Aktuelle Veröffentlichungen

Lihong Feng, Athanasios C. Antoulas und Peter Benner
Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems
ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51, Number 6, 27. November 2017
DOI: 10.1051/m2an/2017014

Lado Otrin, Nika Marušič, Claudia Bednarz, Tanja Vidaković-Koch, Ingo Lieberwirth, Katharina Landfester und Kai Sundmacher
Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes
Nano Letters, 17 (11), pp 6816–6821, 25. Oktober 2017
DOI: 10.1021/acs.nanolett.7b03093

Eileen Edler und Matthias Stein
Recognition and stabilization of geranylgeranylated human Rab5 by the GDP Dissociation Inhibitor (GDI)
SmallGTPases, pp. 1-16, 25. Oktober 2017
DOI: 10.1080/21541248.2017.1371268
Open Access Article

Marian Weiss, Johannes Patrick Frohnmayer, Lucia Theresa Benk, Barbara Haller, Jan-Willi Janiesch, Thomas Heitkamp, Michael Börsch, Rafael B. Lira, Rumiana Dimova, Reinhard Lipowsky, Eberhard Bodenschatz, Jean-Christophe Baret, Tanja Vidakovic-Koch, Kai Sundmacher, Ilia Platzman, Joachim P. Spatz
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
Nature Materials, 16. Oktober 2017
DOI: 10.1038/nmat5005

Nicolas M. Kaiser, Michael Jokiel, Kevin McBride, Robert J. Flassig, und Kai Sundmacher

Elena Horosanskaia, Tan Minh Nguyen, Tien Dinh Vu, Andreas Seidel-Morgenstern und Heike Lorenz
Crystallization-Based Isolation of Pure Rutin from Herbal Extract of Sophora japonica L.
Organic Process Research & Development, 2. Oktober 2017
DOI: 10.1021/acs.oprd.7b00247

Zu ausgewählten Publikationen ...


Willkommen am Max-Planck-Institut Magdeburg


MALOC Event Series

3439 1446721298

Magdeburg Lectures on Optimization and Control: No Small Linear Program Approximates Vertex Cover within a Factor 2-ε

The vertex cover problem is one of the most important and intensively studied combinatorial optimization problems. Khot and Regev (2003) proved that the problem is NP-hard to approximate within a factor 2-ε, assuming Khot's famous Unique Games Conjecture (UGC). This is tight because the problem has an easy 2-approximation algorithm. We prove the following unconditional result about linear programming (LP) relaxations of the problem: every LP relaxation that approximates vertex cover within a factor 2-ε has super-polynomially many inequalities. [mehr]

loading content