Mathematics for Business Review Sheet

to be discussed on Tuesday/Wednesday 24/25 January

- 1. Consider the function $f(x) = \frac{x-1}{x+1}$.
 - a) Determine the maximal domain of definition of f.
 - b) Calculate f'(x) and determine the regions where f is monotone increasing/decreasing.
 - c) Determine the equation of the tangent to the graph of f at the point (0, -1).
 - d) Sketch the graph of f.
 - e) Is f invertible? If so, determine f^{-1} along with its domain of definition.
- 2. Let $f(x) = x^2 e^x$.
 - a) Determine the maximal domain of definition of f.
 - b) Find the local extreme points and the inflection points of f.
 - c) Sketch the graph of f.
 - d) Calculate the area between the graph of f and the x-axis over the interval [0,2].
 - e) Show that the equation $x^2e^x = 8$ has exactly one solution $x \in [0, 2]$. Are there other solutions of the equation which do not lie in [0, 2]?
- 3. Evaluate the following integrals:

$$\int_0^1 x \ln(x+2) dx; \quad \int 3x^2 e^{x^3} dx.$$

4. Let N(t) denote the number of people in a country whose homes have a telephone service. Suppose that the rate at which new people get access to a telephone service is proportional to the number of people who still have no access. Then N(t) satisfies the differential equation

$$N'(t) = k(P - N(t)),$$

where P is the population size and k is a positive constant.

- a) Find the solution of this equation if N(0) = 0.
- b) Determine the limit of N(t) as $t \to \infty$.
- 5. For which values of a, b, c does the following system have solutions?

$$x_1 + 2x_2 + x_3 = a$$

$$\frac{3}{4}x_1 + x_2 + \frac{7}{4}x_3 = b$$

$$3x_1 + 4x_2 + 7x_3 = c.$$

Find the set of solutions if a = 1, b = 1, c = 4.

6. For $a \in \mathbb{R}$ let

$$A = \begin{pmatrix} a & 1 & 4 \\ 2 & 1 & a^2 \\ 1 & 0 & -3 \end{pmatrix}.$$

- a) Calculate A^2 , $\det A$ and $\det(A^2)$.
- b) Find all values of a for which A is invertible.
- 7. Solve the following linear programming problem with the help of the Simplex method:

maximize
$$10x_1 + \frac{25}{2}x_2$$
 subject to $5x_1 + \frac{25}{2}x_2 \le 100$
$$9x_1 + \frac{15}{2}x_2 \le 90$$

$$x_1 \le 7$$

$$x_1, x_2 \ge 0.$$

8. Determine and classify the stationary points of

$$f(x,y) = y^3 + 3x^2y - 12x - 15y.$$

- 9. Assume that the solutions of the equation $e^{xy^2} 2x 4y + 3 = 0$ can be written in the form y = h(x) when (x, y) is close to (0, 1). Find h'(0).
- 10. Examine the following problem with the help of Lagrange's method:

maximize
$$20x + 39y - 2x^2 - 3y^2$$
 subject to $4x + 6y = 24$.

- a) Calculate the only solution candidate (x^*, y^*, λ^*) to this problem.
- b) Assuming that the point found in a) is a maximum, determine by approximately how much the optimal value increases if the constraint is changed to 4x + 6y = 24.5.