

problem can be obtained via xk = x0 + ‖r0‖2 VkT
−1
k,ke1. The same holds if

βk+1 6= 0 whereas ηk+1 = 0 in which case the solution yk can be obtained

via yk = y0 + ‖s0‖2 UkS
−1
k,ke1. Note that this is in contrast to the breakdowns

that can occur in the non-symmetric Lanczos process.

In both cases, we have to continue the algorithm since only the solution

to one of the two problems is found. Without loss of generality, we assume

that βk+1 = 0 whereas ηk+1 6= 0 which means that the forward problem has

already been solved. A strategy implicitly proposed by Reichel and Ye is to
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compute uk+1 using

βk+1uk+1 = 0 = Avk − αkuk − γk−1uk−1

which gives

αk+1uk+1 = Avk+1 − γkuk.

In terms of matrices this would result in an upper bidiagonal part of Tk+1,k

from the iteration where the breakdown occurred. There is no need to update

the solution xk in further steps of the method. The vectors uk+1 generated

by this two-term recurrence are used to update the solution for the adjoint

problem in a way we will now describe. First, we obtain a new basis vector

vj+1

ηj+1vj+1 = ATuj − δjvj − θj−1vj−1

and then update the QR factorization of Sk+1,k to get a new iterate yk. If

the parameter ηj+1 = 0, the solution for the adjoint problem is found and

the method can be terminated. In the case of the parameter αk+1 becoming

zero the solution for the adjoint problem can be obtained using the following

Theorem which stands in complete analogy to Theorem 2.3 in [91].

Theorem 5.1. We assume that glsqr does not break down until step m of

the algorithm. At step m we get βm+1 = 0 and ηm+1 6= 0, which corresponds

to the forward problem being solved. The process is continued with the update

αk+1uk+1 = Avk+1 − γkuk.

The solution of the adjoint problem can now be obtained from one of the

following two cases if the breakdown occurs at step k

1. If the parameter ηk+1 = 0 then the adjoint solution is given by yk =

y0 + ‖s0‖2 UkS
−1
k,ke1.

2. If the parameter αk+1 = 0 and ηk+1 6= 0 then the adjoint problem can

be recovered using yk = y0 + Ukwk.
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Proof. The proof of the first point is trivial since for ηk+1 = 0 the least

squares error in

min
w∈Rk

‖‖r0‖2 e1 − Sk+1,kwk‖2

is equal to zero. For the second point we not that the solution wk to the

least squares problem

min
w∈Rk

‖‖r0‖2 e1 − Sk+1,kwk‖2

satisfies the following relation

STk+1,k (‖r0‖2 e1 − Sk+1,kwk) = 0. (5.22)

The breakdown with αk+1 = 0 results in

αk+1uk+1 = 0 = Avk+1 − γkuk

which means that no new uk+1 is generated in this step. In matrix terms we

get

AVk+1 = UkTk,k+1

and

ATUk = Vk+1Sk+1,k.
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This results in,

A(g − ATy) = A(s0 − ATUkwk)

= A(s0 − Vk+1Sk+1,kwk)

= As0 − AVk+1Sk+1,kwk

= ‖s0‖2AVk+1e1 − AVk+1Sk+1,kwk

= ‖s0‖2 UkTk,k+1e1 − UkTk,k+1Sk+1,kwk

= UkTk,k+1 (‖s0‖2 e1 − Sk+1,kwk)

= UkS
T
k+1,k (‖s0‖2 e1 − Sk+1,kwk)

= 0

using the fact that STk+1,k = Tk,k+1 (see Theorem 2.1 in [91]). Due to the

assumption that A is nonsingular, the solution for the adjoint problem is

given by yk = y0 + Ukwk.

This shows that the glsqr method is well-suited to find the solution of

forward and adjoint problem at the same time. The breakdowns that occur

in the process of the algorithm are all benign breakdowns which underlines

the difference from methods–such as bicg or qmr– based on the non-

symmetric Lanczos process. In order to give better reliability of the method

based on the non-symmetric Lanczos process, look-ahead strategies have to

be implemented (cf. [36,89]), though there can still be incurable breakdowns.

5.2.5 Preconditioned glsqr

In practice, the glsqr method can show slow convergence and therefore

has to be enhanced using preconditioning techniques. The convergence of

glsqr has not yet been analyzed, but we feel that using the connection to

the Block-Lanczos process for ATA [99] we can try to look for similarities to

the convergence of cg for the normal equations (cgne). It is well known

[81] that the convergence of cgne is governed by the singular values of
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the matrix A. This fact will be illustrated in Chapter 6. We assume the

preconditioner M = M1M2 is given. Note that in general M1 6= M2. The

preconditioned matrix is now

Â = M−1
1 AM−1

2 ,

and its corresponding transpose is given by

ÂT = M−T
2 ATM−T

1 .

Since we do not want to compute the matrix Â, we have to rewrite the

glsqr method

βj+1uj+1 = M−1
1 AM−1

2 vj − αjuj − γj−1uj−1

ηj+1vj+1 = M−T
2 ATM−T

1 uj − δjvj − θj−1vj−1

(5.23)

to obtain an efficient implementation of the preconditioned procedure, i.e.

βj+1M1uj+1 = AM−1
2 vj − αjM1uj − γj−1M1uj−1

ηj+1M
T
2 vj+1 = ATM−T

1 uj − δjMT
2 vj − θj−1M

T
2 vj−1.

(5.24)

If we set pj = M1uj, M2q̂j = vj, qj = MT
2 vj and MT

1 p̂j = uj we get

βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1

ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1

(5.25)

with the following updates

q̂j = M−1
2 vj = M−1

2 M−T
2 qj (5.26)
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and

p̂j = M−T
1 uj = M−T

1 M−1
1 pj. (5.27)

We also want to compute the parameters αj, γj−1, δj and θj−1 The parameters

αj, γj−1, δj and θj−1 can also be expressed in terms of the vectors p̂j, q̂j, pj

and qj. Namely, we get

αj = 〈Âvj, uj〉 = 〈Aq̂j, p̂j〉

γj−1 = 〈Âvj, uj−1〉 = 〈Aq̂j, p̂j−1〉

δj = 〈ÂTuj, vj〉 = 〈AT p̂j, q̂j〉

θj−1 = 〈ÂTuj, vj−1〉 = 〈AT p̂j, q̂j−1〉

which can be computed cheaply. Note that we need to evaluate AT p̂j and Aq̂j

once in every iteration step. The parameters βj+1 and ηj+1 can be computed

using Equations (5.26) and (5.27) (see Algorithm 5.1 for a summary of this

method).

for k = 0, 1, . . . do
Solve (MT

2 M2)q̂j = qj
Solve (M1M

T
1 )p̂j = pj

Compute Aq̂j.
Compute αj = 〈Aq̂j, p̂j〉 and γj−1 = 〈Aq̂j, p̂j−1〉.
Compute βj+1 and pj+1 via βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1

Compute AT p̂j
Compute δj = 〈AT p̂j, q̂j〉 and θj−1 = 〈AT p̂j, q̂j−1〉.
Compute ηj+1 and qj+1 via ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1

end for

Algorithm 5.1: Preconditioned glsqr

The above formulae enable us to compute the matrices Tk+1,k and Sk+1,k

efficiently. As for the other methods, we can update the QR factorizations

in every step using one Givens rotation for the forward problem and one

Givens rotation for the adjoint problem. The solutions xk and yk can then be
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updated without storing the whole Krylov space but with a recursion similar

to (2.7). The norm of the preconditioned residual r̂k can be computed via

the well known recursion [84]

‖r̂k‖2 = |sin(θk)| ‖r̂k−1‖2

where sin(θk) is associated with the Givens rotation at step k for the forward

problem. The adjoint residual can be updated similarly.

There are different preconditioning strategies for enhancing the spectral

properties of A to make the glsqr method converge faster. One possibility

would be to use an Incomplete LU factorization of A and then set M1 = L

and M2 = U (see [96] for more details).

Another technique is to use the fact that the glsqr method is also a

Block-Lanczos method for the normal equations [99]; i.e. the system matrix

that has to be preconditioned is now ATA. We therefore consider precondi-

tioning techniques that are well suited for the normal equations.

One possibility would be to compute an Incomplete Cholesky factoriza-

tion of ATA, but since the matrix ATA is typically less sparse than A and

we never want to form the matrix ATA explicitly, we consider precondition-

ers coming from an LQ decomposition of A = LQ. In [96], Incomplete LQ

preconditioners based on Incomplete Gram-Schmidt factorizations such as

IMGS are discussed and used as a preconditioner to solve the system with

AAT . This strategy can be adopted when trying to find a solution to a system

with ATA.

Another approach is based on Incomplete Orthogonal factorizations, i.e.

A = QR + E with Q orthogonal, R is a sparse upper triangular matrix and

E is the error term. There are different variants of this decomposition [4,87]

which result in a different structure of the matrix R. In the simple case of

the so-called cIGO (column-Incomplete Givens Orthogonalization) method

where entries are only dropped based upon their position, we restrict R to

have the same sparsity pattern as the original matrix A. We now use Q and

R from the incomplete factorization and set M1 = Q and M2 = R which

gives Â = QTAR−1 for the normal equations ÂT Â = R−TATQQTAR−1 =
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R−TATAR−1. Hence, we can use R as a preconditioner for the normal equa-

tions and therefore for the glsqr method; i.e. we have an incomplete

Cholesky factorization for ATA via an incomplete orthogonal factorization

for A. The same holds for the incomplete LQ factorization and the Q factor

can be omitted for preconditioning.

5.3 Approximating the scattering amplitude

In the following section, we discuss how to approximate the scattering ampli-

tude without computing a solution to the linear system. The principle reason

for this approach rather than computing xk and then the inner product of g

with xk relates to numerical stability: the analysis in section 10 of [110] for

Hermitian systems and the related explanation in [112] for non-Hermitian

systems shows that approach to be sensitive in finite precision arithmetic,

whereas our approach based on Gauss quadrature is more reliable. In [112]

Strakoš and Tichý give a survey of methods that can be used to approximate

the scattering amplitude directly.

5.3.1 Matrices, Moments and Quadrature: An Intro-

duction

In [49, 50], Golub and Meurant show how Gauss quadrature can be used to

approximate

uTf(W )v (5.28)

where W is a symmetric and positive definite matrix and f is some smooth

(possibly C∞) function, not necessarily a polynomial. Here, we understand

the function of the matrix as given by the definition by substitution, e.g.

f(z) = z−1 becomes f(W ) = W−1 (see [60] for details on functions of matri-

ces).
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This can be done using the eigendecomposition W = QΛQT with orthog-

onal Q and we assume λ1 ≤ λ2 ≤ · · · ≤ λN . As a result we get

uTf(W )v = uTQf(Λ)QTv. (5.29)

By introducing α = QTu and β = QTv, we can rewrite (5.29) as

uTf(W )v = αTf(Λ)β =
N∑
i=1

f(λi)αiβi. (5.30)

The expansion (5.30) can be viewed as a Riemann-Stieltes integral

I [f ] = uTf(W )v =

∫ b

a

f(λ)dα(λ) (5.31)

where the piecewise constant measure α is defined as follows

α(λ) =


0 if λ < a = λ1∑i

j=1 αjβj if λi ≤ λ < λi+1∑n
j=1 αjβj if b = λn < λ

We can now express (5.31) as the quadrature formula

∫ b

a

f(λ)dα(λ) =
k∑
j=1

ωjf(tj) +
M∑
i=1

vif(zi) +R [f ] , (5.32)

where the weights ωj, vi and the nodes tj are unknowns and the nodes zi are

prescribed. The remainder can be expressed as

R [f ] =
f (2N+M)(η)

(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)

[
N∏
j=1

(λ− tj)

]2

dα(λ), a < η < b. (5.33)
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Following the analysis presented in [49], R [f ] can be rewritten for Gauss

(M = 0), Gauss-Radau (M = 1, z1 = a or z1 = b) or Gauss-Lobatto (M = 2,

z1 = a and z2 = b) quadrature formulas. A more detailed description can be

found in [54,40,48,47,15,16].

We will see in the next section that in the case of u = v, we can compute

the weights and nodes of the quadrature rule by simply applying the Lanczos

process to the symmetric matrix W , see [54]. Then, the eigenvalues of the

tridiagonal matrix will represent the nodes of the quadrature rule and the

first component of the corresponding eigenvector can be used to compute the

weights.

5.3.2 The Golub-Kahan bidiagonalization

The scattering amplitude or primal output Jpr(x) = gTx (cf. Section 1.3)

can now be approximated using the connection between Gauss quadrature

and the Lanczos process given in Algorithm 1.2. To be able to apply the

theory of Golub and Meurant, we need the system matrix W in (5.28) to be

symmetric, which can be achieved by

Jpr(x) = gTA−1b = gT (ATA)−1AT b = gT (ATA)−1p = gTf(ATA)p (5.34)

where f is the reciprocal function and using the fact that x = A−1b and

p = AT b. In order to use the Lanczos process to obtain nodes and weights of

the quadrature formula, we need a symmetrized version of (5.34)

Jpr(x) =
1

4

[
(p+ g)T (ATA)−1(p+ g)− (g − p)T (ATA)−1(g − p)

]
. (5.35)

Good approximations to (p+g)T (ATA)−1(p+g) and (p−g)T (ATA)−1(p−g)

will result in a good approximation to the scattering amplitude. Here, we

present the analysis for the Gauss rule (i.e. M = 0 in (5.32)) where we apply
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the Lanczos process to ATA and get

ATAVk = VkTk + rke
T
k (5.36)

with orthogonal Vk and

Tk =



α1 β2

β2 α2
. . .

. . . . . . βN

βN αN


.

A well-known result by Golub and Welsch [54] is that the eigenvalues tj of

Tk determine the nodes in the quadrature formula

∫ b

a

f(λ)dα(λ) =
k∑
j=1

ωjf(tj) +RG [f ] , (5.37)

where the remainder RG [f ] for the function f(x) = 1
x

is given by

RG [f ] =
1

η2k+1

∫ b

a

[
k∏
j=1

(λ− tj)

]2

dα(λ).

Notice, RG [f ] will always be positive and therefore the Gauss rule will always

give an underestimation of the scattering amplitude.

The weights for the Gauss rule are given by the squares of the first el-

ements of the normalized eigenvectors of Tk [54] in the same order as the

eigenvalues. Instead of applying the Lanczos process to ATA, we can simply

use the Golub-Kahan bidiagonalization procedure presented in Section 5.2.2.

Trivially, the matrix Tk can be obtained from (5.4) via Tk = BT
k Bk. Since

the matrix Tk is a tridiagonal, symmetric matrix, it is relatively cheap to

compute its eigenvalues and eigenvectors, for example, by using a divide and
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conquer method as given in [53, Section 8.5].

The expression
k∑
j=1

ωjf(tj)

can be simplified to
k∑
j=1

ωjf(tj) = eT1 f(Tk)e1, (5.38)

see [51] for a proof of this. Hence, for f(x) = 1/x (5.38) reduces to eT1 T
−1
k e1.

The last expression simply states that we have to find a good approxima-

tion for the (1, 1) element of the inverse of Tk. If we can find such a good

approximation for (T−1
k )(1,1), the computation becomes much more efficient

since no eigenvalues or eigenvectors have to be computed to determine the

Gauss quadrature rule. Another possibility is to solve the system Tkz = e1.

To solve with Tk is relatively cheap since it is tridiagonal.

Golub and Meurant [49, 50] give bounds on the elements of the inverse

using Gauss, Gauss-Radau, Gauss-Lobatto rules depending on the Lanczos

process. These bounds can then be used to give a good approximation to

the scattering amplitude without solving a linear system with Tn or using its

eigenvalues and eigenvectors. We will only give the bounds connected to the

Gauss-Radau rule (M = 1, z1 = a or z1 = b) since then we get both upper

and lower bounds, i.e.

t1,1 − b+
s21
b

t21,1 − t1,1b+ s2
1

≤ (T−1
k )1,1 ≤

t1,1 − a+
s21
a

t21,1 − t1,1a+ s2
1

with s2
1 =

∑
j 6=1 t

2
j1 and ti,j the elements of Tk. These bounds are not sharp

since they will improve with the number of Lanczos steps and the approxi-

mation to the scattering amplitude will improve as the algorithm progresses.

The one-sided bounds for the Gauss rule and the Gauss-Lobatto rule are

given in [49]. It is also possible to obtain the given bounds using variational

principles (see [94]). In the case of cg applied to a positive definite matrix
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A, the (1, 1)-element of T−1
k can be easily approximated using

(T−1
k )(1,1) = 1/ ‖r0‖2

N−1∑
j=0

αj ‖rj‖2

where αj and ‖rj‖ are given at every cg step. This formula is discussed

in [111,110,1] where it is shown to be numerically stable. From [110] we get

that the remainder RG [f ] in the Gauss quadrature where f is the reciprocal

function is equal to the error at step k of cg for the normal equations, i.e.

‖x− xk‖ATA / ‖r0‖ = RG [f ] .

Hence, the Golub-Kahan bidiagonalization can be used to approximate the

error for cg for the normal equations [112].

5.3.3 Approximation using glsqr (the block case)

We now want to use a block method to estimate the scattering amplitude

using glsqr. The 2× 2 matrix integral we are interested in is now

∫ b
a
f(λ)dα(λ) =

 bT 0

0 gT


 0 A−T

A−1 0


 b 0

0 g

 =

 0 bTA−Tg

gTA−1b 0

 .
(5.39)

In [49], Golub and Meurant show how a block method can be used to generate

quadrature formulae. In more detail, the integral
∫ b
a
f(λ)dα(λ) is now a 2×2
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symmetric matrix and the most general quadrature formula is of the form

∫ b

a

f(λ)dα(λ) =
k∑
i=1

Cjf(Hj)Cj +R[f ] (5.40)

with Hj and Cj being symmetric 2 × 2 matrices. Expression (5.40) can be

simplified using

Hj = QjΛjQ
T
j

where Qj is the eigenvector matrix and Λj the 2 × 2 diagonal matrix con-

taining the eigenvalues. Hence,

k∑
i=1

CjQ
T
j f(Λj)QjCj

and if we write CjQ
T
j f(Λj)QjCj as

f(λ1)z1z
T
1 + f(λ2)z2z

T
2

where zj is the j-th column of the matrix CjQ
T
j . Hence, we get for the

quadrature rule
2k∑
i=1

f(λj)zjz
T
j

where λj is a scalar and zj =
[
z

(1)
j , z

(2)
j

]T
∈ R2. In [49], it is shown that there

exist orthogonal matrix polynomials such that

λpj−1(λ) = pj(λ)Bj + pj−1(λ)Dj + pj−2(λ)BT
j−1

with p0(λ) = I2 and p−1(λ) = 0. We can write the last equation as

λ [p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pk−1(λ)] Tk + [0, . . . , 0, pN(λ)Bk]
T
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with

Tk =



D1 BT
1

B1 D2 BT
2

. . . . . . . . .

Bk−2 Dk−1 BT
k−1

Bk−1 Dk


which is a block-tridiagonal matrix. Therefore, we can define the quadrature

rule as ∫ b

a

f(λ)dα(λ) =
2k∑
i=1

f(θi)uiu
T
i +R[f ] (5.41)

where 2k is the order of the matrix Tk, θi eigenvalues of Tk and ui is the

vector consisting of the first two elements of the corresponding normalized

eigenvector. The remainder R[f ] can be approximated using a Lagrange

polynomial and we get

R[f ] =
f (2k)(η)

(2k)!

∫ b

a

s(λ)dα(λ)

where s(x) = (x − θ1)(x − θ2) . . . (x − θ2N). The sign of the function s

is not constant over the interval [a, b]. Therefore, we cannot expect that

the Block-Gauss rule always underestimates the scattering amplitude. This

might result in a rather oscillatory behavior. In [49], it is also shown that

2k∑
i=1

f(θi)uiu
T
i = eTf(Tk)e
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with e = (I2, 0, . . . , 0). In order to use the approximation (5.41), we need a

Block-Lanczos algorithm for the matrix

 0 A

AT 0

 .
The glsqr algorithm represents an implementation of a Block-Lanczos

method for this matrix and can therefore be used to create a block-tridiagonal

matrix Tk as introduced in Section 5.2.3. Using this we show in the second

part of this Section that we can then compute an approximation to the

integral given in (5.39). Hence, the scattering amplitude is approximated via

2k∑
i=1

f(θi)uiu
T
i ≈

 0 gTx

gTx 0


without computing an approximation to x directly.

Further simplification of the above can be achieved following a result

in [112]: since from (5.17)

Tk = Π2k

 0 Tk

T Tk 0

ΠT
2k

where Π2k is the permutation (5.15) of dimension 2k, in the case of the

reciprocal function

eTT −1
k e = eTΠ2k

 0 T−Tk

T−1
k 0

ΠT
2ke

=

 0 eT1 T
−T
k e1

eT1 T
−1
k e1 0

 .
Martin Stoll 145



5.3. APPROXIMATING THE SCATTERING AMPLITUDE

Note that with the settings r0 = b − Ax0 and s0 = g − ATy0 the scattering

amplitude can be written as

gTA−1b = sT0A
−1r0 + sT0 x0 + yT0 b.

With our choice of x0 = y0 = 0, we get that the scattering amplitude is equal

by sT0A
−1r0. Starting the glsqr Block-Lanczos process with

 u1 0

0 v1


where u1 = r0/ ‖r0‖2 and v1 = s0/ ‖s0‖2 results in vT1 A

−1u1 = eT1 T
−1
N e1. An

approximation to the scattering amplitude gTA−1b is thus obtained via

sT0A
−1r0 ≈ ‖r0‖2 ‖s0‖2 e

T
1 T
−1
N e1.

5.3.4 Preconditioned glsqr

In Section 5.2.5, the preconditioned glsqr method was introduced and we

now show that we can use this method to approximate the scattering ampli-

tude directly. In the above, we showed that glsqr gives an approximation

to scattering amplitude using

∫ b

a

f(λ)dα(λ) =

 0 gTA−1b

bTA−Tg 0

 .
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Reformulating this in terms of the preconditioned method gives,

ĝT x̂ = ĝT Â−1b̂

= (M−T
2 g)T (M−1

1 AM−1
2 )−1(M−1

1 b)

= gTM−1
2 M2A

−1M1M
−1
1 b

= gTA−1b

= gTx

which shows that the scattering amplitude for the preconditioned system

Âx̂ = b̂ with Â = M−1
1 AM−1

2 , x̂ = M2x and b̂ = M−1
1 b is equivalent to the

scattering amplitude of the original system. The scattering amplitude can

therefore be approximated via

∫ b

a

f(λ)dα(λ) =

 0 ĝT x̂

x̂T ĝ 0

 .
5.3.5 bicg and the scattering amplitude

The methods we presented so far are based on Lanczos methods for ATA.

The algorithm introduced in this Section connects bicg (see Algorithm 2.11

and [31]), a method based on the non-symmetric Lanczos process, and the

scattering amplitude.

Using rj = b − Axj and sj = g − ATyj, the scattering amplitude can be

expressed as

gTA−1b =
N−1∑
j=0

αjs
T
j rj + sTNA

−1rN , (5.42)

where N is the dimension of A (cf. [112]). To show this, we use r0 = b, s0 = g
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and

sTj A
−1rj − sTj+1A

−1rj+1

= (g − ATyj)TA−1(b− Axj)− sTj+1A
−1rj+1

= (g − ATyj + ATyj+1 − ATyj+1)TA−1(b− Axj + ATxj+1 − ATxj+1)

−sTj+1A
−1rj+1

= (sj+1 + AT (yj+1 − yj))TA−1(rj+1 + A(xj+1 − xj))− sTj+1A
−1rj+1

= αj(q
T
j rj+1 + sTj+1pj + αjq

T
j Apj)

= αjs
T
j rj,

where we use αj =
〈sj ,rj〉
〈qj ,Apj〉 (cf. Section 2.2.3). An approximation to the

scattering amplitude at step k is then given by

gTA−1b ≈
k∑
j=0

αjs
T
j rj.

Considering the preconditioned systems

Âx̂ = b̂ and ÂT ŷ = ĝ

with Â = M−1
1 AM−1

2 , x̂ = M2x, ŷ = MT
1 y, b̂ = M−1

1 b = r̂0, ĝ = M−T
2 g = ŝ0

and the relation gTA−1b = ŝT0 Â
−1r̂0, we can use (5.42) for the preconditioned

bicg method.

Another way of approximating the scattering amplitude via bicg was

given by Saylor and Smolarski [101, 100] in which the scattering amplitude

is connected to Gaussian quadrature in the complex plane. The scattering

amplitude is then given by

gTA−1b ≈
k∑
i=1

ωi
ζi
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where ωi and ζi are eigenvector component and eigenvalue, respectively, of the

tridiagonal matrix associated with the appropriate formulation of bicg(see

[101, 100] for details). The derivation of Saylor’s and Smolarski approach is

not as straightforward as the one given in (5.42) coming from [112].
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CHAPTER 6

NUMERICAL RESULTS

This chapter shows the numerical experiments carried out to illustrate the

theoretical results presented in previous chapters. The focus is on showing

that the methods not only have a solid theoretical foundation but can also

compete and even outperform existing methods.

6.1 Bramble-Pasciak+ and Combination Pre-

conditioning

Bramble-Pasciak+ preconditioner

In this section, we look at matrices coming from the Stokes problem (1.11).

In particular, the individual examples are generated using the ifiss package

[23]. Namely, we consider the flow over the channel domain (Example 5.1.1

in [24]) and the flow over a backward facing step (Example 5.1.2 in [24]).

As shown in Section 1.3, the Stokes equation (1.11) can be transformed

using a weak formulation which can then be treated using the finite element

method. The governing linear system (1.14) is in saddle point form. Here,
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6.1. BP+ AND COMBINATION PRECONDITIONING

we have to compare our Bramble-Pasciak+ preconditioner to other suitable

methods. One candidate would be the block diagonal preconditioning already

introduced in Section 2.1.2 (see [114, 104] for more details). This enables us

to use the H-minres method with H+ introduced in Section 2.1.2. We

compare this method to the classical minres algorithm with the block-

diagonal preconditioner. In the ifiss implementation, the preconditioner

S0 is chosen to be the positive-definite pressure mass matrix (see Section 6.2

in [24]). The right hand side for each example is also given by ifiss.

Example 6.1. The first example is based on the flow over a backward fac-

ing step. The size of the system matrix A is 6659× 6659 with m = 769 and

n = 5890. The results shown in Figure 6.1 are obtained by using H-minres

with H+ and the classical preconditioned minres as given in [114, 104] as

well as cg for the classical Bramble-Pasciak setup. The preconditioner A0

is given by the Incomplete Cholesky factorization, in particular we use MAT-

LAB’s implementation with no additional fill-in (see [96] for details). S0 is

given by IFISS as the pressure mass matrix. The blue (dashed) curve shows

the results of Preconditioned minres with a block-diagonal preconditioner.

The corresponding preconditioned residual is given in the 2-norm. The black

(dash-dotted) line shows the 2-norm preconditioned residuals computed by the

H-minres algorithm. The red (solid) curve shows the preconditioned resid-

uals for cg with the Bramble-Pasciak setup. As expected from the eigenvalue

analysis in Section 3.4 the results for minres and H-minres are very sim-

ilar and are both outperformed by the Bramble-Pasciak cg except for rather

large convergence tolerances. It should be mentioned that minres and H-

minres with H+ will work as long as the positivity of the inner product for

H-minres and positivity of the preconditioner for minres are given. In

contrast, reliability of cg for Bramble-Pasciak cannot be guaranteed if the

matrix A0 is not appropriately scaled. Nevertheless, it quite often works in

practice as is shown in this example. We only show the 2-norm of the resid-

uals here and hence monotonicity cannot be expected. The norms in which

the residuals are minimized are given in Chapter 2.
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Figure 6.1: Results for H-minres, classical preconditioned minres and
cg for classical Bramble-Pasciak.

Example 6.2. This example is again taken from ifiss and represents the

flow over a channel domain. The size of the system matrix A is given by

9539 × 9539 with m = 1089 and n = 8450. The results shown in Figure

6.2 are obtained by using H-minres with H+ and the classical precondi-

tioned minres as given in [114, 104] as well as itfqmr for the classical

Bramble-Pasciak setup. The preconditioners are chosen such that A0 = A

and S0 is given by ifiss as the pressure mass matrix. With the choice of

A0 = A the Bramble-Pasciak cg is bound to fail, but here we illustrate

that itfqmr can work in this setup. The blue (dashed) curve shows the

results of the Preconditioned minres with a block-diagonal preconditioner.

The corresponding preconditioned residual is given in the 2-norm. The black

(dash-dotted) line shows the 2-norm preconditioned residuals computed by the

H-minres algorithm. The red (solid) curve shows the preconditioned resid-

uals for itfqmr with the Bramble-Pasciak setup. Again, the results for

minres and H-minres are very similar.
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Figure 6.2: Results for H-minres, classical Preconditioned minres and
itfqmr for classical Bramble-Pasciak.

Combination preconditioning

We now show results for the combination preconditioning with the Bramble-

Pasciak and the Bramble-Pasciak+ setup presented in Chapter 3.

Example 6.3. In this example, the matrix represents the flow over a channel

domain and is of size 9539×9539. Our choice for A0 is again the Incomplete

Cholesky decomposition with zero fill-in and S0 the pressure mass matrix.

Figure 6.3 shows the results for different values of α. The choice for α =

2/3 shown in the black (solid) curve performs better than original Bramble-

Pasciak method reflected by α = 1 in the blue (dashed) line. For comparison,

we also show the results for the preconditioned minres in the red (dashed)

line. Further values of α are shown in Figure 6.3.

Example 6.4. The setup for this example is identical to the one described

in Example 6.3, only the underlying matrix now comes from the flow over

the backward facing step. The dimension of A is 6659 × 6659. As can be

seen from the results in Figure 6.4, the combination preconditioning again

outperforms itfqmr with Bramble-Pasciak setup for α = 2/3.
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Figure 6.3: itfqmr results for combination preconditioning with different
values for α.

The combination of the Bramble-Pasciak setup and the method of Schöberl

and Zulehner as presented in Section 3.5.3 is given by the preconditioner

P−1
3 =

 (α− β)A−1
0 −βA−1

0 BT Ŝ−1

0 (β − α)Ŝ−1 − βŜ−1BA−1
0 BT Ŝ−1


 I 0

−BA−1
0 I


and inner product

H3 =

 A− A0 0

0 Ŝ

 .
Example 6.5. In this example, we apply cg with the combination precondi-

tioning setup for Schöberl-Zulehner and Bramble-Pasciak to a linear system

coming from the flow over a backward facing step of dimension 6659. The

preconditioner A0 is chosen to be the zero fill-in Incomplete Cholesky factor-

ization and Ŝ is the pressure mass matrix given in ifiss. For the parameter

choice α = −.3 and β = .5, the combination marginally outperforms the

method of Schöberl and Zulehner as shown in Figure 6.5.
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Figure 6.4: itfqmr results for combination preconditioning with different
values for α.

We want to mention here that at this point in time the choice of the

parameters α and β is more or less determined from numerical experiments.

We want to use these results as a proof of concept that combination precon-

ditioning can give competitive results. Further research should investigate

the choice of α and β.

Example 6.6. In this example, we apply cg with the combination precondi-

tioning setup for Schöberl-Zulehner and Bramble-Pasciak to a linear system

coming from the flow over the channel domain of dimension 9539. In addi-

tion, we show the results for cg with Bramble-Pasciak setup. The precondi-

tioner A0 is chosen to be the zero fill-in Incomplete Cholesky factorization,

and Ŝ is the pressure mass matrix given in ifiss. Again Figure 6.6 shows

that for the parameter choice α = −.3 and β = .5, the combination is able to

outperform the method of Schöberl and Zulehner.
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Figure 6.5: cg for Schöberl-Zulehner and Combination preconditioning for
α = −.3 and β = .5.
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Figure 6.6: cg for Schöberl-Zulehner, Bramble-Pasciak and Combination
preconditioning for α = −.3 and β = .5.
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The results shown in this section indicate that particular combinations

outperform widely used methods. The first example for the combination

of classical and modified Bramble-Pasciak method requires fewer iterations

while the work per iteration is the same. The combination preconditioning

method was able to outperform both the Bramble-Pasciak cg and Schöberl

and Zulehner’s cg method. Here the application of the preconditioner is

slightly more expensive than in Schöberl and Zulehner’s cg method but

the application of the inner product is cheaper. The choice of parameters is

not fully understood for all the methods presented and provides interesting

research directions for the future.

6.2 The Bramble-Pasciak-like method

In this Section, we want to give examples of how the Bramble-Pasciak like

method presented in Chapter 4 can be applied to different problems. The

examples in this section are taken either from the CUTEr test set [55] or are

generated using the ifiss software package. We will again use the structure

presented in Section 4.4 where different setups of the original matrix were an-

alyzed. The methods we compare in this section are the cg of Forsgren, Gill

and Griffin and the Bramble-Pasciak-like cg with P− and H−. Once more

we compare our methods to minres with block-diagonal preconditioning,

P =

 A0 0

0 C0

 .
Note that the (2, 2) block in P is now called C0 since this will not always be

a Schur-complement type preconditioner.
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A definite and C semi-definite

This is a typical setup arising when treating the Stokes problem with Mixed

Finite Elements (see Section 1.3) and we again look at examples generated

by ifiss.

Example 6.7. The first test matrix is of size 6659× 6659 and describes the

flow over a backward facing step. The preconditioner A0 is taken to be the

Incomplete Cholesky factorization with zero fill-in [96]. The preconditioner

C0 is generated by ifiss as the positive-definite pressure mass matrix. It can

be seen from the results in Figure 6.7 that the classical Bramble-Pasciak and

the Bramble-Pasciak-like method in the P− have a similar convergence behav-

ior and they both outperform the preconditioned minres and the Bramble-

Pasciak-like method in the P+ setup.
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Figure 6.7: Results for the backward facing step

Example 6.8. The second test matrix is of size 9539 × 9539 and describes

the flow over a channel domain [24]. The preconditioner A0 is chosen such

that A0 = .9A and C0 is again generated by ifiss as the positive-definite
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pressure mass matrix. The results given in Figure 6.8 again show that the

Bramble-Pasciak cg and itfqmr in the Bramble-Pasciak-like setup with

P− outperform minres and the P+ setup. Additionally, we show the results

if cg is applied with the P− configuration which is not guaranteed to work.
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Figure 6.8: Flow over the channel domain

A indefinite and C definite

This setup typically arises when one is interested in solving optimization

problems and hence the test matrices are coming from CUTEr.

Example 6.9. In this example, we are looking at the matrix CVXQP1 M

from CUTEr which is of size 1500×1500. C will either be a diagonal matrix

with entries of the form 10−k on the diagonal where 2 ≤ k ≤ 10 or it is created

using the MATLAB command C=1e-1*sprandsym(m,.3)+speye(m); which

is an identity matrix plus a random sparse perturbation. The preconditioners

are defined by C0 = 0.9C and A0 = diag(A) + BTC−1
0 B. The results for the

Bramble-Pasciak-like method with the − setup and the Forsgren-Gill-Griffin

method are shown in Figures 6.9 and 6.10.
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Figure 6.9: Diagonal C
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Figure 6.10: Randomly perturbed C
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The last example shows that the performance in the case of diagonal C

is very similar to that given by the FGG method. It should be noted here

that we are able to work with a block-triangular preconditioner in the case

of the Bramble-Pasciak method which makes the solution of a linear system

with this preconditioner easier than for the FGG case. In the case that the

decomposed form of the Bramble-Pasciak-like preconditioner (cf. Section

4.3.2) is used, we would expect similar timings.

A indefinite and C semi-definite

In this part, we again consider examples from the CUTEr testset where

the block A is typically indefinite with zero eigenvalues and the matrix C is

positive semi-definite. In [32], it is assumed that the matrix C if semi-definite

has a zero block in the lower corner. In order to guarantee this structure for

real world examples, some preprocessing might be necessary.

Example 6.10. In this example, we consider the CUTEr matrix CVXQP1 M

of size 1500× 1500 with the block

C =

 Z 0

0 C̃

 ∈ Rm×m

where Z is a matrix with eigenvalues at zero and C̃ is generated using the

MATLAB command 1e-1*sprandsym(p,.1)+1e1*speye(p); with p = m−
3. We use the modified Cholesky preconditioner A0 for the block A as pre-

sented in Section 4.4 and then create a Schur-complement type preconditioner

C0 = C + BA−1
0 BT . Note that we can always reliably apply minres if H

defines an inner product (cf. Section 2.1.2). We also show results for cg
which is not guaranteed to work in the case of semi-definite C and results

using itfqmr for the P− configuration. We compare this setup to the

block-diagonal preconditioned minres. From the results given in Figure
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6.11 it can be observed that the preconditioned minres needs more itera-

tions than the Bramble-Pasciak-like method with the P+ setup to achieve the

given relative tolerance of 10−4.
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Figure 6.11: Indefinite A and semi-definite C for CVXQP1 M

It should be noted that the convergence of minres for the optimization

problems presented in this Section is not based on a solid analysis. This is

in contrast to the problems coming from the Stokes problem (Section 1.3)

where the convergence behavior of minres was fully analyzed in [114,104].

Example 6.11. The second example in this section is again taken from

CUTEr. In particular, we use the matrix CONT050 which is of size 4998×
4998. The setup for C is the same as for CVXQP1 M and we compute a

modified Cholesky preconditioner A0 for A which we then use to generate a

Schur-complement-type preconditioner C0 = C + B diag(A0)−1BT that uses

only the diagonal of A0. The results are shown in Figure 6.12. This exam-

ples emphasizes the point made earlier that the convergence of minres for

problems of this kind is not fully analyzed. For minres, only a very poor

convergence can be observed.
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Figure 6.12: Indefinite A and semi-definite C for CONT050
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The results given in this section reflect the flexibility of the Bramble-

Pasciak-like method. In the setup where A is definite and C is semi-definite

where the Bramble-Pasciak-like setup it not guaranteed to work in the P−
case and cg we still get reasonable results and if one is not willing to invest in

the scaling of the preconditioners the results given by itfqmr are competi-

tive compared to the ones obtained from the classical Bramble-Pasciak-setup,

which is tailored for problems of this type. The setup where A is indefinite

and C is definite shows a performance similar to the method of Forsgren et.

al. whereas more flexibility is given. The final setup where A is indefinite and

C is semi-definite is illustrating the fact that our setup outperforms minres
with block-diagonal preconditioning by a large margin.

6.3 Scattering amplitude

6.3.1 Solving the linear system

In this Section, we want to show numerical experiments for the methods

introduced in Chapter 5 that solve the linear system associated with the

computation of the scattering amplitude or the primal linear output.

Example 6.12. In the first example, we apply the qmr and the glsqr

methods to a randomly perturbed sparse identity of dimension 100, e.g.

A=sprandn(n,n,0.2)+speye(n); in Matlab notation. The maximal itera-

tion number for both methods is 200 and it can be observed in Figure 6.13

that glsqr outperforms qmr for this example.

Example 6.13. The second example is a matrix from the Matrix Market

collection1, the matrix ORSIRR1 which represents a linear system used in

oil reservoir modelling. The matrix size is 1030. The results without precon-

ditioning are shown in Figure 6.14. Results using the Incomplete LU (ILU)

factorization with zero fill-in as a preconditioner for glsqr and qmr are

1http://math.nist.gov/MatrixMarket/
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Figure 6.13: qmr and glsqr for a matrix of dimension 100

given in Figure 6.15. Clearly, qmr outperforms glsqr in both cases. The

choice of using ILU as a preconditioner is motivated mainly by the fact that

we are not aware of more sophisticated implementations of Incomplete Or-

thogonal factorizations or Incomplete Modified Gram-Schmidt decompositions

that can be used under MATLAB. Our tests with the basic implementations

of cIGO and IMGS [96] did not yield better numerical results than the ILU

preconditioner, and we have therefore omitted presenting these results. Nev-

ertheless, we feel that further research in the possible use of Incomplete Or-

thogonal factorizations might result in useful preconditioners for glsqr.

Example 6.14. The next example is motivated by [81] where Nachtigal et al.

introduce examples that show how different solvers for nonsymmetric systems

can outperform others by a large factor. The original example in their paper
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Figure 6.14: glsqr and qmr for the matrix: orsirr 1.mtx
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Figure 6.15: ILU preconditioned glsqr and qmr for the matrix: or-
sirr 1.mtx
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Figure 6.16: Perturbed circulant shift matrix (Example 6.14)

is given by the matrix

J =



0 1

0
. . .

. . . 1

1 0


.

The results shown in Figure 6.16 are for a sparse perturbation of the matrix J ,

i.e. in Matlab notation A=1e-3*sprandn(n,n,0.2)+J;. It is seen that qmr
convergence for both forward and adjoint systems is slow, whereas glsqr
convergence is essentially identical for the forward and adjoint systems and

is rapid.

The convergence of glsqr has not yet been analyzed, but we feel that

using the connection to the Block-Lanczos process forATA we can try to look

for similarities to the convergence of cg for the normal equations (cgne). It

is well known [81] that the convergence of cgne is governed by the singular
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values of the matrix A. We therefore illustrate in the next example how the

convergence of glsqr is influenced by the distribution of the singular values

of A. This should not be seen as a concise description of the convergence

behavior but rather as a starting point for further research.

Example 6.15. In this example, we create a diagonal matrix Σ = diag(D1, D2)

with

D1 =


1000

. . .

1000

 ∈ Rp,p and D2 =



1

2

. . .

q


∈ Rq,q

with p + q = n. We then create A = UΣV T where U and V are orthogonal

matrices. For n = 100 the results of glsqr for D1 ∈ R90,90, D1 ∈ R10,10

and D1 ∈ R50,50 are given in Figure 6.17. There is better convergence when

there are fewer distinct singular values. Figure 6.18 shows the comparison

of qmr and glsqr without preconditioning on an example with n = 1000

and D1 of dimension 600; clearly glsqr is superior in this example.

It can be seen in this Section that qmr outperforms glsqr on many of

the given examples. Nevertheless, qmr is not always guaranteed to work be-

cause it is based on the non-symmetric Lanczos process and can hence break

down (see Section 2.2.2). The results also emphasize that better precondi-

tioning strategies should be developed to make glsqr more competitive,

and we see this as an interesting area for further research.

6.3.2 Approximating the functional

In this section, we want to present results for the methods that approximate

the scattering amplitude directly, and hence avoiding the computation of

approximate solutions for the linear systems with A and AT .
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Figure 6.17: glsqr for different D1
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Figure 6.18: glsqr and qmr for matrix of dimension 1000
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Figure 6.19: Approximations to the scattering amplitude and error (glsqr)

Example 6.16. In this example, we compute the scattering amplitude using

the preconditioned glsqr approach for the oil reservoir example ORSIRR1.

The matrix size is 1030. We use the Incomplete LU (ILU) factorization as a

preconditioner. The absolute values of the approximation from glsqr are

shown in the top part of Figure 6.19 and the bottom part shows the norm of

the error against the number of iterations. Note that the non-monotonicity

of the remainder term can be observed for the application of glsqr .

Example 6.17. In this example, we compute the scattering amplitude using

the preconditioned bicg approach for the oil reservoir example ORSIRR1.

The matrix size is 1030. We once more use the Incomplete LU (ILU) factor-

ization as a preconditioner. The absolute values of the approximation from

bicg are shown in the top part of Figure 6.20 and the bottom part shows

the norm of the error against the number of iterations.

Example 6.18. In this example, we compute the scattering amplitude by

using the lsqr approach presented in Section 5.2.2. The test matrix is of
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Figure 6.20: Approximations to the scattering amplitude and error (bicg)

size 187×187 and represents a Navier-Stokes problem generated by the IFISS

package [23]. The result is shown in Figure 6.21, again with approximations

in the top part and the error in the bottom part.

Again, for the examples computed in this section the method based on

the non-symmetric Lanczos process – in this case bicg– was able to outper-

form the glsqr based approximation of the scattering amplitude. Further

research needs to be devoted to the task to find good preconditioners for

glsqr. Note that in [112] Strakoš and Tichý show more examples using

glsqr to approximate the scattering amplitude where its performance was

competitive.
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Figure 6.21: Approximations to the scattering amplitude and error (lsqr)
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CHAPTER 7

CONCLUSIONS

We have explained the general concept of self-adjointness in non-standard

inner products or symmetric bilinear forms, and in the specific case of sad-

dle point problems have shown how a number of known examples fit into

this paradigm. We have indicated how self-adjointness may be taken advan-

tage of in the choice of iterative solution methods of Krylov subspace type.

In general it is more desirable to be able to work with iterative methods

for self-adjoint matrices compared to general non-symmetric matrices than

non-symmetric iterative methods. This is because of the greater efficiency

of symmetric iterative methods. The understanding of the convergence of

symmetric iterative methods like cg is much more secure and descriptive

than for non-symmetric methods.

The possibility of combination preconditioning by exploiting self-adjointness

in different non-standard inner products or symmetric bilinear forms has

been analyzed and examples given of how two methods can be combined to

obtain a new preconditioner and a different symmetric bilinear form. The

first example combines the new BP+ method which we have introduced with

the classical Bramble-Pasciak method. We demonstrate that a particular

combination outperforms the widely used classical method; it requires fewer

iterations while the work per iteration is the same. The second example
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is of more academic than practical value. The third example combines the

BP method and a recently introduced method by Schöberl and Zulehner.

The combination preconditioning method was able to outperform both the

Bramble-Pasciak cg and Schöberl and Zulehner’s cg method.

Our analysis may provide the basis for the discovery of further useful

examples where self-adjointness may hold in non-standard inner products

and also shows how preconditioning can usefully be employed to create rather

than destroy symmetry of matrices.

Furthermore, we proposed a reformulation of the saddle point problem

which represents a framework for many well known methods for solving sad-

dle point problems. We employed this structure to introduce a Bramble-

Pasciak-like method based on a recently introduced constrained precondi-

tioning technique. This method gives competitive results when applied to

problems coming from optimization whilst being less restrictive on the sys-

tem matrix. This results in a greater flexibility of the method and we have

seen that standard methods can be outperformed when applied to the same

problem.

Moreover, we studied the possibility of using lsqr for the simultaneous

solution of forward and adjoint problems which can be reformulated as prob-

lem in saddle point form. Due to the link between the starting vectors of the

two sequences, this method did not show much potential for a practical solver.

As a remedy, we proposed using the glsqr method which we carefully an-

alyzed, showing its relation to a Block-Lanczos method. Due to its special

structure we are able to choose the two starting vectors independently and

can therefore approximate the solutions for forward and adjoint system at

the same time. Furthermore, we introduced preconditioning for the glsqr
method and proposed different preconditioners. We feel that more research

has to be done to fully understand which preconditioners are well-suited for

glsqr, especially with regard to the experiments where different singular

value distributions were used.

The approximation of the scattering amplitude without first computing

solutions to the linear systems was introduced based on the Golub-Kahan

bidiagonalization and its connection to Gauss quadrature. In addition, we
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showed how the interpretation of glsqr as a Block-Lanczos procedure can

be used to allow approximations of the scattering amplitude directly by using

the connection to Block-Gauss quadrature.

We showed that for some examples the linear systems approach using

glsqr can outperform qmr which is based on the nonsymmetric Lanczos

process and others where qmr performed better. We also showed how lsqr
and glsqr can be used to approximate the scattering amplitude on real

world examples.

Future work based on this thesis should investigate the following points.

The use of non-standard inner product solvers in PDE constrained optimiza-

tion. This is particularly attractive since the eigenstructure of blocks of the

saddle point matrix is well understood. In addition the solver presented by

Schöberl and Zulehner is shown to be independent of the regularization pa-

rameter used in PDE constrained optimization. It should be investigated

whether this can also be shown for the combination of this setup with the

Bramble-Pasciak setup. Of course, further combinations should be sought

after and analyzed when found. The performance of the Bramble-Pasciak-

like method for indefinite left upper blocks in the saddle point system is

particularly encouraging and this should be more carefully analyzed. The

possibilities of using the general framework for the design of new methods

should be investigated. Preconditioning for glsqr is a major point that

should be studied in the future since it will not only be beneficial for the ap-

proximation of the scattering amplitude but might also be used for general

Schur-complement approximations.
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APPENDIX A

EIGENVALUE ANALYSIS FOR

BRAMBLE-PASCIAK-LIKE METHOD

We now want to show how a more general eigenvalue analysis can be made

for the Bramble-Pasciak-like method presented in Chapter 4. The resulting

bounds are not very practical and are hence not fully derived. We follow

a technique used in Section 3.4 where the generalized eigenvalue problem

Au = λP±u is modified using the additional block-diagonal preconditioner

P =

 A0 0

0 C0

 .
Using v = P1/2u we get P−1/2AP−1/2v = λP−1/2P±P−1/2v. This gives rise

to a new generalized eigenvalue problem Ãv = λP̃±v with

Ã =

 A
−1/2
0 AA

−1/2
0 A

−1/2
0 BTC

−1/2
0

C
−1/2
0 BA

−1/2
0 −C−1/2

0 CC
−1/2
0

 =

 Ã B̃T

B̃ −C̃
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and

P̃± =

 I −C−1/2
0 BTA

−1/2
0

0 I

 =

 I −B̃T

±I

 .
Hence, we get

Ãv1 + B̃Tv2 = λv1 − λB̃Tv2 (A.1)

B̃v1 − C̃v2 = ±λv2. (A.2)

Multiplying (A.1) on the left by v∗1, where v∗1 denotes the conjugate transpose

of v1 gives,

v∗1Ãv1 + v∗1B̃
Tv2 = λv∗1v1 − λv∗1B̃Tv2 (A.3)

and multiplying the conjugate transpose of (A.2) on the right by v2 yields

v∗1B̃
Tv2 − v∗2C̃v2 = ±λ̄v∗2v2. (A.4)

Finally, combining (A.3) and (A.4) results in

(1 + λ)(v∗2C̃v2 ± λ̄v∗2v2) + v∗1Ãv1 − λv∗1v1 = 0 (A.5)

which can be further rewritten using ‖v1‖2 = 1− ‖v2‖2

v∗2C̃v2 + λv∗2C̃v2 ± λ̄ ‖v2‖2 ± |λ|2 ‖v2‖2 + v∗1Ãv1 − λ+ λ ‖v2‖2 = 0 (A.6)

From here on we can proceed in a similar way to Section 3.4 but feel that

the resulting bounds on the eigenvalues are not of much practical use and

are hence omitted.
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