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Example 1

A microthruster Upper-left1: the structure of an array of pyrotechnical
thrusters. Lower-right: the structure of a 2D-axisymmetric model.

A model of the microthruster unit.

1The picture is taken from [Rossi05], we acknowledge the author’s permission for
using the picture.
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Example 1

When the PolySilicon (green) in the middle is excited by a current,
the fuel below is ignited and the explosion will occur through the
nozzle.

The thermal process can be modeled by a heat transfer partial
differential equation, while the heat exchange through device
interfaces is modeled by convection boundary conditions with
different film coefficients ht , hs , hb.

The film coefficients ht , hs , hb respectively describe the heat
exchange on the top, side, and bottom of the microthruster with the
outside surroundings. The values of the film coefficients can change
from 1 to 109
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Example 1

After finite element discretization of the 2D-axisymmetric model, a
parameterized system is derived,

Eẋ = (A− htAt − hsAs − hbAb)x + B
y = Cx .

(1)

Here, ht , hs , hb are the parameters and the dimension of the system is
n = 4, 257. We observe the temperature at the center of the PolySilicon
heater changing with time and the film coefficient, which defines the
output of the system2.

2Detailed description of the parameterized system can be find at
http://simulation.uni-freiburg.de/downloads/benchmark
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Example 2

The second example is a butterfly gyroscope. The parameterized system
is obtained by finite element discretization of the model for the gyroscope
(The details of the model can be found in [Moosmann07]).

Scheme of the butterfly gyroscope [Moosmann07].
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Example 2

The paddles of the device are excited to a vibration z(t), where all
paddles vibrate in phase. With the external rotation φ, the Coriolis
force acts upon the paddles, which causes an out-of-phase
movement measured as the z-displacement difference δz between
the two red dotted nodes.

The interesting output of the system is δz , the difference of the
displacement z(t) between the two end nodes depicted as red dots
on the same side of the bearing.
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Example 2

The system is of the following form:

M(d)ẍ + D(θ, α, β, d)ẋ + T (d)x = Bu(t)
y = Cx .

(2)

M(d) = (M1 + dM2),
D(θ, α, β, d) = θ(D1 + dD2) + αM(d) + βT (d), and
T (d) = (T1 + 1

dT2 + dT3).

Parameters d , θ, α, β. d is the width of the bearing, and θ is the
rotation velocity along the x axis. α, β are used to form the Rayleigh
damping matrices αM(d), βT (d) in D(θ, α, β, d).

The dimension of the system is n = 17913.
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Example 3

The third example is a silicon-nitride membrane3. This structure
resembles a micro-hotplate similar to other micro-fabricated devices such
as gas sensors [GrafBT04] and infrared sources [SpannSH05].

Temperature distribution over the silicon-nitride membrane.

3Picture courtesy of T. Bechtold, IMTEK, University of Freiburg, Germany.
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Example 3

The model of the silicon-nitride membrane is a system with four
parameters [BechtoldHRG10].

(E0 + ρcpE1)ẋ + (K0 + κK1 + hK2)x = Bu(t)
y = Cx .

(3)

The mass density ρ in kg/m3, the specific heat capacity cp in
J/kg/K , the thermal conductivity in W/m/K, and the heat transfer
coefficient h in W/m2/K.

The dimension of the system is n = 60020.
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PMOR based on Multi-moment matching

In frequency domain

Using Laplace transform, the system in time domain is transformed into

E (s1, . . . , sp)x = Bu(sp),
y = LTx ,

(4)

where the matrix E ∈ Rn×n is parametrized. The new parameter sp is in
fact the frequency parameter s, which corresponds to time t.

In case of a nonlinear and/or non-affine dependence of the matrix E on
the parameters, the system in (4) is first transformed to an affine form

(E0 + s̃1E1 + s̃2E2 + . . .+ s̃pEp)x = Bu(sp),
y = LTx .

(5)

Here the newly defined parameters s̃i , i = 1, . . . , p, might be some
functions (rational, polynomial) of the original parameters si in (4).
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PMOR based on multi-moment matching

To obtain the projection matrix V for the reduced model, the state x
in (5) is expanded into a Taylor series at an expansion point
s̃0 = (s̃0

1 , . . . , s̃
0
p)T as below,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu(sp)

=
∞∑

m=0
[σ1M1 + . . .+ σpMp]mẼ−1Bu(sp)

=
∞∑

m=0

m−(k3+...+kp)∑
k2=0

. . .
m−kp∑
kp−1=0

Fm
k2,...,kp

(M1, . . . ,Mp)

(6)

where σi = s̃i − s̃0
i , Ẽ = E0 + s̃0

1E1 + . . .+ s̃0
pEp, Mi = −Ẽ−1Ei ,

i = 1, 2, . . . p, and BM = Ẽ−1B.
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PMOR based on multi-moment-matching

σ0: LTBM : the 0th order multi-moment; the columns in BM : the
0th order moment vectors.

σ1: LTMiBM , i = 1, 2, . . . , p: the first order multi-moments; the
columns in MiBM , i = 1, 2, . . . , p: the first order moment vectors.

σ2: . . . ; the columns in M2
i BM , i = 1, 2, . . . , p,

(M1Mi +MiM1)BM , i = 2, . . . , p, (M2Mi +MiM2)BM , i = 3, . . . , p,
. . . , (Mp−1Mp + MpMp−1)BM : the second order moment vectors.

. . . .

Since the coefficients corresponding not only to s = sp, but also to those
associated with the other parameters si , i = 1, . . . , p − 1 are, we call
them as multi-moments of the transfer function.
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PMOR based on multi-moment-matching

For the general case, the projection matrix V is constructed as

range {V }

= colspan{
mq⋃
m=0

m−(kp+...+k3)⋃
k2=0

. . .
m−kp⋃
kp−1=0

m⋃
kp=0

Fm
k2,...,kp

(M1, . . . ,Mp)BM}

= colspan{BM ,M1BM ,M2BM , . . . ,MpBM , (M1)2BM , (M1M2 + M2M1)BM , . . . ,
(M1Mp + MpM1)BM , (M2)2BM , (M2M3 + M3M2)BM , . . .}.

(7)
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A Robust Algorithm

Taking a closer look at the power series expansion of x in (6), we get the
following equivalent, but different formulation,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu

=
∞∑

m=0
[σ1M1 + . . .+ σpMp]mBMu

= BMu + [σ1M1 + . . .+ σpMp]BMu
+[σ1M1 + . . .+ σpMp]2BMu + . . .
+[σ1M1 + . . .+ σpMp]jBMu + . . .

(8)

By defining

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp]BM ,

x2 = [σ1M1 + . . .+ σpMp]2BM , . . . ,

xj = [σ1M1 + . . .+ σpMp]jBM , . . . ,

we have x = (x0 + x1 + x2 + · · ·+ xj + · · · )u and obtain the recursive
relations
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A Robust Algorithm

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp]x0,

x2 = [σ1M1 + . . .+ σpMp]x1, . . .

xj = [σ1M1 + . . .+ σpMp]xj−1, . . . .

If we define a vector sequence based on the coefficient matrices of
xj , j = 0, 1, . . . as below,

R0 = BM ,
R1 = [M1R0,M2R0, . . . ,MpR0],
R2 = [M1R1,M2R1, . . . ,MpR1],

...
Rj = [M1Rj−1,M2Rj−1, . . . ,MpRj−1],

...

(9)
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A Robust Algorithm

and let R be the subspace spanned by the vectors in Rj , j = 0, 1, · · · ,m:

R = colspan{R0, . . . ,Rj , . . . ,Rm},

then there exists z ∈ Rq, such that x ≈ Vz . Here the columns in
V ∈ Rn×q is a basis of R. We see that the terms in Rj , j = 0, 1, . . . ,m
are the coefficients of the parameters in the series expansion (8). They
are also the j-th order moment vectors.

How to compute an orthonormal basis V ?
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Algorithm 1: Compute V = [v1, v2, . . . , vq] [Benner, Feng’14]

Initialize a1 = 0, a2 = 0, sum = 0.
Compute R0 = Ẽ−1B.
if (multiple input) then

Orthogonalize the columns in R0 using MGS:
[v1, v2, . . . , vq1 ] = orth{R0} with respect to a user given tolerance
ε > 0 specifying the deflation criterion for numerically linearly
dependent vectors.
sum = q1 % q1 is the number of columns remaining after deflation
w.r.t. ε.)

else
Compute the first column in V: v1 = R0/||R0||2
sum = 1

end if
Compute the orthonormal columns in R1,R2, . . . ,Rm iteratively as
below:

Max Planck Institute Magdeburg Peter Benner Lihong Feng, Model Reduction for Dynamical Systems 18/31



Linear parametric systems PMOR based on Multi-moment matching A Robust Algorithm IRKA based PMOR Steady systems Extension to nonlinearities

continued
for i = 1, 2, . . . ,m do

a2 = sum;
for t = 1, 2, . . . , p do

if a1 = a2 then
stop

else
for j = a1 + 1, . . . a2 do

w = Ẽ−1Etvj ; col = sum + 1;
for k = 1, 2, . . . , col − 1 do
h = vT

k w ; w = w − hvk
end for
if ‖w‖2 > ε then

vcol = w
‖w‖2

; sum = col ;

end if
end for

end if
end for
a1 = a2;

end for
Orthogonalize the columns in V by MGS w.r.t. ε.Max Planck Institute Magdeburg Peter Benner Lihong Feng, Model Reduction for Dynamical Systems 19/31
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Adaptively select expansion points

Let µ = (s̃1, . . . , s̃p), ∆(µ) is an error estimation, or error bound for x̂/ŷ ,
the state/output of the system computed from ROM.

Greedy algorithm: Adaptive selection of the expansion points
µi

V = []; ε = 1;
Initial expansion point: µ0; i = −1;
Ξtrain: a large set of the samples of µ
WHILE ε > εtol

i=i+1;
µi = µ̂;
Use Algorithm 1 to compute Vi = span{R0, . . . ,Rq}µi ;
V = [V ,Vi ];
µ̂ = arg max

µ∈Ξtrain

∆(µ);

ε = ∆(µ̂);
END WHILE.

Max Planck Institute Magdeburg Peter Benner Lihong Feng, Model Reduction for Dynamical Systems 20/31



Linear parametric systems PMOR based on Multi-moment matching A Robust Algorithm IRKA based PMOR Steady systems Extension to nonlinearities

Experimental results

Example 1: A MEMS model with 4 parameters (benchmark available at
http://modlereduction.org),

M(d)ẍ + D(θ, α, β, d)ẋ + T (d)x = Bu(t),
y = Cx .

Here, M(d) = (M1 + dM2), T (d) = (T1 + 1
dT2 + dT3),

D(θ, α, β, d) = θ(D1 + dD2) + αM(d) + βT (d) ∈ Rn×n, n=17,913.
Parameters, d , θ, α, β.
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θ ∈ [10−7, 10−5], s ∈ 2π
√
−1× [0.05, 0.25], d ∈ [1, 2].

Ξtrain: 3 random θ, 10 random s, 5 random d , α = 0, β = 0
[Salimbahrami et al.’ 06]. Totally 150 samples of µ.

10 20 30
10−8

101

1010

ith iteration step

∆(µi )
εmax
true

εtol = 10−7

10 20 30
100

105

1010

ith iteration step

∆(µi )
εmax
true

Vµi = span{BM ,R1,R2}µi , i = 1, . . . , 33. εtol = 10−7,

εmax
true = max

µ∈Ξtrain

|H(µ)− Ĥ(µ)|, ROM size=804.
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0 10 20 30 40
10−8

102

1012

ith iteration step

∆(µi )
εmax
true

εtol = 10−7

0 10 20 30 40
100

105

1010

ith iteration step

∆(µi )
εmax
true

Vµi = span{BM ,R1}µi , i = 1, . . . , 36. εtol = 10−7, ROM size=210.
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Example 2: a silicon nitride membrane

(E0 + ρcpE1)dx/dt + (K0 + κK1 + hK2)x = bu(t)
y = Cx .

Here, the parameters ρ ∈ [3000, 3200], cp ∈ [400, 750], κ ∈ [2.5, 4],

h ∈ [10, 12], f ∈ [0, 25]Hz

Ξtrain: 2250 random samples have been taken for the four parameters and the

frequency.

εretrue = max
µ∈Ξtrain

|H(µ)− Ĥ(µ)|/|H(µ)|, ∆̂re(µ) = ∆̂(µ)/|Ĥ(µ)|

Vµi=span{BM ,R1}, ε
re
tol = 10−2, n = 60, 020, r = 8,

iteration εretrue ∆̂re(µi )
1 1× 10−3 3.44
2 1× 10−4 4.59× 10−2

3 2.80× 10−5 4.07× 10−2

4 2.58× 10−6 2.62× 10−5
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Ξtrain: 3 samples for κ, 10 samples for the frequency.

Ξvar : 16 samples for κ, 51 samples for the frequency.

0
10

20
3

4
0

2

4

6

·10−4

Frequency (Hz)

κ

Relative error of the final ROM over Ξvar .
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IRKA based PMOR

Consider a linear parametric system

C (p1, p2, · · · , pl) dx
dt = G (p1, p2, · · · , pl)x + B(p1, p2, · · · , pl)u(t),

y(t) = L(p1, p2, · · · , pl)Tx ,
(10)

where the system matrices
C (p1, p2, · · · , pl), G (p1, p2, · · · , pl),B(p1, p2, · · · , pl), LT (p1, p2, · · · , pl),
are (maybe, nonlinear, non-affine) functions of the parameters p1, p2, pl .

A straight forward way is [Baur, et.al’11]:
Set a group of samples of µ = (p1, . . . , pl): µ0, . . . , µl .
For each sample µi = (pi1, . . . , p

i
l ), i = 1 . . . , l , implement IRKA to get a

projection matrix ,Wi ,Vi .
The final projection matrix:

range(V ) = orth(V1, . . . ,Vl),

range(W ) = orth(W1, . . . ,Wl),

W = W (V TW )−1.
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IRKA based PMOR

The reduced parametric model is:

Parametric ROM

W TC (p1, p2, · · · , pl)V dx
dt = W TG (p1, p2, · · · , pl)Vx

+W TB(p1, p2, · · · , pl)u(t),
y(t) = L(p1, p2, · · · , pl)TVx ,

Question: How to select the samples of µ ?
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How to deal with nonaffine matrices?

Nonafine matrices are those matrices that cannot be written as:

E (p1, . . . , pl) = E0 + p1E1 + . . . , plEl .

PMOR based on multi-moment-matching cannot directly deal with
nonaffine case. We must first approximate with affine matrices.

IRKA can deal with nonaffine matrices directly.
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Why and How MOR for Steady systems?

Steady parametric systems

E (p1, . . . , pl)x = B(p1, . . . , pl)

Solving steady systems for multi-query tasks is also time-consuming.

Application of PMOR based on multi-moment-matching to steady
systems is straight forward.

IRKA cannot.
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Applicable to nonlinear parametric systems?

Nonlinear parametric systems:

f (µ, x) = b(µ),

or

E (µ) dx
dt = A(µ)x + f (µ, x) = B(µ)u(t),

y(t) = L(µ)Tx ,

µ = (p1, . . . , pm), x = x(µ, t).

PMOR could be extended to solve weakly nonlinear parametric
systems.

IRKA can only deal with linear parametric systems.

Good candidates for MOR of general nonlinear parametric systems
are POD and reduced basis methods.

To be introduced: POD and reduced basis method for linear and
nonlinear parametric systems.
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