LOW-RANK SOLVERS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

TOBIAS BREITEN*, VALERIA SIMONCINIT, AND MARTIN STOLL?

Abstract. Many problems in science and technology can be cast using differential equations with both fractional
time and spatial derivatives. To accurately simulate natural phenomena using this technology fine spatial and tem-
poral discretizations are required, leading to large-scale linear systems or matrix equations, especially whenever more
than one space dimension is considered. The discretization of fractional differential equations typically involves dense
matrices with a Toeplitz or in the variable coefficient case Toeplitz-like structure . We combine the fast evaluation
of Toeplitz matrices and their circulant preconditioners with state-of-the-art linear matrix equation methods to effi-
ciently solve these problems, both in terms of CPU time and memory requirements. Additionally, we illustrate how
these techniges can be adapted when variable coefficients are present. Numerical experiments on typical differential
problems with fractional derivatives in both space and time showing the effectiveness of the approaches are reported.
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1. Introduction. The study of integrals and derivatives of arbitrary order, so-called fractional
order, is an old topic in mathematics going back to Euler and Leibniz (see [I7] for historical
notes). Despite its long history in mathematics it was not until recently that this topic has gained
mainstream interest outside the mathematical community. This surging interest is mainly due to
the inadequateness of traditional models to describe many real world phenomena. The well-known
anomalous diffusion process is one typical such example [32]. Other applications of fractional
calculus are viscoelasticity - for example using the Kelvin-Voigt fractional derivative model [23] 53],
electrical circuits [21], [40], electro-analytical chemistry [49] or image processing [54].

With the increase of problems using fractional differential equations there is corresponding
interest in the development and study of accurate, fast, and reliable numerical methods that allow
their solution. There are various formulations for the fractional derivative mainly divided into
derivatives of Caputo or Riemann-Liouville type (see definitions in Section . So far much of
the numerical analysis focused on ways to discretize these equations using either tailored finite
difference [38],B0] or finite element [14], 29] methods. Of particular importance is the preconditioning
of the linear system, which can be understood as additionally employing an approximation of
the discretized operator. For some types of fractional differential equations preconditioning has
recently been considered (see [27,[33]). Another approach that has recently been studied by Burrage
et al. considers approximations to matrix functions to solve the discretized system (see [5] for
details). In this paper we focus on the solution of the discretized equations when a finite difference
approximation is used.  Our work here is motivated by some recent results in [39] where the
discretization via finite differences is considered in a purely algebraic framework.

Our aim is to exploit a novel linear algebra formulation of the discretized differential equations,
which allows us to efficiently and reliably solve the resulting very large algebraic equations. The
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new framework captures the intrinsic matrix structure in each space and time directions typical of
the problem; the corresponding matriz or tensor equations are solved with recently developed fast
iterative methods, which determine accurate low-rank approximations in the solution manifold.

We therefore structure the paper as follows. Section 2.1 provides some background on both
Caputo and Riemann-Liouville fractional derivatives. In Section [3] we introduce different problems
all of fractional order. The problems are either space-, time- or space-time-fractional. Addition-
ally, we introduce variable and constant coefficients. We start with a problem revealing the basic
matrix structure that is obtained when tailored finite difference methods are applied. Later a
more complicated setup will lead to not only having to solve a simple structured linear system
but rather a (linear) matrix Sylvester equation. An even further structured equation is obtained
when we consider a two-dimensional (in space) setup. We also consider a problem that combines
two-dimensional spatial derivatives of fractional order with a time-fractional derivative, which in
turn leads to a tensor structured equation. In Section [l we turn to constructing fast solvers for the
previously obtained matrix equations. We therefore start by introducing circulant approximations
to the Toeplitz matrices, which are obtained as the discretization of an instance of a fractional
derivative. These circulant matrices are important as preconditioners for matrices of Toeplitz type
but can also be used with the tailored matrix equation solvers presented in Section either of
direct or preconditioned form. Section provides some of the eigenvalue analysis needed to show
that our methods perform robustly within the given parameters. This is then followed by a tensor-
valued solver in Section [£:4] The numerical results given in Section [f] illustrate the competitiveness
of our approaches.

Throughout the manuscript the following notation will be used. MATLAB® notation will be
used whenever possible; for a matrix U = [uy,...,u,] € R™*" vec(U) = [uf,... ul]l € R™™
denotes the vector obtained by stacking all columns of U one after the other; A ® B denotes the
Kronecker product of A and B.

2. Fractional calculus and Grunwald formulae.

2.1. The fractional derivative. In fractional calculus there are competing concepts for the
definition of fractional derivatives. The Caputo and the Riemann-Liouville fractional derivatives
[38] are both used here and we use this section to briefly recall their definition.

Consider a function f = f(t) defined on an interval [a,b]. Assuming that f is sufficiently often
continuously differentiable the Caputo derivative of real order a with (n — 1 < o < m) is defined as
(see, e.g., [39, Formula (3)], [6, Section 2.3])

C na _ 1 ‘ f(n)(S)dS
TDI0 = ey L e (21)

where I'(z) is the gamma function. Following the discussion in [39] the Caputo derivative is fre-
quently used for the derivative with respect to time. We also define the Riemann-Liouville deriva-
tive (see, e.g., [39, Formulas (6-7)]) : assuming that f is integrable for ¢t > a a left-sided fractional
derivative of real order o with (n —1 < a < n) is defined as

RL po _ 1 d\" [t f(s)ds .
D f(t)—ir(n_a) (dt) /a(t_ T <t<b. (2.2)

S

Analogously, a right-sided Riemann-Liouville fractional derivative is given by

fLD?f(t)z(_m(d)n/tb@f(s)ds a<t<b. (2.3)

F(TL _ CM) % _ t)oz—n+1 ’
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If one is further interested in computing the symmetric Riesz derivative of order v one can sim-
ply perform the half-sum of the left and right-sided Riemann-Liouville derivatives ( see, e.g., [39,
Formula (5)]), that is,

DR = 5 (FD2 10 + D 110). (2.4

Here a connection to both the left-sided and the right-sided derivatives is madeﬂ In the remainder
of this paper we want to illustrate that fractional differential equations using the formulations
together with certain discretization approaches lead to similar structures at the discrete level. Our
goal is to give guidelines and offer numerical schemes for the efficient and accurate evaluation of
problems of various form. Detailed introductions to fractional differential equations can be found
in [43] [38].

2.2. Numerical approximation. The discretization of fractional derivatives is often done by
finite difference schemes of Griinwald-Letnikov type. Assume that for a one dimensional problem,
the spatial domain is given by = € [a,b]. We here follow [30] for the introduction of the basic
methodology. According to [30] the following holds

1

M
RL na 1
Z DR f(wt) = lim ;ga,kﬂx — kh, ), (2.5)

for the left-sided derivative (see (3) in [30] or (7.10) in [38]), where h = %, and g, is given by

Ik — ) v @
=" = (=1 ) 2.6
9o = Fayrter ) - (2:6)
For the efficient computation of the coefficients g, 1 one can use the following recurrence relatiorﬂ

(38))

a+1
Ga,0 = 1, Ja,k = (1 - A ) Jo,k—1- (27)

This finite difference approximation is of first order [30]. One can analogously obtain an expression
for the right-sided derivative via

M
. 1
SEDR fat) = lim o> gk (@ + khst), (2.8)
k=0

_ b—=x
where h = 7.

Alternatively, a shifted Grinwald-Letnikov formula is introduced in [30]. This discretization
shows advantages regarding the stability when the fractional derivative is part of an unsteady differ-
ential equation. The basis of the discretized operator used later is the following shifted expression

n this work we are not debating, which of these derivatives is the most suitable for the description of a natural
phenomenon.

2 For a MATLAB implementation this can be efficiently computed using y = cumprod([1,1 — ((a + 1)./(1 : n))])
where n is the number of coefficients.
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introduced in [30, Theorem 2.7].

3. Some model problems and discretizations. In what follows, we introduce some pro-
totypes of fractional differential equations. We start with space fractional problems with constant
coefficients. These will then be expanded by an additional time fractional derivative. Similarities
and differences in the non-constant coefficient case are pointed out. We emphasize that the subse-
quent examples are neither the only relevant formulations nor the only possible ways to discretize
each problem. Instead, we show that classical discretization techniques typically lead to dense
but highly structured problems which, when considered as matrix equations, allow for an efficient
numerical treatment.

3.1. Space fractional problems. Consider the one dimensional fractional diffusion equation

% — L Dlu(z,t) = f(z.t), (x.) € (0,1) x (0,T],
u(0,t) = u(1,t) =0, te 0,7, (3.1)
u(z,0) =0, x € 10,1],

with spatial differentiation parameter 5 € (1,2). Equation (3.1) is discretized in time by an implicit
Euler scheme of step size 7 to give
n+l _ ., n
U u . ngun+1 _ fnJrl7 (32)
T
where u" ! = u(x,t,41), and f**1 = f(x,t,41) denote the values of u(x,t) and f(x,t) at time
tnt1 = (n+1)7. According to (2.4) the Riesz derivative is defined as the weighted average of the left
and right-sided Riemann-Liouville derivative. Hence, let us first consider the one-sided analogue of

7 i.e.,

unJrl _ un
—RL phyn+l — gntl (3.3)

T

n+1 —

%

The stable discretization of this problem is introduced in [30, Formula (18)], where using «
u(x;, tny1), the derivative is approximated via

i+1

1

RL 0GB, n+1 n+1

o Dzu; Nigzgﬁvkui—k—&-l'
hz =5

Here, h, = :__fl and n, is the number of interior points in space. Incorporating the homogeneous

Dirichlet bouhdary conditions, an approximation to (3.2)) in matrix form is given by

ug&i —ul 95,1 98,0 0 e 0 u711+1 fanri
n+l . n . . n+ n+
Y2 2 98,2 95,1 98,0 . : Uz f2
1 B .
T =ha gso 0 +
e _ um 9B,ma—1 K 981 9Bo un'+1 nt1
Ny Mg gB8,ng 98,ms—1 .. 9p,2 gs.1 N n® - _nz__z

na un+t1 fn+1
Ts
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We now approximate the symmetric Riesz derivative as the weighted sum of the left- and right-sided
Riemann-Liouville fractional derivative (see also [39, Formula (28)]), to obtain the differentiation
matrix

Ny 1 Ny ng\T
L =§(Tﬁ +(T%") )

While we simply take the weighted average of the discretized operators, the justification of the
weighted two-sided average is laid in [31, Equation (16)] where all ¢; are constant at § and all f; are
zero. Using this notation it is easy to see that the implicit Euler method for solving (3.2)) requires
the solution of the algebraic linear system

CO o

at every time-step. We discuss the efficient solution of this system in Section [4 We here focus on
the shifted version of the Griinwald formulae but want to remark that all techniques presented in
this paper are also applicable when the unshifted version is used.

Next, for Q = (ag, by) X (ay,b,), consider the two-dimensional version of (3.1])

du(z,y,t

WD) Divu(a, 1) — D,y 1) = [y, 0), (2y,0) €2 x (0,7,
ul(w,y,t) =0, (z,9,8) €T x [0.7], (3:5)
u(z,y,0) =0, (z,y) €9,

where 31,02 € (1,2) and T" denotes the boundary of . Using again the shifted Griinwald finite
difference for the spatial derivatives, gives in the x-direction

1 L'(k—51)
B1 _ 1 —(k —
Dru@yt) = Fgy o hm < T(k+1) (k= Dhe,y.t)
and then in the y-direction
1 1 =Tk -
yDgZU(x, y,t) = =——— lim Z Mu(az, y— (k—1)hy,t).

[(—B2) ny—oo hﬁ2 L(k+1)

With the previously defined weights and employing an implicit Euler method in time, we obtain
the following equation

1
~ (0 —u) = (T @ L + LY @ I ) w4 £ (3.6)
o155
Note that for the numerical approximation we have used h, = b;’;ff, hy = bgy_fly with ny + 2 and

ny + 2 degrees of freedom in both spatial dimensions. Again, the boundary degrees of freedom have
been eliminated. To proceed with the implicit time stepping, one now has to solve the large linear
system of equations

T e % R e e (3.7)
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NgMNy

at each time step t,,. Due to the structure of L 1.5, W€ have
I — 7L =1 @ EI"” —7L% | + EI”y — 7L | @I
B1,B2 2 B1 2 B2 :
In other words, the vector u"*! € R""v is the solution of a Kronecker structured linear system.
On the other hand, interpreting u™*!, u™, f**! as vectorizations of matrices, i.e.,
u"™! = vec(U"™), u" =vec(U"), " =vec(F"™), U U" F"T! ¢ R=¥",

this can be rewritten as a Sylvester equation of the form
1 My Ny n+1 n+1 1 n Ny T n n+1
51 —7Lgr | U+ U 51 v—1Lg; =U"+7F""". (3.8)

Note that Lgf and LZ; are both symmetric but, in general, different. In Section 4| we shall exploit
this key connection to efficiently determine a numerical approximation to U™*! and thus to u™**.

3.2. Time fractional problems. We now assume that the time derivative is of fractional
order as well. Hence, in a one-dimensional space let us consider
§ Ditu(w,t) = o Djulw,t) = f(x,1), (w.t) € (0,1) x (0,7],
u(0,¢) = u(l,t) = 0, t € [0,7], (3.9)
u(z,0) =0, xz € [0,1],
where o € (0,1) and S € (1,2).
We again approximate the Riesz derivative as the weighted sum of the left- and right-sided

Riemann-Liouville fractional derivatives used before. The Caputo time-fractional derivative § D§u(z, t)
is then approximated using the unshifted Griinwald-Letnikov approximation to give

u(z, tg) xD%u(:c,to) f(z,t0)
T ! u(x.’ W It xDRu,@’tl) = [t f(x.’tl) 7 (3.10)
u(x,tn,) ID}’B%u(x, tn,) f(@,tn,)
where
[ Gao O ... ... 0 ]
Jo1 Yoo : T %gap | 0
Tt = = T
gao 0 T Gaum,
L 9amny - -+ Ga1 G0 ]

Here, T7¢*! represents the discrete Caputo derivative. In case of a non-zero initial condition
u(z,tg) = ug we get

u(z, t) «Dipula, 1) fla,ty) G

u(xatQ) xD}%u(xytZ) f(l’,tg) Ja,2

T ) o u(z, to). (3.11)

u(‘ratnt) ngU(l’,tnt) f(x?tnt) Ga,ny
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If we now discretize in space this leads to the following algebraic linear system in Kronecker form

((Tgt @IM) — (I ® ng)) u=f (3.12)

where u = [uf,u},...,u? |7 € R"%". Similarly, we define f = [f],£],...,£7]7. Introducing the
matrices U = [uj,us,...,u,,] and F = [f1,...,f,,], we can rewrite (3.12) as

U(Ty)" — LU =F, (3.13)

which shows that U is the solution to a Sylvester matrix equation (see, e.g., [26]), with T"* lower
triangular and L” a dense symmetric matrix.
Finally, if we have fractional derivatives in both a two-dimensional space and time, we consider

OCDtau(xvyv t) - IDI%IU‘(:Lyvt) - yD1622u($7y7t) = f(zay7t)7 (zay7t) S Q x (07 T]:
u(z,y,t) =0, (z,y,t) e I' x [0,T], (3.14)
u(z,y,0) =0, (z,y) €,

Following the same steps as before we obtain a space-time discretization written as the following
algebraic linear system

0
0

Mg Ty P
(Tgt I T oLy ) u ) = (3.15)
The space-time coefficient matrix now has a double tensor structure, making the numerical solution
of the associated equation at each time step much more complex than in the previous cases. An
effective solution strategy resorts to recently developed algorithms that use approximate tensor
computations; see Section [£.4]

3.3. Variable coefficents. In this section we consider a more general FDE, which involves
separable variable coefficients. To simplify the presentation, we provide the details only for the two-

dimensional space-fractional example, since the other cases can be obtained in a similar manner.

We thus consider the case when, i.e., py(x1,22) = p&)(l‘l)pi)( 2), and similarly for the other

coefficients. The left and right sided Riemann-Liouville derivatives enter the equation with different
coefficients, therefore the block

(p+ M +p oD+ D+ Df) (s, s, t)
becomes
(P41TsUP, 2 +P_1TLUP_ 5+ Q1 UT3,Qy 2+ Q-1 UTE Q)
or, in Kronecker notation,
(Pi2®@Py Ty +P_2@P_1T) +QuoTh ®Qy1+Q_2Ts ®Q_1)vec(U).  (3.16)

A simpler case occurs when the coefficients only depend on one spatial variable; for instance, the
following data was used in [51]:

RL RL
(6D —ps D% —p- DI —ay MGDE —a- WD) ulwr,wa,1) = 0
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with
pr =T(1.2)27 p_ =T(1.2)(2—21)", ¢y =T(1.2)257,q_ = (1.2)(2 — 22)".
After the Griinwald-Letnikov discretization, the system matrix A reads
A=TreI™ —T" @I (P,Ts +P_T) ) —1"® (Q Ts, + Q_-Tj) ®I™, (3.17)

where T is the one-sided derivative, P, P_,Q,,Q_ are diagonal matrices with the grid values
of p1,p—,qy,q—, respectively. Now using

I na,P T

Lgr® =P T +P_Tg,

we obtain the following form of the two-dimensional problem
A=T,@I" -I"eL" @I -1, I @ Lj¢. (3.18)

In the more general case when the coefficients are sum of separable terms, that is

.
p(w1,72) = Y pyj(@1)py 5 (w2),
j=1

then the equation can be rewritten accordingly. For instance, assuming for simplicity that all
coefficients are of order r we obtain

3 (P$}2 o PV Ts +PY, 0 PY T + QYT © QY) + QY),Ts, ® Qij}l) . (3.19)

1
Jj=1

Our methodology can be applied to this case as well. An even more general form is obtained if all
coeflicients are of different form and hence results in affine decompositions of different orders. For
reasons of exposition we will not discuss this case further.

The structure of the linear systems in the variable coefficient case is very similar to the constant
coeflicient case but also shows crucial differences. While the matrix Lgf is a symmetric Toeplitz

matrix the matrix Lgf’P is not symmetric and also without Toeplitz structure. Nonetheless, the
fact that it is a sum of terms associated with Toeplitz matrices will be exploited in our solution
strategy.

4. Matrix equations solvers. This section is devoted to the introduction of the methodology
that allows us to efficiently solve the problems presented in Sections In all cases, we start our
discussion by considering the constant coefficient case, and then we continue with by the separable
variable coefficient case. We saw that the discretization of all problems leads to a system that
contained a special structure within the matrix, the so-called Toeplitz matrices discussed in the
next section. We there recall efficient ways to work with Toeplitz matrices and in particular focus
on techniques for fast multiplications and introduce approximations to Toeplitz matrices that can
be used as preconditioners.

We then proceed by introducing methods that are well-suited for the numerical solution of large
scale linear matrix equations, and in particular of Sylvester equations, as they occur in the case
when we have an additional time-fractional or two-dimensional problem. This is followed by a brief



Low-rank solvers for fractional differential equations 9

discussion of a tensor-based approach for the time-fractional problem with two space dimensions.
We shall mainly report on the recently developed KPIK method [44], which seemed to provide a
fully satisfactory performance on the problems tested; the code is used as a stand alone solver. We
additionally use this method as a preconditioner within a low-rank Krylov subspace solver.

Lastly, we discuss the tensor-structured problem and introduce a suitable solver based on
recently developed tensor techniques [36, [35].

As a general remark for all solvers we are going to survey, we mention that they are all related
to Krylov subspaces. Given a matrix A and a vector rg, the Krylov subspace of size [ is defined as

Ki(A,rg) = span {To, Arg, ... ,.Al*lro} )

As [ increases, the space dimension grows, and the spaces are nested, namely K; (A, 79) C Kj41(A,79).
In the following we shall also consider wide forms of generalizations of this original definition, from
the use of matrices in place of g, to the use of sequences of shifted and inverted matrices instead

of A.

4.1. Computations with Toeplitz matrices. We briefly discuss the properties of Toeplitz
matrices and possible solvers. As Ng points out in [34] many direct solution strategies exist for
the solution of Toeplitz systems that can efficiently solve these systems recursively. We mention
here [28, 13}, 16, 1] among others. One is nevertheless interested in finding iterative solvers for
the Toeplitz matrices as this further reduces the complexity. Additionally, as we want to use the
Toeplitz solver within a possible preconditioner for the Sylvester equations we are not necessarily
interested in computing the solution to full accuracy. Note that for convenience reasons we simply
use n for the dimensionality of the matrices in the general discussion following about Toeplitz
matrices. It will be clear from the application and the discussion in Section [3| what the specific
value for n is. Let us consider a basic Toeplitz matrix of the form

to  to1 ... tom tim
t1 to t-1 tan
T = tq to
tn—2 I Y
th—1 thn—o ... t1 to

Circulant matrices, which take the generic form

Co Cn—1 N (6] C1
C1 Co Cn—1 C2
C= : cy co - : ,
Cn—2 T v Cp—1
L Cn—1 Cn—2 ce C1 Co

are special Toeplitz matrices as each column of a circulant matrix is a circulant shift of its preceding
column.

It is well known that a circulant matrix C can be diagonalized using the Fourier matrix Fﬂ
In more detail, the diagonalization of C is written as C = FHAF where F is again the Fourier

3In MATLAB this matrix can be computed via F=fft (eye(n))
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matrix and A is a diagonal matrix containing the eigenvalues (see [7, [34]). In order to efficiently
compute the matrix-vector multiplication with C the matrix-vector multiplication using F and A
needs to be available. The evaluation of F and FH times a vector can be done via the Fast Fourier
Transform (FFT, [8, [I5]). The computation of the diagonal elements of A is done employing one
more FFT. Overall, this means that the matrix vector multiplication with C can be replaced by
applications of the FFT.

The n x n Toeplitz matrices mentioned above are not circulant but can be embedded into a
2n x 2n circulant matrix as follows

T B y
EEII

with
0 th_1 . to t
t1-n 0 tn—1 to
B = C ti, 0
t_o ot
t 4 te ... tin O

This new structure allows one to exploit the FFT in matrix-vector multiplications with T.
Note that these techniques can also be used when the variable coefficient case is considered as
multiplications with

I-L}" =1— (P, Tp, +P_Tj)

can be performed using FFTs and simple diagonal scaling with P_ and P .

For the constant coefficient case, i.e., the Toeplitz case there exists a variety of different pre-
conditioners [34]. Here we focus on a classical circulant preconditioner introduced by Strang in
[48]. The idea is to approximate the Toeplitz matrix T by a circulant C that can in turn be easily
inverted by means of the FFT machinery. The diagonals c; of this C are determined as

tj,  0<j<|[n/2]
;=% ti—n, [n/2]<j<n
Cn+j 0< —] <n

Here k := |n/2] is the largest integer less or equal than n/2. Note that other circulant approxima-
tions are possible but will not be discussed here [34].

The computational strategy described above can be used to solve the linear system in
associated with Problem 1, namely

(1 L) =it

In [52] it was shown that the coefficient matrix I"* — 7L is a strictly diagonally dominant M-
matrix. This allows us to use a symmetric Krylov subspace solver such as the Conjugate Gradient
method (cG) [20], which requires matrix-vector products with the coefficient matrix; for more
details on iterative Krylov subspace solvers we refer the reader to [19, 41l [46]. The coefficient
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matrix has Toeplitz structure, therefore the circulant approximation C ~ I — TLZ“ can be used
as a preconditioner for ca. For the fast convergence of CG it is sufficient that the eigenvalues of the
preconditioned matrix form a small number of tiny clusters, which is known to be the case for the
Strang circulant preconditioner, since it gives a single eigenvalue cluster around 1 [27].

The numerical treatment is more complicated in the variable coefficient case. The authors of
[11] point out that the use of circulant preconditioners for this case is not as effective and suggest
the use of the following approximation

~Lt = —(PyTy, +P_T) )~ PLA+P_ AT =W (4.1)

where W = fﬁg‘f’P is used for preconditioning purposes whenever a system involving ﬁZf’P needs
to be solved and

A= .

which is simply the central difference approximation to the 1D Laplacian. This approximation is
good when the fractional differentiation parameter is close to two, i.e. > 1.5. Alternatively, for
smaller differentiation parameters one could use

1 -1

! 1
1

A

as suggested in [I1]. We can use a nonsymmetric Krylov solver such as GMRES [42] where the matrix
multiplication is performed using the FFT based approach presented above, and the tridiagonal
matrix P, A +P_AT as preconditioner by means of its LU factorisation.

One of the major concerns is carrying the approaches for the one-dimensional case over to the
higher dimensional settings. We now present techniques well established for matrix equations and
show how they can be used for the solution of fractional differential equations in more than one
dimension or when the time derivative is also of fractional order.

We are in particular focussing on the connection to matrix equation solvers, which we introduce
in the next section. In addition we mention the possible use of low-rank versions [47, 25] of well-
known Krylov subspace solvers that have become popular as they allow for the solution of tensor-
valued equations while maintaining the low-rank nature of the solution. This approach is certainly
applicable in our case when combined with a suitable preconditioner. For more detailed discussion
we refer to [25].

4.2. Numerical solution of the Sylvester equation. The numerical solution of linear
matrix equations of the form

AU+UB=C (4.2)
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arises in a large variety of applications; we refer the reader to [45] for a detailed description. Note
that in general, A and B are allowed to have different dimensions, so that the right-hand side C
and the unknown solution U are rectangular matrices. A unique solution is ensured if A and —B
have disjoint spectra. Robust numerical procedures for solving when A and B have modest
dimensions - up to a few hundreds - have been widely tested, and the Bartels-Stewart algorithm
has emerged as the method of choice [3]. The method relies on a full Schur decomposition of the
two matrices, and then on a backward substitution of the transformed problem.

We mention here another method that can be used when either A or B is small and already
in triangular form, the way the equation is in Problem 2, when n; is small. Let U =
[u1,y ..., ung], where ng is the size of B, and C = [c1,...,¢,,;]. Explicit inspection shows that if
B is upper triangular, then the first column of U can be obtained by solving the shifted system
(A+B;;T)u; = ¢;. All subsequent columns of U may be obtained with a backward substitution as

(A4+B;Du; = ¢; — ZukBm, i=2,..,np.

Each of these systems may be solved by CG equipped with a circulant preconditioner, as for Prob-
lem 1. This strategy is appealing when ng, the size of B, is small.

Generically, however, we consider the case where the coefficient matrices A and B are both
extremely large, typically dense, making full spectral decompositions and backward solves pro-
hibitively expensive both in terms of computational and memory requirements. On the other hand,
C usually has much lower rank than the problem dimension, which makes low-rank approximation
procedures more appealing. Note that the matrix C in our case reflects the right-hand side of the
FDE and as this often has a certain smoothness, we perform a truncation via a truncated singular
value decomposition to obtain a low-rank representation C. For example, instead of solving (3
we replace the right-hand side F by a low-rank approximation F ~ F with F = W1W2 and the
matrices Wl, W,y only have a small number of columns and are computed via a truncated SVD of
F. Based on the low-rank nature of the right-hand side of the Sylvester equations efficient methods
seek an approximation U ~ U as the product of low-rank matrices, U = VYWT, for some matrix
Y, and V, W having much fewer columns than rows. These low-rank approximations are of special
interest, since in general U is dense, and thus hard or impossible to store when A and B are truly
large, as in our cases. Among these approaches are Krylov subspace projection and ADI meth-
ods, the latter being a particular Krylov subspace method [45]. We consider the following general
projection methods for : given two approximation spaces Range(V) and Range(W), an ap-
proxnn%lon U= VYWT is determined by requiring that the residual matrix R := AU+UB-C
satisfie:

VIRW = 0.

Assuming that both V and W have orthogonal columns, and using U= VYWT | the condition
above gives the reduced matrix equation

(VIAV)Y + Y(WTBW) — VICW = 0;

for VT AV and WTBW of small size, this equation can be efficiently solved by the Bartels-Stewart
method, giving the solution Y. Different choices of Range(V) and Range(W) lead to different

41t can be shown that this requirement corresponds to an orthogonality (Galerkin) condition of the residual
vector for the equation in Kronecker form, with respect to the space spanned by Range(W ® V) [45].
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approximate solutions. The quality of such an approximation depends on whether certain spectral
properties of the coefficient matrices A and B are well represented in the two approximation spaces.
Among the most successful choices are Rational Krylov subspaces: assuming C can be written
as C = C;CT, Rational Krylov subspaces generate the two spaces Range(V) = Range([Cy, (A —
o11)71Cy, (A—02I)"1Cy,...]) and Range(W) = Range([C2, (BT = I)"1Cq, (BT —12I) "1 Cy, .. ]),
for specifically selected shifts o;,7;, ¢ = 1,2,.... Note that a shift o of multiplicity k can be used,
as long as terms with powers (A — ¢I)77, j = 1,...,k are included in the basis. In our numerical
experience we found the choice o;,7; € {0,00} particularly effective: for Range(V) this choice
corresponds to an approximation space generated by powers of A and A~! and it was first proposed
under the name of Extended Krylov subspace [12]. In [44] it was shown for B = AT that such a
space can be generated progressively as

EK(A,C;) = Range([C;,A"'C;,AC;,A"2C,A’C1,A73Cy, .. )

and expanded until the approximate solution U is sufficiently good. Note that in a standard
implementation that sequentially generates EK(A, Cy), two “blocks” of new vectors are added at
each iteration, one block multiplied by A, and one “multiplied” by A~!. The block size depends on
the number of columns in C;, although as the iteration proceeds this number could decrease, in case
rank deficiency occurs. The implementation of the resulting projection method with EK(A, Cy) as
approximation space was called KPIK in [44] for the Lyapunov matrix equation, that is with
B = AT and Cl = CQ.

The procedure in [44] can be easily adapted to the case of general B, so that also the space
EK(B7,Cy) is constructed [45]. For consistency we shall also call KPIK our implementation for
the Sylvester equation.

The effectiveness of the procedure can be measured in terms of both the dimension of the
approximation space needed to achieve the required accuracy, as well as computational time. The
two devices are tightly related. Indeed, the generation of EK(A, C;) requires solving systems with
A, whose cost is problem dependent. Therefore, the larger the space, the higher this cost is,
increasing the overall computational time. The space dimension determines the rate of convergence
of the approximate solution U towards U; how the accuracy improves as the space dimension
increases was recently analyzed in [22] for KPIK applied to the Lyapunov equation, and in [4] as a
particular case of Rational Krylov space methods applied to the Sylvester equation; see Section [£:3]

From a computational standpoint, our application problem is particularly demanding because
the iterative generation of the extended space requires solving systems with A and B, whose size can
be very large; see the numerical experiments. To alleviate this computation, in our implementation
the inner systems with A and B are solved inezactly, that is by means of a preconditioned iterative
method, with a sufficiently high accuracy so as to roughly maintain the KPIK rate of convergence
expected with the exact (to machine precision) application of A~ and B~!. In our numerical
experiments we shall call iKPIK the inexact version of the method. Note that at this point we need
to distinguish between the constant and the variable coefficient case. In the constant coefficient
case we will inexactly solve for the Toeplitz matrices by using the previously mentioned circulant
preconditioned CG method. In the case of the variable coefficient we can use the preconditioned
GMRES approach that uses the classical finite difference matrix for the preconditioner.

Finally, we observe that our stopping criterion for the whole procedure is based on the residual
norm. In accordance with other low-rank approximation methods, the Frobenius norm of the
residual matrix, namely [|R||* = 37, /R7;, can be computed without explicitly storing the whole
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residual matrix R. Indeed, using C; = V7, and Cy = W+y,, we have

R=[AV. VI [y Y] AW Wi = [y

Y T AT
—7175} P2 Q5

where the two skinny QR factorizations [AV, V| = Qip; and [AW, W] = Qqp, can be updated
as the space expandsﬂ Therefore,

3

IR| = \

o {0 Y }pT
Yy _’Yl'Yg 2

whose storage and computational costs do not depend on the problem size, but only on the approx-
imation space dimensions.

4.3. Considerations on the convergence of the iterative solvers in the constant coef-
ficient case. The performance of the iterative methods discussed so far depends, in the symmetric
case, on the distribution of the eigenvalues of the coefficient matrices, and in the nonsymmetric
case, on more complex spectral information such as the field of values. We start with providing a
simple but helpful bound on the spectrum of the matrix obtained after discretizing the fractional
derivatives.

LEMMA 1. For 1l < 8 < 2, the spectrum of the matriz Lg := %(TB + Tg) is contained in the
open interval (—2h="43,0).

Proof. From [27], for 1 < 8 < 2, we recall the following useful properties of gg x :

oo n
980=1, gg1=-B<0, gg2>gg3z>--->0, Zgﬁ,k =0, Zgﬁ,n <0, Vn > 1.
k=0 k=0

We can now adapt the proof in [27] to get an estimate of the eigenvalues of Lg = 1(Tp + Tg)
Recall the structure of T :

[ 981 980 0
9s,2 98,1 98,0
98,3 982 98,1 98,0

Ts=hF"| 982 98
' ' . . g0 0
: : : 982 981 980
L 98n 9Bm-1 oo e 982 981 |

Hence, the Gershgorin circles of Lg are all centered at h’ﬂg/ﬂ = —Bh~P. Moreover, the largest
radius is obtained in row L% + 1J and thus is at most (depending on n being odd or even) ryax =
[5+1]
h? > gsx < —hPgg1 =h""B. This now implies o(Ls) C (—2h~75,0). O
k=0,k7#1

5The residual norm computation could be made even cheaper in the exact case, since then the skinny QR
factorization would not have to be done explicitly [45]
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The result shows that as the spatial mesh is refined, the eigenvalues of Lg spread out on the
negative half of the real line and preconditioning is needed for a fast convergence of the iterative
scheme for Problem 1. The eigenvalue properties are also crucial to assess the performance of the
Extended Krylov subspace method described in the previous section, which we use both in Problem
2 and Problem 3 as a solver. Assume that C = c;cl. In [4] for A and B symmetric, it was shown
that the residual Frobenius norm is bounded as

IRl

m S 4maX{7mA,A,Ba ’YmB,B,A} + 6(777LA,A,B + 'YmB,B,A)7

where Yma.A.B and vmg B,A are quantities associated with the approximation spaces in A and
in B of dimension ma and mpg, respectively, and £ is an explicit constant independent of the
approximation space dimensions. For A = B, which in our Problem 3 is obtained for instance
whenever 1 = (3, it holds (see [22])

kY41

2ma
Yz 1) s 8= Amax(A)/Amin(A),

TYma,AB = Ympg,B,A = <

where « is the condition number of A. In the notation of Problem 3, the rate of convergence of the
Extended Krylov subspace method when 3; = (5 is thus driven by x'/4, where x is the condition
number of %I — Lg.

Finally, if one were to consider the (symmetric) Kronecker formulation of the Sylvester equation

in (3.13), that is
(I, ® A+ B®Iy)vec(U) = vec(C),

the following estimate for the eigenvalues of the coefficient matrix would hold:

2 2
s, @ A+B®Iy) C (1,1+ bt ﬁﬂ).

Wi T s

The assertion follows from the fact that the eigenvalues v of I) ® A + B ® I, are given by the
eigenvalues of A and B via v; ; = X\;(A) + p;(B).

4.4. Tensor-valued equation solver. The efficient solution of tensor-valued equations has
recently seen much progress regarding the development of effective methods and their corresponding
analysis [50} 2, [35]. General introductions to this very active field of research can be found in [I8],[24]
and in the literature mentioned there.

Although a variety of solvers for tensor valued equations exists we do not aim at providing a
survey of the available methods, but we rather focus on the DMRG (Density Matrix Renormalization
Group) method as presented in [35], which is part of the the tensor train (TT) toolbox [36], [35] [37].
The guiding principle is that in the equation Az = f, the tensor-structured matrix A and the
right-hand side are approximated by a simpler (low tensor rank) matrix Aprr and a vector frr,
respectively. The linear system problem is then formulated as a minimization problem, i.e.,

min HE‘TT - ATTITTH . (43)
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Alternatively, the iterative solver AMEN[I0] has shown great potential and is a suitable candidate
to solve our fractional problem as well. In our context, the tensor A is given by

Nt Mg Ty Nt 1 Ty Ng Ty 1 N

n Ng n ng 1 y Ng ¢ Ty 1 ©
= (T @I @I™) — (I ’®ﬁ1n ®Lﬁl) - (I”f ®@Lg; ®hﬂ21”‘).

One of the most used decompositions is the canonical decomposition of a tensor A ([24]) given by

.A.(Z'l, iQ, 23) = Z Ul(il, OZ)UQ(iQ, a)Ug(ig, Oé)

a=1

with A(41, i2, i3) the entry (i, iz, 73) of the tensor A, canonical factors U;, i = 1,2,3 and canonical
rank 7. While this is already a significant reduction compared to the original tensor, employing this
decomposition can be numerically inefficient. Instead, we use the recently introduced tensor train
(TT) format: A is approximated by

A~ Arr(in, iz, i3) = Gi(41)G2(12)Gs(i3),

where Gy (i) is an r,—1 X rp matrix for each fixed ix. Note that we find a tensor Apr of low
tensor-rank that approximates the full TT decomposition of the tensor A.

In order to solve this tensor valued equation we now employ the DMRG algorithm with the TT
decomposition as introduced by Oseledets in [35]. Before briefly describing the method we note that
these techniques have been developed before in quantum systems simulation using different termi-
nology; there the TT format is known as the matrix product state (MPS) (see [18] for references).
As pointed out earlier the DMRG method transforms the problem of solving the linear system into a
least squares problem , where all full tensors are replaced by their T'T approximations of lower
tensor rank, i.e., f77 is the (TT) tensor approximation of f. The DMRG method can be understood
as a modified alternating least squares method. While a standard alternating least squares algo-
rithm fixes all but one core and then optimizes the functional the TT DMRG method fixes all but
two cores Gy, Gg11 to compute a solution. The algorithm then moves to the next pair of cores and
so on. For more details we refer to Oseledets [35].

Additionally, one can use a TT version of well-known Krylov methods such as GMRES ([42])
adapted to the TT framework (see [9]) but we have not employed this method here.

5. Numerical results. In this section we report on our numerical experience with the algo-
rithms proposed in the previous sections. All tests are performed on a Linux Ubuntu Compute
Server using 4 Intel Xeon E7-8837 CPUs running at 2.67 GHz each equipped with 256 GB of RAM
using MATLAB® 2012.

We illustrate the effectiveness of our proposed methods by testing the convergence for all prob-
lems presented earlier both in the constant and variable coefficient case. Our goal is to obtain
robustness with respect to the discretization parameter in both the temporal and the spatial di-
mensions. Additionally, we are testing all problems for a variety of different orders of differentiation
to illustrate that the methods are suitable for reasonable parameter choices.

As this work discusses various different formulations and several solution strategies we want to
summarize the suggested solution methods in Table [5.1]
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Fig. 5.1: Comparison of numerical solutions when using two different values for 5 with zero initial
condition and zero Dirichlet boundary condition. (510 and 10 space and time points, resp.)

Problem setup Solution method
Time+1D FDE (3.4) PCG
Time+2D FDE (3.8) IKPIK

Frac.Time+1D FDE (3.12 IKPIK
Frac.Time+2D FDE (3.15 DMRG

Table 5.1: Overview of the solvers. Iterative solution in constant coefficient case always uses
circulant preconditioned CG in the variable coefficient case a preconditioned nonsymmetric solver.

5.1. Fractional in space: Constant and variable coefficients.

One-dimensional example. We are using a zero-initial condition and a zero Dirichlet bound-
ary condition. The result for two different values of 8 is shown in Figure [5.1] and is simply given
to illustrate that the parameter 3 has a significant influence on the solution u. Table [5.2] shows the
result for a variety of discretization levels with two values of 5. For this problem the forcing term
was given by

f = 80sin(20x) cos(10x).

It can be seen that the Strang preconditioner [48] performs exceptionally well with only 6 to 9
iterations needed for convergence and no dependence on the mesh size. A tolerance of 107° for the
relative residual was used for the stopping criterion. The time-step is chosen to be 7 = h, /2.

For the variable coefficient case we consider the following parameters p; = F(I.Q)x?l and
p_ =T(1.2)(2 — z1)”1. Tt is easily seen from Table that the iteration numbers are very robust
using the approximation by the difference matrices, and that timings remain very moderate.



18

Breiten, Simoncini, Stoll

DoF B=13 B=17
avg. its (time) avg. its (time)

32768 6.0(1.52) 7.0(1.83)

65536 6.0(2.27) 7.0(2.37)

131072 6.0(4.05) 7.6(5.40)
262144 6.0(14.91) 8.4(20.44)
524288 6.0(36.31) 8.9(50.19)
1048576 6.0(63.69) 9.0(91.49)

Table 5.2: Constant coefficient case: Average PCG iteration numbers for 10 time steps and two
values of 3, as the mesh is refined; in parenthesis is the total CPU time (in secs).

DoF f3=13 =17
avg. its (time) avg. its (time)

16384 7.0(0.48) 6.3(0.38)

32768 6.8(0.82) 6.0(0.82)

65536 6.4(1.52) 6.0(1.21)

131072 5.9(2.97) 5.9(2.81)

262144  5.4(5.77) 6.0(6.62)
524288 5.1(12.14) 6.0(13.42)
1048576 4.8(40.03) 6.3(48.15)

Table 5.3: Variable coefficient case: Average GMRES iteration numbers for 8 time steps and two
values of 3, as the mesh is refined; in parenthesis is the total CPU time (in secs).

Two-dimensional example. This problem now includes a second spatial dimension together
with a standard derivative in time. The spatial domain is the unit square. The problem is char-
acterized by a zero-Dirichlet condition with a zero-initial condition. The time-dependent forcing
term is given as

F = 100sin(10z) cos(y) + sin(10t)zy

and the solution for this setup is illustrated in Figure [5.2] where we show the solution at two
different time steps.

Table shows the average IKPIK iteration numbers alongside the total computing time. The
tolerance for IKPIK is set to 107°, to illustrate that we can compute the solution very accurately,
and the tolerance for the inner iterative solver is chosen to be 107!2. The digits summarized in
Table [5.4] give the average number of IKPIK iterations for 8 time-steps. The variable coefficient is
given by

pe =D(1.2)27 p_ =D(1.2)(2 — 21)™, ¢ = T(1.2)a52, g = D(1.2)(2 — ).

Note that the largest problem given in Table corresponds to 33,554,432 unknowns. A further
increase in the matrix dimensions would require storing the vector of unknows in a low-rank format.
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Fig. 5.2: First and tenth time-step solutions of the 2D fractional differential equation.

5.2. Time and space fractional. Additionally we consider the challenging case when also
the temporal derivative is of fractional type.

One spatial dimension. Here the forcing term was defined by f = 8sin(10x), while a zero
Dirichlet condition on the spatial interval was used. Table [5.5] summarizes the results for IKPIK.
Here we discretized both the temporal and the spatial domain using the same number of elements.
For the variable coefficient case we use the finite difference approximation presented earlier. We
noticed that the convergence of the outer IKPIK solver was dependent on the accuracy. Due to
the effectiveness of the preconditioner we set a tight tolerance for the inner scheme of 107'3, and
use a tolerance of 10~° for the IKPIK convergence. When stating the degrees of freedom for each
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Variable Coeff. Constant Coeft.
By =1.7 By =1.9 By =1.7 By =1.9
it(CPUtime) it(CPUtime) | it(CPUtime) it(CPUtime)
1024 1024 | 2.3 (19.35) 2.5 (15.01) 2.9 (9.89) 2.5 (18.51)
1024 2048 | 2.8 (47.17) 2.9 (22.25) 3.0 (23.07) 3.2 (22.44)
2048 2048 | 3.0 (76.72) 2.6 (36.01) 2.0 (51.29) 2.3 (34.49)
4096 4096 | 3.0 (171.80) 2.6 (199.82) | 2.0 (164.20) 2.2 (172.24)

Table 5.4: The solver IKPIK is presented, for a variety of meshes and two different values of 8 in
both the constant and the variable coefficient cases. Shown are the iteration numbers and the total
CPU time.

dimension one has to note that implicitly this method is solving a linear system of tensor form
that has the dimensionality n:n, x nin, so for the largest example shown in Table this leads to
roughly 70 million unknowns. We see that in the constant coeflicient case the method performs very

Variable Coeff.
ny ng | =17 =11 =19
a=0.5 a=0.9 a=0.2
it(CPUtime,MI)  it(CPUtime,MI) it(CPUtime,MI)
1024 1024 | 10 (0.3, 31) 43 (1.87,89)  4(0.14, 15)
2048 2048 | 11 (0.59, 33) 57 (4.92, 48) 4(0.21, 15)
4096 4096 | 13 (2.64, 36) 74 (30.52, 60) 4(0.54, 15)
8192 8192 | 14 (5.51, 39) 95 (91.13, 75) 4 (1.1, 16)
Constant Coeff.
ng ng | =17 =11 =19
a=05 a=20.9 a=0.2
it(CPUtime,MI)  it(CPUtime,MI) it(CPUtime,MI)
1024 1024 | 6 (0.17, 18) 14 (0.39, 15) 4(0.13, 17)
2048 2048 | 6 (0.27, 18) 16 (0.79, 18) 4 (0.21, 17)
4096 4096 | 6 (0.65, 20) 18 (2.52, 19) 4 (0.45, 17)
8192 8192 | 7 (2.43, 20) 20 (6.51, 20) 4 (1.25, 20)

Table 5.5: Preconditioned low-rank BICG and IKPIK, for a variety of meshes and different values
of « and 8. Shown are the iteration numbers, the elapsed CPU time, and the maximum iteration
numbers for the inner solver (MI).

robustly with respect to mesh-refinement and that also the iteration numbers needed for IKPIK are
of moderate size when the differentiation parameter is changed. From the results for the variable
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coefficient case it can be seen that
—L "~ P A+P_AT (5.1)

is less effective in this setup.

In Figure we illustrate the performance of both the preconditioner and the IKPIK method
for a variety of differentiation parameters in the variable coefficient setup. It can be seen that
IKPIK often only needs a small number of iterations whereas the preconditioner is not always as
effective as the one in the constant coefficient case.

Two dimensions. In this section we briefly illustrate how the tensorized problems can be
solved. Our implementation is based on the recently developed tensor-train format [36, [35] 37].
The forcing term is given by f = 100sin(10z) cos(y), while zero-Dirichlet conditions are imposed,
together with a zero initial condition. The approximations of the right-hand side frr and the tensor
A use the round function within the TT-toolbox. The tolerance for this was set to 1076. The
DMRG method recalled in Section (|35]) was used, with a convergence tolerance set to 1075.
Figure[5.4] illustrates the different behaviour of the solution for two different values of the temporal
differentiation order.

We next illustrate that the performance of DMRG for our tensor equation with constants coeffi-
cients is robust with respect to changes in the system parameters such as the orders of differentiation
and varying meshes. Table shows the DMRG iteration numbers for 4 different mesh sizes both
in time and space and three different choices of differentiation orders. The iteration numbers are
constant with the mesh size, while they show a very slight increase from 6 or 7 to 11 with the
different discretization order. It is also possible to include a preconditioner within DMRG but we

B1=13,8=15 p1=17,=19 p,=19,68,=1.1
a=0.3 a=0.7 a=0.2
Ny Ny N it it it
512 256 512 7 8 8
256 512 512 7 8 8
1024 512 2048 7 8 9
1024 1024 4096 9 9 9

Table 5.6: Performance of DMRG as the mesh is refined, for different values of the differentiation
orders.

have not done so here. We also want to illustrate the performance of the tensor method for the use
with a variable coefficient setup as presented earlier. For this we consider the coefficients

py =T(1.2)a 2y, p_ = D(1.2)(2 — 1) 29, gy = D(1.2)25% 21, g— = D(1.2)(2 — 22) 224
and show the results in Table Here the newly developed AMEN solver [I0] showed slightly

better performance than DMRG but also was not necessarily tailored for our problem, i.e. no
preconditioning was incorporated.
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Fig. 5.3: Results for a mesh 1024 degrees of freedom both in space and time. We put a mesh of
width 0.05 on both the differentiation parameter in time and space. « € [0.05,1], 5 € [1.05,2]. We
switch between preconditioners at g = 1.3.

6. Conclusions. We pointed out in the introduction that FDE are a crucial tool in math-
ematical modelling in the coming years. We have introduced four model problems that use the
well-established Griinwald-Letnikov scheme (and some of its descendants). These model problems
were chosen such that their main numerical features are to be found in many FDE problems. In par-
ticular, we derived the discrete linear systems and matrix equations of Sylvester-type that represent
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Fig. 5.4: Problem 4. Solution at time-step 2 (below) and time-step 20 (above), for two-different
orders of the differentiation for the derivative in time.

61=13,6=15 p1=17,6=19 p=190=1.1
a=0.3 a=0.2 a=0.7
ng Ny Ny it it it
512 256 512 14 14 15
512 512 512 14 13 14
1024 512 1024 16 18 15
1024 1024 1024 16 20 14

Table 5.7: Performance of AMEN as the mesh is refined, for different values of the differentiation
orders.

the discretized version of the space-, time- and space-time-fractional derivative for both constant
and variable coefficents. For all problems it was crucial to notice the Toeplitz or Toeplitz-like
structure of the discrete differentiation operator. While the simplest model problem only required
a circulant preconditioner in combination with the preconditioned ¢G method the more involved
problems needed further study. For realistic discretization levels it was no longer possible to explic-
itly store the approximate solution vectors. We thus considered low-rank matrix equations solvers
and in particular focused on the successful KPIK method in its inexact version IKPIK. This method
was then extremely effective when we again used the circulant preconditioned Krylov solver to
evaluate any linear systems with the inverse of a differentiation matrix. The last and most chal-
lenging problem was then solved using recently developed tensor-methodology and while still future
research needs to be devoted to understanding these solvers better, the numerical results are very
promising.
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