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Model Reduction of Dynamical Systems - 3

Exercise: 3.1 (Balancing-free square root (BFSR) method)

We have already discussed the square-root balanced truncation technique for model reduction in Excercise
2.1. Another way of model reduction is to use the balancing-free square root (BFSR) algorithm. Analogue
to the standard square-root balanced truncation approach, one has to compute the Cholesky factors S
and R of the solutions of the Lyapunov equations and the corresponding SVD of those factors, i.e.,
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The left and right projection matrices for the computation of a reduced-order model of dimension r now
are given as Ty = (QT P)~1QT and T, = P, with
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and P, Q1 € R™™" have orthonormal columns and R, R € R™*" are upper triangular.
Show that the reduced-order system is equivalent to a balanced system and that it satisfies the same
error bound as the one obtained by the standard square root BT method.

Exercise: 3.2 (Balanced model reduction for non-minimal systems)

Consider a system which is neither controllable nor observable, i.e.,
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Show that if Y € R™* and Z € R™*2 are low rank factors that satlsfy P=YYT and Q = 227, a
balanced reduced-order model can be obtained by projection matrices 1; = -3 VlZT and T, = YU 3, ®
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