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Complex systems can often be described by partial differential equations based on physical laws. In order
to solve such problems on computing machines, discretization methods need to be applied which can
easily lead to large-scale systems which are expensive to solve. In particular, many practical applications
require a high resolution in order to reflect the system’s geometry and behavior sufficiently well. The
computational barrier becomes even more serious in multi-query scenarios like optimal control. In order
to decrease the computational costs, reduced-order models are introduced to replace the high-dimensional
complex systems by low-order surrogates. However, it is not guaranteed automatically that reduced-order
approximations deliver sufficiently accurate solutions in regards to the (unknown) true solution.

First of all, the reduced-order model is constructed from a set of snapshots, which should reflect most
relevant dynamical properties of the underlying system. In order to select good snapshots efficiently,
we use adaptive strategies in space and time. This requires the development of e.g. residual based a-
posteriori error estimates for simulation and control of the considered complex systems. An example of
such an adaptive space discretization for the benchmark problem of cylinder flow is shown in Figure 1.

Figure 1: Laminar flow around a cylinder using adaptive finite elements

Apart from fluid flow, we are also interested in phase field models governed by the Cahn-Hilliard equations
as well as heat flow. We develop concepts to combine adaptive discretization schemes with model order
reduction techniques and exploit the respective advantages.
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Figure 2: Data enriched numerical solution

Secondly, many practical applications require
highly sophisticated models which are often im-
practical for numerical computations due to their
complexity. Hence, simplifications are often con-
sidered which lead to model errors. In addition,
some problem specifications (like initial or bound-
ary conditions, problem parameters or source
terms) might be unknown or uncertain (model un-
certainties). In order to learn these quantities from
data and enrich the information provided by the
numerical models with measurement data, we uti-
lize ideas from variational data assimilation. In
particular, we aim to find a best compromise be-
tween the (reduced) model forecast and the mea-
sured data, as shown in Figure 2 for a parabolic
dynamical system.


