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Model Reduction of Dynamical Systems - 3

Exercise: 3.1 (Balancing-free square root (BFSR) method)

We have already discussed the square-root balanced truncation technique for model reduction in Excercise
2.1. Another way of model reduction is to use the balancing-free square root (BFSR) algorithm. Analogue
to the standard square-root balanced truncation approach, one has to compute the Cholesky factors S
and R of the solutions of the Lyapunov equations and the corresponding SVD of those factors, i.e.,
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The left and right projection matrices for the computation of a reduced-order model of dimension r now
are given as Tl = (QT

1 P1)
−1QT

1 and Tr = P1, with

STU1 =
[
P1 P2

] [R̂
0

]
, RTV1 =

[
Q1 Q2

] [R̄
0

]
,

and P1, Q1 ∈ Rn×r have orthonormal columns and R̂, R̄ ∈ Rr×r are upper triangular.
Show that the reduced-order system is equivalent to a balanced system and that it satisfies the same

error bound as the one obtained by the standard square root BT method.

Exercise: 3.2 (Balanced model reduction for non-minimal systems)

Consider a system which is neither controllable nor observable, i.e.,

K = rank
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= k1 < n and O = rank
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Show that if Y ∈ Rn×k1 and Z ∈ Rn×k2 are low rank factors that satisfy P = Y Y T and Q = ZZT , a

balanced reduced-order model can be obtained by projection matrices Tl = Σ
− 1
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1 ,

where Y TZ =
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