Address

Max-Planck-Institut für Dynamik komplexer technischer Systeme

Eileen Edler

Eileen Edler

Eileen Edler

Eileen Edler

Phone:

  • +49 391 6110 164

Email:

Room:

S1.10

Main Focus

1) All-atom Molecular Dynamics (MD) simulations of membrane-bound proteins

Rab5 is a molecular switch from the family of small GTPases which is involved in vesicle transport and found on the early endosome membrane. Rab5 shuttles between the cytosol and the membrane in its inactive (GDP-bound) state, whereas solely membrane-localized active (GTP-bound) Rab5 is able to recruit effector proteins. We perform full-atomistic Molecular Dynamics simulations probing Rab5 dynamics in model membranes of increasing complexity.

2) MD simulations of protein-protein interactions

As a molecular switch Rab5 regulates the membrane recruitment of different proteins. We investigate the interactions between inactive and active Rab5 proteins and their binding partners on a molecular level using full-atomistic MD simulations.

3) Quantum chemical characterization of transition metal complexes as biomimetic model catalysts for the hydrogen evolution

Molecular hydrogen (H2) is considered a potential future energy carrier. In nature, enzymes called hydrogenases produce molecular hydrogen from protons and electrons in archaea, bacteria, and eukaryotes and use the cheap and abundant metal iron (Fe) to accomplish this task. Based on the model of their active sites, biomimetic chemical complexes were synthesized which act as catalysts for H2 conversion. We use quantum mechanical techniques in order to elucidate catalytic reaction mechanisms, reaction kinetics as well as the structure of potential intermediate states.


Curriculum Vitae

  • Since 2013 Ph.D. Student in the research group „Molecular Simulations and Design“ at the Max Planck Institute for Dynamics of Complex Technical Systems
  • 2007-2013 Bachelor's and Master's programme of „Biosystems Engineering“ at the Otto von Guericke University Magdeburg Master thesis: „Quantum chemical investigation of the hydrogen evolution reaction of a mononuclear iron(III) dithiolene complex as a biomimetic model for a hydrogenase“

Organizational Unit (Department, Group, Facility):

  • Max Planck Institute for Dynamics of Complex Technical Systems
  • Molecular Simulations and Design
 
loading content