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Abstract. PDE-constrained optimization problems have a wide range of applications, but they
lead to very large and ill-conditioned linear systems, especially if the problems are time dependent.
In this paper we outline an approach for dealing with such problems by decomposing them in time
and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel
computers to deal with the very large linear systems. We then illustrate the performance of our
method on a variety of problems.
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1. Introduction. Many challenging applications are modeled by partial differ-
ential equations (PDEs) and in the presence of measurements or expected data it is
often desirable to tune the parameters of the equations to best reflect reality. This
process is one of the core motivation in the field of PDE-constrained optimization.
The goal is to find a state y and a control u to minimize

J (y, u) =
1
2
‖y − ȳ‖2L2(Ω) +

β

2
R(u) (1.1)

given the expected state (or measurements) via ȳ over a domain Ω ∈ Rd (d = 2, 3).
The quantities of interest are then linked via a PDE-model that models the underlying
physics and is written as

A(y, u) = 0, (1.2)

that is, the minimization in (1.1) is done subject to the constraint (1.2). Note that
R(u) is a regularization functional, which often depends on the underlying application.
We here focus on the L2 norm of the control u. Here A denotes a partial differential
operator equipped with appropriate boundary and initial conditions. Furthermore,
β denotes a regularization parameter. Problems of this type have been of increasing
interest over the last decade and we refer to [37, 17, 18, 6] for introductions to this
field. Recently, computational aspects of statistical inverse problems have become
a focus of many researchers as these problems are relevant when the uncertainties
within a particular model are to be quantified. The problems are often of a similar
nature to the problem given above (see [8, 19, 33]).

A typical solution technique for problems of the above kind is to discretize the
objective function and the PDE to build a discrete Lagrangian. The first order condi-
tions of the Lagrangian are then given by a large-scale saddle point or KKT problem
[3, 12]. In case the function or the PDE are nonlinear one would additionally employ
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approaches from nonlinear optimization such as SQP or interior point methods [21].
In all cases at the heart of the algorithms lies the solution of a very large linear system.
A technique that has recently been found to enable very effective numerical methods
and in particular preconditioners is to employ a simultaneous discretization in both
space and time [22, 4, 2].

Depending on the number of time-steps this can lead to prohibitively large vec-
tors and one remedy is to consider parallel approaches that allow to distribute the
work and storage among a possibly very large number of processors. As the storage
requirements for the matrices corresponding to the spatial discretization of the PDE
is essentially the same as for the steady case we here focus on a parallelization in time.
For this we focus on the well-studied additive Schwarz preconditioner, decomposing
the time-domain into overlapping pieces and using local, parallel solutions on these
time subdomains to precondition the global linear system [36].

The paper is structured as follows. In Section 2 we introduce three different model
problems, including the heat equation, the Stokes equations, and the convection-
diffusion equations. Our focus here is on the discretization of the PDEs and the
corresponding optimality systems. This is then followed by a description of Schur
complement preconditioners in Section 3. We then discuss how this strategy can
be adapted for a parallelization in time using a Schwarz preconditioner in Section
4. After discussing possible alternative we illustrate the scaling properties of our
proposed method in Section 5.

2. PDE-constrained optimization model problems. We begin with the
introduction of three model problems that illustrate many of the relevant structures
that are encountered in PDE-constrained optimization problems. The goal of the
optimization process is to bring the state y as close as possible to a desired or observed
state ȳ while using a control u, i.e.,

min
y,u

1
2

∫ T

0

∫
Ω1

(y − ȳ)2
dxdt+

β

2

∫ T

0

∫
Ω2

u2dxdt, (2.1)

with an observation domain Ω1 ⊆ Ω and a control domain Ω2 ⊆ Ω. An obvious first
choice for a time-dependent PDE connection between state and control is the heat
equation

yt −4y = u, in Ω, (2.2)
y = f, on ∂Ω,

here equipped with a distributed control term and Dirichlet boundary condition. We
can also consider the Neumann-boundary control problem defined by

yt −4y = f, in Ω, (2.3)
∂y

∂n
= u, on ∂Ω.

A detailed discussion on the well-posedness and existence of solutions can be found
in [17, 18, 37]. For the solution process we form the Lagrangian to incorporate the
constraints and then consider the first order optimality conditions or KKT conditions
[18, 21, 37]. One can now do this by discretizing objective functions and constraints
first and then optimize or first optimize and then discretize the optimality conditions.
We here use the first discretize then optimize approach. Additionally, we are perform-
ing an all-at-once approach [22, 31] using a discrete problem within the space-time
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cylinder Ω× [0, T ]. Using the trapezoid rule in time and finite elements in space leads
to the following discrete objective function

J(y, u) =
τ

2
(y − ȳ)T M1 (y − ȳ) +

τβ

2
uTM2u. (2.4)

Here, using D1 = diag
(

1
2 , 1, . . . , 1,

1
2

)
we haveM1 = D1 ⊗M1,M2 = D1 ⊗M2 being

space-time matrices where M1 is the mass matrix associated with the domain Ω1

and M2 is the corresponding mass matrix for Ω2. The vectors y = [yT
1 . . . y

T
nt

]T and
u = [uT

1 . . . u
T
nt

]T are space-time vectors that represent a collection of spatial vectors
for all time steps.

The all-at-once discretization of the state equation using finite elements for the
discretization in space and an implicit Euler scheme for the discretization in time is
given by

Ky − τNu = d (2.5)

where

K =


L
−M L

. . . . . .
−M L

 , N =


N

N
. . .

N

 , d =


M1y0 + f

f
...
f

 .
Here, M is the mass matrix for the domain Ω, L is defined as L = M + τK, where
K is the stiffness matrix. The matrix N corresponds to the control term either via
a distributed control (square matrix) or via the contributions of a boundary control
problem (rectangular matrix), and the right-hand side d consists of a contribution from
the initial condition y0 and a vector f representing forcing terms and contributions of
boundary conditions. The first order conditions using a Lagrangian formulation with
Lagrange multiplier p leads to the following system τM1 0 −KT

0 βτM2 τN T

−K τN 0


︸ ︷︷ ︸

A

 y
u
p

 =

 τM1ȳ
0
d

 . (2.6)

Systems of this form can be found in [31, 22, 32, 20]. These systems are of vast di-
mensionality, which prohibits the use of direct solvers [11, 9] and therefore it is crucial
to find efficient preconditioners that are embedded into Krylov subspace methods in
order to obtain an approximation to the solution.

Any Krylov method only needs the application of the system matrix to a vector
and for this we do not need to construct the matrix A explicitly. We are able to
perform this method in a matrix-free fashion. Nevertheless, we need to store the space-
time vectors associated with the control, state and adjoint state. There are various
schemes that can be used instead or are aimed at reducing the storage amount. We
discuss this issue later in Section 4.1. Note that the simplest form of storage reduction
is to work with the Schur-complement if it exists of the matrix A or to remove the
control from the system matrix [28, 16]. As this does not reduce the main problem
of efficiently approximating the Schur complement we proceed with the most general
form of the unreduced system.
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We now want to introduce two more model problems that result in a similar
matrix structure but with a higher complexity regarding the derivation of efficient
preconditioners. The first problem we consider is the optimal control of the Stokes
equations

yt − ν4y +∇p = u in [0, T ]× Ω (2.7)
−∇ · y = 0 in [0, T ]× Ω (2.8)
y(t, ·) = g(t) on ∂Ω, t ∈ [0, T ] (2.9)

y(0, ·) = y0 in Ω, (2.10)

and the objective function is again of misfit-type, i.e.,

J(y, u) =
1
2

∫ T

0

∫
Ω1

(y − ȳ)2
dxdt+

β

2

∫ T

0

∫
Ω2

u2dxdt, (2.11)

and proceeding by forming a discrete Lagrangian for a space time discretization we
get

J(y, u) =
τ

2
(y − ȳ)T M1 (y − ȳ) +

τβ

2
uTM2u (2.12)

(see [32]). Again, we have M1 = D1 ⊗M1,M2 = D1 ⊗M2 but now

D1 = diag
(

1
2
, 0, 1, 0, 1, 0, . . . , 1, 0,

1
2
, 0
)
.

Note that for the Stokes case the vectors yi are split into a velocity v part with d = 2, 3
components and pressure part p, i.e.,

yi =
[
yv

i

yp
i

]
.

Similarly, for the discretized control u and the adjoint state p. The all-at-once dis-
cretization of the state equation using Q2/Q1 finite elements in space and an implicit
Euler scheme in time is given by

Ky − τNu = d (2.13)

where we use the following

K =


L
−M L

. . . . . .
−M L

 , N = INT
⊗Ns, d =



Ly0 + f
0
f
...
f
0


.

In the Stokes case we have a 2× 2 structure of the discretized PDE written as

L =
[
L BT

B 0

]
,
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which represents an instance of a time-dependent Stokes problem. Here B is the
discrete divergence, M is the mass matrix for the domain Ω, the matrix L is defined
as L = τ−1M +K, the matrix

Ns =
[
N
0

]
corresponds to the distributed control term where N = M , and the matrix

M =
[
τ−1M 0

0 0

]
is associated with the discretization in time via the implicit Euler scheme. The right-
hand side d consists of a contribution from the initial condition y0 and a vector f
representing forcing terms and contributions of boundary conditions. Note that all
matrices here correspond to the ones introduced for the heat equation but equipped
with a block form corresponding to the components for the velocity yv and pressure
yp. The first order conditions are then written as τM1 0 −KT

0 βτM2 N T

−K N 0


︸ ︷︷ ︸

A

 y
u
p

 =

 τM1ȳ
0
d

 . (2.14)

Before proceeding to our numerical scheme we introduce one more problem setup.
The objective function

J(y, u) =
1
2

∫ T

0

∫
Ω1

(y − ȳ)2
dxdt+

β

2

∫ T

0

∫
Ω2

u2dxdt. (2.15)

is again the misfit function but the PDE constraint is now given by the convection
diffusion equation

yt − ε4y + w · ∇y = u in Ω (2.16)
y(:, x) = g on ∂Ω (2.17)
y(0, :) = y0. (2.18)

The parameter ε is crucial to the convection-diffusion equation as a decrease in its
value is adding more hyperbolicity to the PDE where the wind w is predefined. Such
optimization problems have recently been discussed in [26, 15, 24]. We use here
the symmetric interior penalty discontinuous Galerkin discretization in space, where
the discretize-then-optimize and optimize-then-discretize approaches can be shown
to commute [1, 40, 34]. Other possible approaches such as the streamline upwind
Galerkin (SUPG) approach [7] or local projection stabilization [24] could also be used
within our framework. Once again we employ a trapezoid rule in connection with finite
elements and now the discretized objective function and state equation are given by

J(y, u) =
τ

2
(y − ȳ)T M1 (y − ȳ) +

τβ

2
uTM2u,

which is the same as for the heat equation case. For the all-at-once discretization of
the convection-diffusion equation we get the same structure as for the heat equation
in (2.13)–(2.6), in particular

Ky − τNu = d (2.19)
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with

K =


Ls

−Ms Ls

. . . . . .
−Ms Ls

 , N =


Ms

Ms

. . .
Ms

 , d =


M1y0 + f

f
...
f

 .
Here Ms is the standard discontinuous Galerkin mass matrix,

Ls = Ms + τ(εKs + Cs)

is the system matrix for the convection-diffusion system where Ks is the DG Laplacian
and Cs represents the convection operator.

3. Schur complement preconditioning. Studying the structure of the linear
systems introduced in the previous section we see that the (1, 1)-block blkdiag(τM1, τβM2)
of A is typically not overly complicated. This can change significantly when the linear
system arises during the iteration of a nonlinear solver caused by a nonlinear objective
function, PDE, or both. Nevertheless, the structure of the (1, 1)-block is naturally
easier than the associated Schur complement. Hence, we briefly overview previously
established Schur-complement type approaches to preconditioning and solving the
time-dependent PDE-constrained optimization problems outlined above. We explain
why these methods are not directly applicable in a parallel computing setting, but
they will form an important part of our overall algorithm so it is worth briefly re-
viewing them here. For a more thorough treatment see [22, 23, 25, 29, 32, 27] where
also the approximation of the (1, 1)-block is discussed. Our point of departure is the
Schur complement

S = τ−1KM−1
1 KT +

τ

β
NM−1

2 N T

and we hope to approximate it as best as possible while using cheap-to-apply meth-
ods. The simplest idea is to ignore one of the terms in S but this usually does not
give the desired robustness with respect to the parameters τ and β. Thus, we use
preconditioners based on the following decomposition

S ≈ τ−1
(
K + M̂

)
M−1

1

(
K + M̂

)T

where we see that the first term in S is obviously represented and we compute M̂ in
such a way that

τ−1M̂M−1
1 M̂T =

τ

β
NM−1

2 N T .

The matrix M̂ can efficiently be chosen for the three examples introduced above. Not
presenting the details, M̂ will often be a block-diagonal matrix scaled by terms involv-
ing the problem parameters such as τ and β. The solution of the system

(
K + M̂

)
then is similar to solving with the matrix K, which is, of course, a block-triangular
matrix. As the inversion is only needed within the preconditioner we do not need to
solve this exactly but rather approximately. This means we approximate the diago-
nal blocks of the block-triangular matrix

(
K + M̂

)
by a multigrid process and then

proceed by forward substitution.
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4. A Schwarz preconditioner. Additive Schwarz preconditioning is a well-
established domain decomposition strategy that has been used with great success for
a wide variety of problems [36]. Here we focus on a simple additive Schwarz domain
decomposition method in time for the discrete systems (2.6), (2.14). We begin by
partitioning the time domain T = [0, T ] into Np non-overlapping time subdomains
and then extending each subdomain to overlap its neighbors by an amount δ. For
simplicity we will take δ to be an integer multiple of the time step size τ and we will
denote the overlapping subdomains by Tk, k = 1, . . . , Np.

Then on each time subdomain we formulate a discrete PDE-constrained opti-
mization problem analogous to the original one. In particular, let nt,k be the number
of time steps in Tk, and define Rk with nt,k block rows and nt block columns such
that the block (i, j) of Rk is the (spatial) identity matrix if the global time step j
corresponds to the ith time step in Tk and zero otherwise. As an example, if nt = 5
and there are two subdomains with nt,1 = nt,2 = 3, then

R1 =

 I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

 , R2 =

 0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 . (4.1)

Then we can define a local optimization operator

Ak =

 Rk

Rk

Rk

A
 RT

k

RT
k

RT
k

 (4.2)

where we are using the same restriction and interpolation in time for the three compo-
nents, that is the notation is using a distributed control but the same idea can handle
the case of boundary control. Now we can define the one-level additive Schwarz
preconditioner

B−1
as =

Np∑
k=1

RT
kA−1

k Rk (4.3)

where we understand the inverse of the local operator Ak in (4.3) to indicate a so-
lution to a local optimization problem in time using the standard Schur complement
approach outlined in the previous section.

Unfortunately, the preconditioner B−1
as is in general indefinite (as it reflects the

structure of the original indefinite matrix A), and since Minres requires a symmetric
positive definite preconditioner we need a different linear solver. Since the underlying
system and preconditioning are still symmetric, we choose a symmetric variant of
qmr [13]. In addition, since we will want to solve the local subproblems inexactly, we
employ the flexible qmr variant of Szyld and Vogel [35].

To summarize, the system (2.6) or (2.14) is solved with a flexible, symmetric qmr
iteration. This qmr iteration is preconditioned with the one-level additive Schwarz
preconditioner (4.3). Within the Schwarz preconditioner, inverting the local operators
Ak is approximated independently on each processor by a Minres method, and this
Minres is itself preconditioned using the Schur complement approach from Section
3.

The one-level Schwarz preconditioner is known to not scale to very large number
of processors, a situation for which we need exchange of global information on coarser
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meshes, that is, we need a two-level or multi-level Schwarz preconditioner. Such a
scalable preconditioner is the subject of ongoing research. Nevertheless, we will see
in Section 5 that for moderate processor counts the current one-level implementation
scales quite well.

4.1. Alternative approaches. Parallel solvers and preconditioners are consid-
ered for PDE-constrained optimization problems in [5], but the problems considered
are not time dependent, and the time dependence is a key focus of our work as this
greatly increases the overall size of the system and gives the physics a different char-
acter.

In [10], a parallel in time method is introduced for similar problems, but here the
authors use a reduced Hessian approach for the control variables only, while we want
to solve for all variables at once. As a result, their parallel solvers in time involve
forward and backward sweeps with the parareal algorithm, while we are interested in
preserving both the forward and backward coupling in time within the preconditioner,
not separating them into different sweeps.

In [39] and [38], parallel Schwarz methods are used in space for time–dependent
PDE–constrained optimization problems. In these works the authors employ a so-
called “suboptimal control” approach, where an optimal control problem is solved
over a series of short time intervals to approximate the solution to the optimal control
problem over the whole interval. The result is an algorithm which is parallel in space
but sequential in time—in contrast our approach is sequential in space but parallel in
time, and we are interested in finding the true optimal control for the entire interval.

The approach in the literature which is perhaps the most similar to ours in spirit
is that of [14], which uses a kind of Gauss-Seidel-Schwarz domain decomposition in
time. The use of large scale parallel computing for this approach is, however, not
as straightforward as in our approach, and indeed the numerical examples presented
in [14] are all rather small. In addition, this approach breaks the symmetry of the
underlying KKT system, which we view as an undesirable property.

Recently, a technique based on low-rank presentations for the solution vectors was
introduced [30]. The method allows to reduce the storage requirement for the solution
vectors by constantly performing low-rank approximation to the solution. Currently,
the method is limited to very specific structures of both the PDE and the objective
function, whereas the techniques presented here are very general.

5. Numerical experiments. All of the numerical results in this section are
performed on a Linux cluster with 90 nodes, each of which has 2 Intel Xeon X5650
CPUs, each of which has 6 cores. We run with 12 MPI processes per node, and do
not distinguish between intranode and internode parallelism. Each node has 48 GB
of memory, and in Infiniband network connects the nodes.

5.1. Heat equation. Here we report numerical results for the heat equation
constrained optimization problem (2.2) with β = 10−4. Our model problem has the
desired state

ȳ(x) = 64t sin(2π|x− (1/2, 1/2, 1/2)|2).

This desired state can be seen in Figure 5.1 along with the computed value. Since our
β is quite small, the computed solution comes very close to the desired state, except
near the boundaries where ȳ does not satisfy the boundary conditions. By the same
token, a small β allows the control to be quite large, as shown in Figure 5.2.
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Fig. 5.1: Slice of a 3D solution for the heat equation constrained optimization problem
(2.2) with β = 10−6, desired state on the left, achieved solution on the right.

Fig. 5.2: Slice of the calculated control for a 3D solution for the heat equation con-
strained optimization problem with β = 10−6.

The first parallel results we present are concerned not so much with parallel
efficiency as with our ability to simply solve very large problems. To that end, we run
the heat constrained optimization problem with 64 cores and scale up the problem
size as far as possible, with results shown in Table 5.1. Here the number of spatial
degrees of freedom is kept fixed at 275000, while we increase the number of time steps,
which is our primary interest in this paper. We are able to solve problems with over
800 million unknowns, problem sizes that would be completely impossible without
parallel computing and domain decomposition in time.

To illustrate the parallel efficiency of our algorithms presented in Section 4, we
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Table 5.1: Scaling with respect to problem size, heat equation constrained optimiza-
tion problems running on 64 cores with an overlap of 2.

N NT Nx iterations time (sec)
1.05e8 128 274 625 10 1890.4
2.11e8 256 13 4385.3
4.22e8 512 17 5249.3
8.44e8 1024 16 9191.8

Table 5.2: Parallel scaling for the heat equation, with 35937 spatial degrees of freedom,
256 time steps, an overlap of 2 time steps, and an increasing number of cores.

cores iterations time (sec) time/iteration
4 9 1848.8 205.4
8 10 890.6 89.1
16 10 609.3 60.9
32 10 379.7 38.0
64 14 367.8 26.3
128 15 339.5 22.6

present strong scaling results with a fixed problem size and increasing number of
processing cores in Table 5.2. The iteration counts are very reasonable and increase
somewhat as we scale the problem, as expected for a one-level Schwarz preconditioner.
In terms of time to solution we do see some speedup from using parallel computing,
although for this particular problem there are diminishing returns for using more than
32 parallel processes, largely do to increasing iteration counts. The use of a two-level
or multi-level Schwarz preconditioner could allow for scaling to more processors on
the parallel machine.

We also present weak scaling results in Table 5.3. Here the problem size is in-
creased with the number of cores, so that we hope for constant run times. Even with
only a one-level preconditioner, the iteration counts are quite small and grow only
slowly. The times reported in this table are not quite constant but they grow slowly,
so that for larger problems we can see that using larger numbers of cores is beneficial.

5.2. Stokes equation. For our numerical approach to the Stokes equation (2.7),
our implementation is in two spatial dimensions. The problem is based on standard
driven cavity flow, where the desired state corresponds to a driven cavity flow with
steady flow on the lid. In contrast, the actual state is subject to an oscillating flow on
the lid, and the distributed control is employed to drive the flow toward the steady–lid
case. A representative picture of the velocity magnitude is in Figure 5.3.

Strong and weak scaling results for this problem are presented in Tables 5.4
and 5.5. Although we include timing results here, this implementation has not been
optimized very carefully and the primary purpose of these results is to show that the
outer iteration counts increase quite slowly as we scale to larger problems and more
cores. With some additional effort we expect that the timings could be improved to
be more in line with the timings for the heat equation problem above.
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Table 5.3: Weak scaling for the heat equation, fixed at 274625 spatial degrees of
freedom but with the number of time steps increasing as the number of cores is also
increased. Overlap is set to 2.

NT cores iterations time (sec)
32 2 9 2994.0
64 4 8 3243.8
128 8 8 4272.1
256 16 9 4556.4
512 32 11 5265.3

Fig. 5.3: Achieved state for the Stokes equation constrained optimization problem.

Table 5.4: Parallel scaling for the Stokes problem in two dimensions, with 37507
spatial degrees of freedom and NT = 256 time steps.

cores iterations time (sec)
8 9 39400
16 9 20700
32 9 12000
64 11 8900

Table 5.5: Weak scaling for the Stokes problem in two dimensions, with a fixed number
of 37507 spatial degrees of freedom and with number of time steps and cores increasing
together.

NT cores iterations time (sec)
32 2 3 4320
64 4 4 6420
128 8 7 16700
256 16 9 20800
512 32 12 31200
1024 64 17 42200
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Fig. 5.4: Convection diffusion model problem, solution on the left, adjoint on the
right, at time t = π/2.

5.3. Convection–diffusion equation. Here we present numerical results for
the convection-diffusion model problem from (2.16). For our model problem, let

η(z, α) = z − exp(α(z − 1)/ε)− exp(−α/ε)
1− exp(−α/ε)

µ(z, α) = 1− z − exp(−αz/ε)− exp(−α/ε)
1− exp(−α/ε)

and then choose the right-hand-side f and the desired state ȳ so that the true solution
y and the true adjoint p are given by

y = sin(t)η(x,wx)η(y, wy)η(z, wz)
p = − sin(t)η(y, wy)η(z, wz) + wyη(x,wx)η(z, wz) + wzη(x,wx)η(y, wy)

where w = (wx, wy, wz) is the wind or advection direction. Pictures of typical state
an adjoint variables are shown in Figure 5.4

Strong and weak scaling results in terms of iterations are shown in Tables 5.6 and
5.7. Since some of these results were done on a different computer than the others,
we do not present timings, but qualitatively the parallel performance is similar to
the other model problems in this section. For the convection-diffusion problem the
non-optimality of the one-level preconditioner is visible, but we still see reasonable
iteration counts for this problem.

This problem has quite a few parameters, including τ, h, β and ε, and we want our
preconditioning strategy to be robust with respect to a wide range of these parameters.
In Table 5.8 we consider the interplay of β and τ , seeing that in every case we get
reasonable iteration numbers, and in Table 5.9 we consider the interplay of ε and β,
noting that the case of relatively small ε can be a difficult case for convection-diffusion
problems and is important in applications. We note that thanks to the discontinuous
Galerkin discretization and our regularization-robust preconditioners we have good
iteration counts for all these cases.
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Table 5.6: Strong scaling for the convection-diffusion problem in three spatial dimen-
sions with 32768 spatial degrees of freedom and 127 time steps, β = 0.1, ε = 0.1, and
overlap of 2 timesteps.

cores iterations
4 8
8 7
16 9
32 10

Table 5.7: Weak scaling for the convection-diffusion problem in three spatial dimen-
sions with 32768 spatial degrees of freedom, β = 0.1, ε = 0.1, and overlap of 1 timestep

NT cores iterations
64 2 10
127 4 7
255 8 9
511 16 10
1023 32 17

6. Conclusions. Our goal in this paper has been to address one of the drawbacks
of the all-at-once approach to time dependent PDE-constrained optimization, namely
the storage of the extremely large vectors that arise in the all-at-once systems. We
have demonstrated that these large systems and vectors can be dealt with using a
straightforward Schwarz preconditioner in the time domain, while still maintaining the
good convergence properties of the approach, including the robustness with respect to
the regularization parameter, timestep size, and other physical parameters that may
arise in particular problems.

Although a complete theoretical treatment of the approach is out of reach, we
have used known theory for simpler problems to motivate our approach and explain
why it makes sense and can be expected to lead to well-conditioned systems. In
addition, our numerical results have shown that this approach is effective for several
different PDEs, that it can solve problems with hundreds of millions of unknowns,
and that it achieves good parallel scaling on a moderate number of processors.

Future work will include developing a truly scalable two–level or multi–level pre-
conditioner, extending the parallelism to both space and time, and considering more
complicated and nonlinear problems such as the Navier–Stokes equations.
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